
Haplotype-aware
graph indexes

Jouni Sirén, Erik Garrison, Adam M. Novak,
Benedict Paten, and Richard Durbin

Reference sequence

???

• Reference sequences are easy to work with.

• When the sample diverges from the reference, the
reference does not help and it may bias our results.

Collection of haplotypes

???

• We can try to reduce the reference bias by using a
collection of haplotypes as the reference.

• How to deal with reads mapping to multiple
haplotypes?

Global alignment / DAG

???

• A global alignment helps with reads mapping to
multiple haplotypes. If we collapse shared regions,
we get a directed acyclic graph.

• How to deal with structural variation?

Local alignments

• If we use local alignments instead, we get assembly
graphs that can handle structural variation.

• They contain nonsensical paths and lack a global
coordinate system.

??? Offset n?

VG model

• The variation graph toolkit VG (Garrison et al, Nature
Biotechnology, 2018; https://github.com/vgteam/vg)
works with arbitrary graphs.

• A primary path provides a coordinate system.

• We still cannot deal with structural variation in DAGs
or with nonsensical paths in assembly graphs.

https://github.com/vgteam/vg

Read mapping in VG
Complex regions of the graph
may contain too many kmers.
VG simplifies such regions
before indexing the graph.

Reads are aligned to
the original graph.

???

Reads that consist of
pruned sequence
cannot be mapped.

Sometimes there are false
mappings to unlikely
recombinations of true
haplotypes.

Augmenting VG model

• Reference: graph + primary path + haplotype paths.

• Preserve haplotypes when simplifying the graph.

• Penalize recombinations when aligning reads.

This talk: VG infrastructure

• How to store and index the haplotypes as paths in
the graph?

• A scalable version of the graph extension (Novak et
al, 2017) of the positional BWT (Durbin, 2014).

• Tested with 5,000 human haplotypes; trying to scale
up to 100,000 haplotypes.

• A subsequent paper will investigate the use of
haplotype information in read mapping.

FM-index

Burrows–Wheeler transform
 TAGCATAGAC$

C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

• Add a unique terminator ($) to the end of
the text, sort the suffixes in lexicographic
order, and output the preceding character
for each suffix.

• The permutation is easily reversible and
makes the text easier to compress
(Burrows & Wheeler, 1994).

• The combinatorial structure is similar to
the suffix array, which makes the BWT
useful as a space-efficient text index
(Ferragina & Manzini, 2000, 2005).

• There is a straightforward generalization
to multiple strings by using distinct
terminators during sorting.

LF-mapping
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

 $
 AC$
 AGAC$
 AGCATAGAC$
 ATAGAC$
 C$
 CATAGAC$
 GAC$
 GCATAGAC$
 TAGAC$
TAGCATAGAC$

LF(3, C)

Interpretation: LF(i, c) = C[c] + BWT.rank(i, c) suffixes
are strictly before the hypothetical suffix.

Backward searching
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

 $
 AC$
 AGAC$
 AGCATAGAC$
 ATAGAC$
 C$
 CATAGAC$
 GAC$
 GCATAGAC$
 TAGAC$
TAGCATAGAC$

LF([1…4], C)

LF([sp…ep], c) = [LF(sp, c)…LF(ep+1, c) –1]

Locating the occurrences
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

 $
 AC$
 AGAC$
 AGCATAGAC$
 ATAGAC$
 C$
 CATAGAC$
 GAC$
 GCATAGAC$
 TAGAC$
TAGCATAGAC$

SA[LF(i, BWT[i])] = SA[i] – 1

LF(4, C)
Text position 4

Text position 3

FMD-index
• In bioinformatics, the text and/or the patterns are

often a mix of forward and reverse complement
orientations.

• We can simplify the situation by indexing the text in
both orientations in the same FM-index (Li, 2012).

• We can then:

• search for both orientations of the pattern in both
orientations of the text; and

• support bidirectional searching.

Graph BWT

Some assumptions
• We have a repetitive collection of paths in a large

graph with a low average outdegree.

• The paths are represented as node sequences.

• The number of occurrences of almost every node is
proportional to the number of samples.

• While there may be cycles, the graph is still mostly
linear and topologically sorted.

• We index reverse paths, as it is more intuitive to have
LF-mapping following the edges forward.

