Indexing Variation Graphs

Jouni Sirén Wellcome Trust Sanger Institute

- Path indexes are text indexes for the path labels in a graph.
- The index finds the start nodes of the paths labeled by the query string.
- Indexing the paths themselves is not cost-effective.

Trade-offs

- The number of kmers in a graph increases exponentially with k.
- k should be larger than the expected length of maximal exact matches.
- In one human variation graph, the number of kmers is $1.031^{k} \cdot 2.348$ billion, or 116 billion for k = 128.
- The design of a path index is a trade-off between index size, query performance, maximum query length, and ignoring complex regions of the graph.

- The kmer index is a simple path index. It consists of a set of key-value pairs.
- A hash table supports fast kmer queries.
- Binary search in a sorted array is slower but supports queries shorter than k.
- Index size: terabytes.

Key	Value	Key	Value
\$\$\$	11	GTA	8
A\$\$	10	TA\$	9
ATA	7	TCA	5
ATC	3	TGT	5
ATG	3	TTC	4
CAT	2, 6	TTG	4
CTT	2	#GC	0
GCA	1	##G	0:1
GCT	1	###	0:2

- We can represent the kmer index as a de Bruijn graph.
- We label each node with the first character of the key.
- The de Bruijn graph approximates the input graph. There are no false negatives, and no false positives shorter than k.

##G

0:1

###

0:2

Long paths may be false positives, but we can verify them in the input graph.

Succinct de Bruijn graphs

Node	BWT	IN	OUT
\$\$\$	А	1	1
A\$\$	Т	1	1
ATA	С	1	1
ATC	С	1	1
ATG	С	1	1
CAT	GT	01	001
CTT	G	1	01
GCA	#	1	1
GCT	#	1	1
GTA	Т	1	1
TA\$	AG	01	1
TCA	AT	01	1
TGT	AT	01	1
TTC	С	1	1
TTG	С	1	1
#GC	#	1	01
##G	#	1	1
###	\$	1	1

- Sort the nodes, write the predecessor labels to BWT, and encode the indegrees and the outdegrees in unary to bitvectors IN and OUT.
- The result is an FM-index for de Bruijn graphs.
- Bowe et al: Succinct de Bruijn graphs. WABI 2012.
- Index size: hundreds of gigabytes.

- Transform the original graph into a directed input graph with character labels.
- 2. Apply other transformations, such as determinization, pruning, or expanding haplotype paths.
- 3. Build a pruned de Bruijn graph for the path labels in the transformed input graph.
- 4. Use the pruned de Bruijn graph as an index of the original graph.

Path graphs

- High-order de Bruijn graphs of a graph have redundant subgraphs, if shorter keys already specify the position uniquely.
- We can **compress** the de Bruijn graph by **merging** such subgraphs.
- Path graphs generalize de Bruijn graphs by using any prefix-free set of strings as keys.
- Inspired by: Sirén et al: Indexing Graphs for Path Queries with Applications in Genome Research. TCBB, 2014.

We can **merge** the nodes with a common **prefix of keys** without affecting queries, if the **value sets** are identical.

If we keep merging the nodes, we get a (maximally) **pruned de Bruijn graph**, which behaves intuitively.

key OUT BWT IN

\$\$\$ \$\$\$ 0 A\$A\$() ATA ATA 7 ATC ATC 3 ATG ATG 3 CA CA2 CT CT 0 6 \prec + GC GC $\mathbf{0}$ 8 ∇ GT \mathbf{GT} 9 V ΤA ΤA 5 ∇ TC TC 5 V TG TG \sim V ->0:2TT ΤT $- \rightarrow$ ∇ # G#G 0 $\overline{\mathbf{n}}$ ##G ##G N ### ### \rightarrow ·#< `\$< - - -

 B_V

 B_S

key

 V_S

We can encode the result in the same way as in the succinct de Bruijn graph / GCSA.

key OUT BWT IN key B_S B_V V_S

This is much slower than in ordinary FM-indexes, which use only BWT.rank().

We can use a faster encoding for reverse deterministic graphs, where each node has at most one predecessor with a given label.

(Maximally pruned) de Bruijn graphs are reverse deterministic.

B_c[i] tells whether the node with rank i has a predecessor with label c.

Now B_c.rank(i, 1) = BWT.rank(IN.select(i, 1), c).

With this encoding, GCSA2 is **2x to 4x faster**.

If we **compress** the bitvectors for rare characters (\$, N, #), the index is also **a bit smaller**.

Key	BWT	\$	Α	С	G	Т	#
\$\$\$	А	0	1	0	0	0	0
A\$	Т	0	0	0	0	1	0
ATA	С	0	0	1	0	0	0
ATC	С	0	0	1	0	0	0
ATG	С	0	0	1	0	0	0
CA	GT	0	0	0	1	1	0
СТ	#	0	0	0	0	0	1
GC	G	0	0	0	1	0	0
GT	Т	0	0	0	0	1	0
TA	AG	0	1	0	1	0	0
TC	AT	0	1	0	0	1	0
TG	AT	0	1	0	0	1	0
TT	С	0	0	1	0	0	0
#G	#	0	0	0	0	0	1
##G	#	0	0	0	0	0	1
###	\$	1	0	0	0	0	0

Path graph construction

- Start from paths of length k and use a prefix-doubling algorithm to build the pruned de Bruijn graph.
- extend(): Double the path length by joining paths $A \rightarrow B$ and $B \rightarrow C$ into paths $A \rightarrow C$.
- prune(): If all paths sharing a common prefix start from the same node, merge them into a single path.
- merge(): Merge all paths with the same label, and all paths sharing a prefix if their value sets are identical.

