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Reference sequence

???

• Reference sequences are easy to work with. 

• When the sample diverges from the reference, the 
reference does not help and it may bias our results. 



Collection of haplotypes

???

• We can try to reduce the reference bias by using a 
collection of haplotypes as the reference. 

• How to deal with reads mapping to multiple 
haplotypes?



Global alignment / DAG

???

• A global alignment helps with reads mapping to 
multiple haplotypes. If we collapse shared regions, 
we get a directed acyclic graph. 

• How to deal with structural variation?



Local alignments

• If we use local alignments instead, we get assembly 
graphs that can handle structural variation. 

• They contain nonsensical paths and lack a global 
coordinate system.

??? Offset n?



VG model

• The variation graph toolkit VG (Garrison et al, Nature 
Biotechnology, 2018; https://github.com/vgteam/vg) 
works with arbitrary graphs. 

• A primary path provides a coordinate system. 

• We still cannot deal with structural variation in DAGs 
or with nonsensical paths in assembly graphs.

https://github.com/vgteam/vg


Read mapping in VG
Complex regions of the graph 
may contain too many kmers. 
VG simplifies such regions 
before indexing the graph.

Reads are aligned to 
the original graph.

???

Reads that consist of 
pruned sequence 
cannot be mapped.

Sometimes there are false 
mappings to unlikely 
recombinations of true 
haplotypes.



Augmenting VG model

• Reference: graph + primary path + haplotype paths. 

• Preserve haplotypes when simplifying the graph. 

• Penalize recombinations when aligning reads.



This talk: VG infrastructure

• How to store and index the haplotypes as paths in 
the graph? 

• A scalable version of the graph extension (Novak et 
al, 2017) of the positional BWT (Durbin, 2014). 

• Tested with 5,000 human haplotypes; trying to scale 
up to 100,000 haplotypes. 

• A subsequent paper will investigate the use of 
haplotype information in read mapping.



FM-index



Burrows–Wheeler transform
 TAGCATAGAC$

C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

• Add a unique terminator ($) to the end of 
the text, sort the suffixes in lexicographic 
order, and output the preceding character 
for each suffix. 

• The permutation is easily reversible and 
makes the text easier to compress 
(Burrows & Wheeler, 1994). 

• The combinatorial structure is similar to 
the suffix array, which makes the BWT 
useful as a space-efficient text index 
(Ferragina & Manzini, 2000, 2005). 

• There is a straightforward generalization 
to multiple strings by using distinct 
terminators during sorting.



LF-mapping
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

LF(3, C)

Interpretation: LF(i, c) = C[c] + BWT.rank(i, c) suffixes 
are strictly before the hypothetical suffix.



Backward searching
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

LF([1…4], C)

LF([sp…ep], c) = [LF(sp, c)…LF(ep+1, c) –1]



Locating the occurrences
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

SA[LF(i, BWT[i])] = SA[i] – 1

LF(4, C)
Text position 4

Text position 3



FMD-index
• In bioinformatics, the text and/or the patterns are 

often a mix of forward and reverse complement 
orientations. 

• We can simplify the situation by indexing the text in 
both orientations in the same FM-index (Li, 2012). 

• We can then: 

• search for both orientations of the pattern in both 
orientations of the text; and 

• support bidirectional searching.



Graph BWT



Some assumptions
• We have a repetitive collection of paths in a large 

graph with a low average outdegree. 

• The paths are represented as node sequences. 

• The number of occurrences of almost every node is 
proportional to the number of samples. 

• While there may be cycles, the graph is still mostly 
linear and topologically sorted. 

• We index reverse paths, as it is more intuitive to have 
LF-mapping following the edges forward.



Records

Node 4
Outdegree 2 

0: node 5, offset 1 
1: node 6, offset 0

10

• We have a separate record for each node 
(each character in the alphabet). 

• The header stores the outgoing edges and 
the rank information needed for LF-mapping. 

• The body stores the (run-length encoded) 
part of the BWT corresponding to the 
prefixes ending with the current node.

