
Compressed Suffix
Arrays for Automata

Jouni Sirén
University of Helsinki, Finland

with
Niko Välimäki and Veli Mäkinen (and others?)

University of Helsinki, Finland

Jouni Sirén, Niko Välimäki, Veli Mäkinen: Indexing
Finite Language Representation of
Population Genotypes. WABI 2011.

Extended version: arXiv:1010.2656, 2011.

Jouni Sirén: Compressed Full-Text Indexes
for Highly Repetitive Collections. PhD
thesis, 2012.

Some new content as well.

http://arxiv.org/abs/1010.2656
http://arxiv.org/abs/1010.2656

Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, Niko
Välimäki: Storage and Retrieval of Highly
Repetitive Sequence Collections. Journal of
Computational Biology, 2010. Earlier in SPIRE 2008,
RECOMB 2009.

Collections of individual genomes or different
versions of documents compress extremely well.
With them, o(n) bits of overhead information in a
CSA can be too much.

CSAs where overhead scales with compressed size.

The story begins...

• Veli visited Richard Durbin at Sanger in late
2009.

• 1000 genomes project was not planning to
assemble individual genomes.

• They were going to store the reads as de
Bruijn graphs.

• I misunderstood the problem.

This is what I imagined

G G GA AC C CT

T

T $

What I thought

• They wanted to index recombinations of
individual genomes in addition to the
genomes themselves.

• We can probably use bit vectors to split
and join paths in the automaton.

• RLCSA analysis: Substrings between SNPs
are usually unique.

Backward searching
Suffixes
$
ACCTG$
ACGTACCTG$
CCTG$
CGTACCTG$
CTG$
G$
GACGTACCTG$
GTACCTG$
TACCTG$
TG$

BWT
G
T
G
A
A
C
T
$
C
G
C

Suffixes matching pattern AC

Suffixes starting with T

Backward searching
Suffixes
$
ACCTG$
ACGTACCTG$
CCTG$
CGTACCTG$
CTG$
G$
GACGTACCTG$
GTACCTG$
TACCTG$
TG$

BWT
G
T
G
A
A
C
T
$
C
G
C

Suffixes matching pattern AC

Suffixes matching pattern TAC

Nodes with label c must be in the
same order as nodes having a

predecessor with label c.

Requirements for the
automaton

• Multiple suffixes can be recognized from
most nodes.

• We should get the same order for the
nodes, regardless of which suffix we use as
a sort key.

• Each node should correspond to a
lexicographic range of suffixes.

Definition.

Let A = (V, E) be a finite automaton, and let v∈V be
a node. Let rng(v) be the smallest lexicographic
range containing all suffixes that can be recognized
from node v. Automaton A is prefix-range-sorted, if
rng(v)∩rng(v’) = ∅ for all v'≠v.

Prefix-doubling

• Find a prefix-range-sorted automaton
equivalent to the original automaton.

• Nodes are paths in the original automaton.

• (u, v, r) + (v, w, r’) ⟼ (u, w, (r, r’))

• If all paths sharing a rank start from the
same original node, we merge them.

Creating the edges

• We first merge paths with adjacent ranks
starting from the same original node.

• (u, v) + (v, v’, r’) ⟼ (u, (v, v’))

• Sort edges by (l(u), r’) and scan the lists.

• (u, u’, r) + (u, (v, v’)) ⟼ ((u, u’), (v, v’))

• The edges were sorted by r.

G G GA AC C CT

T

T $

G G G

A

A

A

A

A

A

C

C C C

T

T T $
GA GT

ACTA CTA

ACG CG

AT TGT

TA

AG

ACC

ACTG

CC CTG TG$ G$ $

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET

UNIVERSITY OF HELSINKI
MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA

MATEMATISK-NATURVETENSKAPLIGA FAKULTETEN
FACULTY OF SCIENCE

Indexing Finite Language Representation
of Population Genotypes Jouni Sirén, Niko Välimäki, Veli Mäkinen

ABSTRACT
Compressed full-text indexes [6] based on the Bur-
rows-Wheeler transform (BWT) are widely used in
bioinformatics. Their most succesful application so
far has been mapping short reads to a reference
sequence (e.g. Bowtie [3], BWA [4], SOAP2 [5]).
These indexes use the BWT to simulate the suffix
tree or the suffix array (SA), while using much less
space than either of them. A simple generalization
allows indexing a set of sequences.

We propose a biologically motivated generalization
of the BWT to finite languages. Given a multiple
alignment of sequences (e.g. individual genomes),
we build a compressed index capable of simulating
the suffix array over plausible recombinations of the
sequences. Alternatively, we start from a reference
sequence and a set of mutations, and build the in-
dex over sequences containing any subset of the
mutations.

Our approach is based on finite automata. We start
with an automaton recognizing the input language.
This automaton is transformed into an equivalent
automaton, where each state corresponds to a lexi-
cographic range of suffixes of the language. A gen-
eralization of the XBW transform for labeled trees
[2] is used to index the transformed automaton.