- prune() and merge() merge sorted files using a priority queue.
- extend() is done separately for each chromosome.
- Memory usage is often determined by extend() for the most complex chromosome.

GCSA2 construction

- Index construction is essentially about determining the edges of the pruned de Bruijn graph.
- There is an edge from X to Y, if one of X and cY is a prefix of the other.
- One read pointer scans the destination nodes Y, while σ additional pointers scan the source nodes X starting with each character c∈∑.
- We can determine the edges by using LF-mapping in the de Bruijn graph for the input kmers.

Path length	16→32	16→64	16→128
Kmers Nodes	6.20G 4.37G	16.7G 5.24G	116G 5.73G
Index size	13.2 GB 18.2 bits / kmer	13.5 GB 6.99 bits / kmer	14.6 GB 1.08 bits / kmer
Construction: Time Memory Disk	7.44 h 59.8 GB 387 GB	10.4 h 51.9 GB 415 GB	14.1 h 52.3 GB 478 GB
I/O: Read Write	1.37 TB 0.88 TB	2.03 TB 1.51 TB	2.78 TB 2.25 TB

1000GP human variation (forward strand only) vg mod -p -1 16 -e 4 | vg mod -S -1 100 32 cores, 256 GB memory, distributed Lustre file system

k	Index	kmers	Matched	find()	locate()
16	GCSA2	351584	347453	4.75 µs	5.85 µs
	BWA	351584	320764	3.64 µs	4.65 µs
	csa_wt	351584	301538	6.00 µs	2.43 µs
32	GCSA2	351555	333258	10.8 µs	5.44 µs
	BWA	351555	156080	6.57 µs	3.19 µs
	csa_wt	351555	153957	10.9 µs	2.16 µs

GCSA2: Order-128 index for the pruned variation graph

BWA: The FM-index from BWA v0.7.15 for the reference and its reverse complement **csa_wt**: Fast FM-index from SDSL for the reference

Average time for find queries (per query) and locate queries (per distinct occurrence) with kmers extracted from the nonpruned variation graph.

Suffix Tree of a Path Graph

Maximal exact matches

- Many read aligners are based on finding maximal exact matches between the read and the reference using the bidirectional BWT.
- The bidirectional BWT requires that the lexicographic range and the reverse range have the same length.
- The key set must contain the reverse complement of each key to guarantee this. We do not know how to do that efficiently.
- We can use **compressed suffix trees** instead.

The compacted trie of keys looks sufficiently similar to the suffix tree.

We can consider it the suffix tree of the path graph.

If the path graph is a **maximally pruned de Bruijn graph**, the suffix tree behaves intuitively.

LCP[i...j] is an LCP-interval at depth d, if:

- LCP[i] < d;
- LCP[j+1] < d;
- LCP[i+1...j] ≥ d; and
- LCP[i+1...j] contains value d. The LCP interval tree is equivalent to the suffix tree.
 (Abouelhoda et al: Replacing suffix trees with enhanced suffix arrays. JDA, 2004.)

We can simulate the suffix tree with next/previous smaller value queries and range minimum queries in the LCP array. (Fischer et al: Faster entropybounded compressed suffix trees. TCS, 2009)

Key LCP

If lexicographic range [sp...ep] matches substring P[i...j] of the pattern,

- lexicographic range LF([sp...ep], P[i–1]) matches substring P[i–1...j] of the pattern; and
- range parent([sp...ep]) matches P[i–1...i+d–1], where d < j+1–i is the depth of the parent node.

Ohlebusch et al: Computing Matching Statistics and Maximal Exact Matches on Compressed Full-Text Indexes. SPIRE 2010.

Pruning the Variation Graph

Complex regions

- A whole-genome human variation graph based on 1000GP variation contains trillions (quadrillions?) of distinct 128-mers.
- Almost all of them are from a few complex regions.
- We cannot index all **potential recombinations** in such regions.
- vg and GCSA2 have several ways for dealing with the complex regions.

Pruning

vg mod -p -l 16 -e 4 Remove paths of length 16 crossing more than 4 nontrivial edges.

vg mod -S -l 100 Remove subgraphs **shorter** than 100 bases.

- Easy and efficient.
- Complex regions may be removed completely.

Indexing subgraphs

We can index overlapping subgraphs (e.g. a pruned variation graph and the reference path) and merge the results into a single index.

- Guarantees that the entire genome is indexed.
- Redundant paths can make index construction more expensive.
- Requires a reverse deterministic graph for the fast GCSA encoding.

Pruning

Remove paths crossing too many nontrivial edges, unless they are on the **reference path**.

- No need to determinize the graph.
- Things are getting quite complex.

Indexing haplotypes

Index only paths corresponding to known haplotypes in complex regions.

Multiple nodes of the **input graph** map to the same node in the **variation graph**.

- Guarantees that the entire genome and all observed variation is indexed.
- Not implemented yet in vg.

Conclusions

- The design of a path index is a trade-off between index size, query performance, maximum query length, and ignoring complex regions of the graph.
- GCSA2 prioritizes performance and size, while supporting queries of length up to 128.
- It uses a de Bruijn graph as a kmer index, compresses it by merging redundant subgraphs, and encodes the result as a compressed suffix tree.
- Sirén: Indexing Variation Graphs. arXiv:1604.06605, 2016. Accepted to ALENEX 2017. https://github.com/jltsiren/gcsa2