1
3 6

5
7

2

4

Node $
|�$| = 1
0 : (1, 0)

0
0
0

Node 1
|�1| = 2
0 : (2, 0)
1 : (3, 0)

0
0
1

Node 2
|�2| = 2
0 : (4, 0)
1 : (5, 0)

0
1

Node 3
|�3| = 1
0 : (4, 1)

0

Node 4
|�4| = 2
0 : (5, 1)
1 : (6, 0)

1
0

Node 5
|�5| = 1
0 : (7, 0)

0
0

Node 6
|�6| = 1
0 : (7, 2)

0

Node 7
|�7| = 1
0 : ($, 0)

0
0
0



Some consequences

• Query performance depends on the size of the local 
alphabet, not on the global alphabet. 

• As the graph is (almost) topologically sorted, search 
tends to scan the BWT linearly instead of jumping 
around randomly. 

• Because the rank structure is local, memory access 
takes almost constant time regardless of text size. 

• We could even use a memory-mapped file for BWT.



GBWT construction
• An incremental algorithm based on BCR (Bauer, Cox 

& Rosone, 2013) and RopeBWT2 (Li, 2014). 

• Insert a batch of sequences into a dynamic FM-
index. 

• Rewrite a record every time we update it.  

• Larger batches use more memory but reduce the 
total number of rewrites. 

• Some buffering is required, as we generate the 
sequences one variant site at a time.



Construction in VG

for each batch of 200 samples 
 for each site in VCF 
  for each sample in batch 
   for each phase in sample 
    if phaseBreak(phase, site) 
     GBWT.insert(S[phase]) 
     S[phase].clear() 
    S[phase].extend(site) 
 for each sample in batch 
  for each phase in sample 
   GBWT.insert(S[phase]) 
   S[phase].clear()

• Separate process for each 
chromosome. 

• Memory usage <1 GB / 10 Mbp 
with 1000GP data. 

• Index both orientations to build 
an FMD-index. 

• Sequences are buffered (size 100 
million) and inserted in a 
background thread. 

• The GBWTs for different 
chromosomes can be merged 
quickly, because the node ids do 
not overlap.



Benchmarks



Construction in the paper
• 1000GP data: 2504 samples, ~85 million variants. 

• 29.3 million sequences of total length 1.62 trillion, 
alphabet size 493 million. 

• AWS i3.8xlarge instance: 32 cores, 244 GB memory. 

• 12 parallel jobs for 24 chromosomes + merging. 

• Store sequence ids at one out of 1024 positions. 

• 29 hours, final GBWT size 7.4 GB + 7.2 GB.



Faster construction

• We spent 29 hours for parsing the VCF files once for 
every 200 samples. 

• Faster alternative: Parse each VCF only once and 
store the phasing information in a better format. 

• Also some memory optimizations. 

• 12 → 14 parallel jobs, 29.0 → 10.4 hours, 29.3 → 
50.6 million sequences, 7.4+7.2 → 7.5+7.4 GB.



Why more sequences?
• 1000GP VCFs have issues with overlapping variants. 

• In particular, a haplotype may both delete a base 
and replace it with another base. 

• We accidentally prioritized SNPs over deletions; our 
new code treats such situations as phase breaks. 

• We can also choose to ignore overlapping variants. 

• 10.4 → 15.4 hours, 50.6 → 0.24 million sequences,  
7.5+7.4 → 7.3+5.9 GB.



• VCF parsing takes ~2 hours for the largest 
chromosomes. 

• Indexing speed is >50M nodes/s (6 s/haplotype) with 
phase breaks and ~35M nodes/s (9 s/haplotype) 
when ignoring overlaps.

Sequences Construction Size

Old 29.3M 29.0 h 7.4+7.2 GB

New 50.6M 10.4 h 7.5+7.4 GB

Ignore overlaps 240232 15.4 h 7.3+5.9 GB



Conclusions



Conclusions

• We augmented the VG model with a collection of 
haplotypes. 

• GBWT is an FM-index for repetitive collections of 
paths in low-degree graphs. 

• We can easily index 5,000 human haplotypes. 

• How to scale up to 100,000 haplotypes?