FULL-TEXT INDEXES FOR PATTERN MATCHING AND SEQUENCE ANALYSIS

A

Suffix Tree SA Sorted Suffixes BWT

10

2

6

3

7

9

1

4

5

8

$

$GTCATGCAG $

10

2

6

3

7

9

1

4

5

8

$GTCATGCA

$GTCATGC

$GTCATG

$GTCAT

$GTCA

$GTC

$GT

$G

GTCATGCA

A

C

C

G

G

G

T

T

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

C

C

C

C

C

C

G

G

G

G

G

T

T

T

T

A

A

A

C

C

T

AC

C

$

G

T

GTACTG$

TG$

GTACTG$

TG$

$

ACGTACTG$

TACTG$

ACTG$

G$

$GTCATGCAGGC

A MATCH IN MULTIPLE ALIGNMENT

GTCATGCAG –

GATGCAG –

GTCATGAG –

GTCATCAG

– –

T

– CT TG GA

INITIAL AUTOMATON AND SORTED AUTOMATON

G G GA AC C CT

T

T $

G G G

A

A

A

A

A

A

C

C C C

T

T T $
GA GT

ACTA CTA

ACG CG

AT TGT

TA

AG

ACC

ACTG

CC CTG TG$ G$ $

GENERALIZED COMPRESSED SUFFIX ARRAY

$ ACC ACG ACTA ACTG AG AT CC CG CTA CTG G$ GA GT TA TG$ TGT #

BWT G T G G T T G A A A AC AT # CT CG C A $
Edges 1 1 1 1 1 1 1 1 1 1 1 1 100 1 100 1 1 1

Basic operations are about 2 times slower than in regular BWT-based indexes. For reasonable mutation
frequencies f , the expected size of the sorted automaton is n(1 + f)O(log n), where n is the length of the
reference sequence. For 1/f = W(log n), this becomes O(n). In our experiments, an index built for the
human reference genome and the genetic variation found in the Finnish population sample of the 1000
Genomes Project took approximately 2.8 gigabytes.

FUTURE DIRECTIONS
• With our current algorithm, the construction of

a genome-scale index requires 12 hours and
192 gigabytes of memory. We are currently in-
vestigating other algorithms, such as external
memory construction and distributed construc-
tion in the MapReduce framework [1].

• In principle, our index can be used in any algo-
rithm using a regular BWT-based index. What
can be done efficiently in practice?

• We are currently investigating several ways to
use the generalized index in read alignment.
Are there other applications, where our index
could be superior to the existing approaches?

REFERENCES
[1] J. Dean, S. Ghemawat: Simplified Data Pro-

cessing on Large Clusters. OSDI 2004.

[2] P. Ferragina et al.: Compressing and indexing
labeled trees, with applications. Journal of the
ACM, 2009.

[3] B. Langmead et al.: Ultrafast and memory-effi-
cient alignment of short DNA sequences to the
human genome. Genome Biology, 2009.

[4] H. Li, R. Durbin: Fast and accurate short read
alignment with Burrows-Wheeler Transform.
Bioinformatics, 2009.

[5] R. Li et al.: SOAP2: an improved ultrafast tool
for short read alignment. Bioinformatics, 2009.

[6] G. Navarro, V. Mäkinen: Compressed full-text
indexes. ACM Computing Surveys, 2007.

Index construction

• Human genome and genetic variation in the
Finnish subpopulation of the 1000 genomes
project.

• 4x Xeon X7550 (32 cores + HT, used 24
cores) and 1 TB of memory.

• Index construction took 10 hours, 181 GB.

• Final index takes 2.8 gigabytes.

Analysis

• Assume a random sequence of length n and
random mutations with probability p.

• The expected number of paths of length k
starting from a given position is (1+p)k.

• For reasonable values of p, the expected
number of nodes is n(1+p)O(logσ n) + O(1).

• This is O(n) for p = O(1 / logσ n).

Search performance

• Backward searching requires one extra bit
vector operation per character.

• locate() can be slow due to duplicates.

• Theoretically 2x slower than a similar CSA.

• In approximate matching, GCSA is 1.5 to
2.5 times slower than RLCSA using the
same algorithm.

Multiple automata

• We can index multiple automata in the
same way as multiple sequences.

• Indexing two identical automata results in
exponential growth, as end markers are
required to distinguish the paths.

• Maybe we can solve this by aligning the
automata.

Class of languages

• Prefix-range-
sorted automata
exist for all finite
languages
(consider tries).

• Some infinite
languages can also
be recognized.

#

B

A

$

Theorem. Not all regular languages can be
recognized by prefix-range-sorted automata.

Consider the language L = {a, b}* ∪ {a, c}* and its
suffixes of type Bn = an b and Cn = an c.

If Bn and Cn can be recognized from the same
node, then bCn ∈ L – a contradiction.

As Cn+1 < Bn < Cn, there must be separate nodes to
recognize suffixes Ci for all i – the automaton must
be infinite.

De Bruijn graphs?

#

B

A

$

G G G

A

A

A

A

A

A

C

C C C

T

T T $
GA GT

ACTA CTA

ACG CG

AT TGT

TA

AG

ACC

ACTG

CC CTG TG$ G$ $

An order-k de Bruijn graph is a
prefix-range-sorted automaton,

where rng(v) is defined by a prefix
of length k.

Alexander Bowe, Taku Onodera, Kunihiko
Sadakane, Tetsuo Shibuya: Succinct de Bruijn
Graphs. WABI 2012.

De Bruijn graphs with m edges in m(log σ + 2) +
o(m) bits. Based on the XBW transform. Different
terminology and different design choices, but the
core combinatorial structure is essentially GCSA.

I had solved the right problem already in 2009, but
nobody noticed!

THANK YOU!

