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Collections of individual genomes or different 
versions of documents compress extremely well. 
With them, o(n) bits of overhead information in a 
CSA can be too much.

CSAs where overhead scales with compressed size.



The story begins...

• Veli visited Richard Durbin at Sanger in late 
2009.

• 1000 genomes project was not planning to 
assemble individual genomes.

• They were going to store the reads as de 
Bruijn graphs.

• I misunderstood the problem.



This is what I imagined
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What I thought

• They wanted to index recombinations of 
individual genomes in addition to the 
genomes themselves.

• We can probably use bit vectors to split 
and join paths in the automaton.

• RLCSA analysis: Substrings between SNPs 
are usually unique.
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Nodes with label c must be in the 
same order as nodes having a 

predecessor with label c.



Requirements for the 
automaton

• Multiple suffixes can be recognized from 
most nodes.

• We should get the same order for the 
nodes, regardless of which suffix we use as 
a sort key.

• Each node should correspond to a 
lexicographic range of suffixes.



Definition.

Let A = (V, E) be a finite automaton, and let v∈V be 
a node. Let rng(v) be the smallest lexicographic 
range containing all suffixes that can be recognized 
from node v. Automaton A is prefix-range-sorted, if 
rng(v)∩rng(v’) = ∅ for all v'≠v.



Prefix-doubling

• Find a prefix-range-sorted automaton 
equivalent to the original automaton.

• Nodes are paths in the original automaton.

• (u, v, r) + (v, w, r’) ⟼ (u, w, (r, r’))

• If all paths sharing a rank start from the 
same original node, we merge them.



Creating the edges

• We first merge paths with adjacent ranks 
starting from the same original node.

• (u, v) + (v, v’, r’) ⟼ (u, (v, v’))

• Sort edges by (l(u), r’) and scan the lists.

• (u, u’, r) + (u, (v, v’)) ⟼ ((u, u’), (v, v’))

• The edges were sorted by r.
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ABSTRACT
Compressed full-text indexes [6] based on the Bur-
rows-Wheeler transform (BWT) are widely used in
bioinformatics. Their most succesful application so
far has been mapping short reads to a reference
sequence (e.g. Bowtie [3], BWA [4], SOAP2 [5]).
These indexes use the BWT to simulate the suffix
tree or the suffix array (SA), while using much less
space than either of them. A simple generalization
allows indexing a set of sequences.

We propose a biologically motivated generalization
of the BWT to finite languages. Given a multiple
alignment of sequences (e.g. individual genomes),
we build a compressed index capable of simulating
the suffix array over plausible recombinations of the
sequences. Alternatively, we start from a reference
sequence and a set of mutations, and build the in-
dex over sequences containing any subset of the
mutations.

Our approach is based on finite automata. We start
with an automaton recognizing the input language.
This automaton is transformed into an equivalent
automaton, where each state corresponds to a lexi-
cographic range of suffixes of the language. A gen-
eralization of the XBW transform for labeled trees
[2] is used to index the transformed automaton.

FULL-TEXT INDEXES FOR PATTERN MATCHING AND SEQUENCE ANALYSIS
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GENERALIZED COMPRESSED SUFFIX ARRAY

$ ACC ACG ACTA ACTG AG AT CC CG CTA CTG G$ GA GT TA TG$ TGT #

BWT G T G G T T G A A A AC AT # CT CG C A $
Edges 1 1 1 1 1 1 1 1 1 1 1 1 100 1 100 1 1 1

Basic operations are about 2 times slower than in regular BWT-based indexes. For reasonable mutation
frequencies f , the expected size of the sorted automaton is n(1 + f )O(log n), where n is the length of the
reference sequence. For 1/f = W(log n), this becomes O(n). In our experiments, an index built for the
human reference genome and the genetic variation found in the Finnish population sample of the 1000
Genomes Project took approximately 2.8 gigabytes.

FUTURE DIRECTIONS
• With our current algorithm, the construction of

a genome-scale index requires 12 hours and
192 gigabytes of memory. We are currently in-
vestigating other algorithms, such as external
memory construction and distributed construc-
tion in the MapReduce framework [1].

• In principle, our index can be used in any algo-
rithm using a regular BWT-based index. What
can be done efficiently in practice?

• We are currently investigating several ways to
use the generalized index in read alignment.
Are there other applications, where our index
could be superior to the existing approaches?
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Index construction

• Human genome and genetic variation in the 
Finnish subpopulation of the 1000 genomes 
project.

• 4x Xeon X7550 (32 cores + HT, used 24 
cores) and 1 TB of memory.

• Index construction took 10 hours, 181 GB.

• Final index takes 2.8 gigabytes.



Analysis

• Assume a random sequence of length n and 
random mutations with probability p.

• The expected number of paths of length k 
starting from a given position is (1+p)k.

• For reasonable values of p, the expected 
number of nodes is n(1+p)O(logσ n) + O(1).

• This is O(n) for p = O(1 / logσ n).



Search performance

• Backward searching requires one extra bit 
vector operation per character.

• locate() can be slow due to duplicates.

• Theoretically 2x slower than a similar CSA.

• In approximate matching, GCSA is 1.5 to 
2.5 times slower than RLCSA using the 
same algorithm.



Multiple automata

• We can index multiple automata in the 
same way as multiple sequences.

• Indexing two identical automata results in 
exponential growth, as end markers are 
required to distinguish the paths.

• Maybe we can solve this by aligning the 
automata.



Class of languages

• Prefix-range-
sorted automata 
exist for all finite 
languages 
(consider tries).

• Some infinite 
languages can also 
be recognized.
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Theorem. Not all regular languages can be 
recognized by prefix-range-sorted automata.

Consider the language L = {a, b}* ∪ {a, c}* and its 
suffixes of type Bn = an b and Cn = an c.

If Bn and Cn can be recognized from the same 
node, then bCn ∈ L – a contradiction.

As Cn+1 < Bn < Cn, there must be separate nodes to 
recognize suffixes Ci for all i – the automaton must 
be infinite.



De Bruijn graphs?
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An order-k de Bruijn graph is a 
prefix-range-sorted automaton, 

where rng(v) is defined by a prefix 
of length k.



Alexander Bowe, Taku Onodera, Kunihiko 
Sadakane, Tetsuo Shibuya: Succinct de Bruijn 
Graphs. WABI 2012.

De Bruijn graphs with m edges in m(log σ + 2) + 
o(m) bits. Based on the XBW transform. Different 
terminology and different design choices, but the 
core combinatorial structure is essentially GCSA.

I had solved the right problem already in 2009, but 
nobody noticed!



THANK YOU!