Records

Node 4
Outdegree 2

0: node 5, offset 1
1: node 6, offset 0

10

• We have a separate record for each node
(each character in the alphabet).

• The header stores the outgoing edges and
the rank information needed for LF-mapping.

• The body stores the (run-length encoded)
part of the BWT corresponding to the
prefixes ending with the current node.

1
3 6

5
7

2

4

Node $
|�$| = 1
0 : (1, 0)

0
0
0

Node 1
|�1| = 2
0 : (2, 0)
1 : (3, 0)

0
0
1

Node 2
|�2| = 2
0 : (4, 0)
1 : (5, 0)

0
1

Node 3
|�3| = 1
0 : (4, 1)

0

Node 4
|�4| = 2
0 : (5, 1)
1 : (6, 0)

1
0

Node 5
|�5| = 1
0 : (7, 0)

0
0

Node 6
|�6| = 1
0 : (7, 2)

0

Node 7
|�7| = 1
0 : ($, 0)

0
0
0

Some consequences

• Query performance depends on the size of the local
alphabet, not on the global alphabet.

• As the graph is (almost) topologically sorted, search
tends to scan the BWT linearly instead of jumping
around randomly.

• Because the rank structure is local, memory access
takes almost constant time regardless of text size.

• We could even use a memory-mapped file for BWT.

GBWT construction
• An incremental algorithm based on BCR (Bauer, Cox

& Rosone, 2013) and RopeBWT2 (Li, 2014).

• Insert a batch of sequences into a dynamic FM-
index.

• Rewrite a record every time we update it.

• Larger batches use more memory but reduce the
total number of rewrites.

• Some buffering is required, as we generate the
sequences one variant site at a time.

Construction in VG

for each batch of 200 samples
 for each site in VCF
 for each sample in batch
 for each phase in sample
 if phaseBreak(phase, site)
 GBWT.insert(S[phase])
 S[phase].clear()
 S[phase].extend(site)
 for each sample in batch
 for each phase in sample
 GBWT.insert(S[phase])
 S[phase].clear()

• Separate process for each
chromosome.

• Memory usage <1 GB / 10 Mbp
with 1000GP data.

• Index both orientations to build
an FMD-index.

• Sequences are buffered (size 100
million) and inserted in a
background thread.

• The GBWTs for different
chromosomes can be merged
quickly, because the node ids do
not overlap.

Benchmarks

Construction in the paper
• 1000GP data: 2504 samples, ~85 million variants.

• 29.3 million sequences of total length 1.62 trillion,
alphabet size 493 million.

• AWS i3.8xlarge instance: 32 cores, 244 GB memory.

• 12 parallel jobs for 24 chromosomes + merging.

• Store sequence ids at one out of 1024 positions.

• 29 hours, final GBWT size 7.4 GB + 7.2 GB.

Faster construction

• We spent 29 hours for parsing the VCF files once for
every 200 samples.

• Faster alternative: Parse each VCF only once and
store the phasing information in a better format.

• Also some memory optimizations.

• 12 → 14 parallel jobs, 29.0 → 10.4 hours, 29.3 →
50.6 million sequences, 7.4+7.2 → 7.5+7.4 GB.

Why more sequences?
• 1000GP VCFs have issues with overlapping variants.

• In particular, a haplotype may both delete a base
and replace it with another base.

• We accidentally prioritized SNPs over deletions; our
new code treats such situations as phase breaks.

• We can also choose to ignore overlapping variants.

• 10.4 → 15.4 hours, 50.6 → 0.24 million sequences,
7.5+7.4 → 7.3+5.9 GB.

• VCF parsing takes ~2 hours for the largest
chromosomes.

• Indexing speed is >50M nodes/s (6 s/haplotype) with
phase breaks and ~35M nodes/s (9 s/haplotype)
when ignoring overlaps.

Sequences Construction Size

Old 29.3M 29.0 h 7.4+7.2 GB

New 50.6M 10.4 h 7.5+7.4 GB

Ignore overlaps 240232 15.4 h 7.3+5.9 GB

Conclusions

Conclusions

• We augmented the VG model with a collection of
haplotypes.

• GBWT is an FM-index for repetitive collections of
paths in low-degree graphs.

• We can easily index 5,000 human haplotypes.

• How to scale up to 100,000 haplotypes?

