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Overview

This talk is about the GBZ file format for 
pangenome graphs.


GBZ is based on the GBWT index, which 
stores a set of paths as sequences of node 
identifiers.


GBWT is a run-length encoded FM-index 
partitioned between the nodes of the graph.


FM-index is a space-efficient text index 
based on the Burrows–Wheeler transform. 

Sirén and Paten: GBZ file format for 
pangenome graphs. Bioinformatics, 2022.


Sirén et al: Haplotype-aware graph 
indexes. Bioinformatics, 2020.


Ferragina and Manzini: Indexing 
Compressed Text. JACM, 2005.


Burrows and Wheeler: A Block-sorting Data 
Compression Algorithm. Technical report, 
1994.



Pangenome graphs



Terminology (a slight abuse of)
DNA sequences are strings over alphabet 
{ A, C, G, T, N }, where N indicates that we 
do not know the actual base (character).


A genome is a collection of DNA sequences, 
most of which are chromosomes.


Human genomes are diploid: there are two 
copies of (almost) every chromosome.


The set of chromosomes inherited from the 
same parent is called a haplotype.


Human haplotypes are ~3 Gbp long.


On the average, a human genome can be 
derived from parental genomes with just 
hundreds of edit operations.


Sequences are homologous if they have 
been derived from the same ancestral 
sequence.


Sequence alignment is an attempt to match 
homologous substrings of related sequences.


An alignment can be represented as a graph.


The graph should be simple enough to be 
practical while representing the true 
homology between the sequences.



Directed acyclic graphs

Directed acyclic graphs (DAG) are the 
simplest pangenome graph model.


They correspond to the edit distance model 
with substitutions, insertions, and 
deletions, but they also represent 
recombinations implicitly.


DAGs are easy to work with, but they cannot 
represent all biologically plausible 
alignments.

GATTACA 
GACTATACA

GATTA--CA 
GACTATACA

GATTATACA 
GACTACA

GA

C

T

TA

TA

CA



Cycles and reversals
By allowing cycles in the graph, we can 
represent other edit operations, such as 
rearrangements and repetitions.


Cycles also allow completely implausible 
paths, unless we limit arbitrary iterations.


We can do that by storing the aligned 
sequences as paths and using them to guide 
us.


Cyclic graphs are more difficult to work with 
and reason about than DAGs.


One key operation is still missing: reverse 
complement.

GATCATACATACATATATACATACATA

GATCATACA 
GATTATATACA GAT

TA

CA

GATTACA → TGTAATC



Bidirected sequence graphs

Each node has two sides and can be visited 
in two orientations.


A forward visit enters from the left, reads the 
label, and exits from the right.


A reverse visits enters from the right, reads 
the reverse complement of the label, and 
exits from the left.


Edges are undirected and connect two 
node sides.

1: GATTACA

2: TAT

3: CAG

Traversal >1 >2 <3 <1 reads GATTACA, TAT, 
CTG, and TGTAATC.


Traversal >1 >3 <2 <1 reads GATTACA, CAG, 
ATA, and TGTAATC.



Simulating bidirected graphs

We can simulate bidirected graphs with 
directed graphs by turning node visits into 
nodes.


Edges adjacent to the right side become 
outgoing edges from the forward node.


Edges adjacent to the left side become 
outgoing edges from the reverse node.

1: GATTACA

2: TAT

3: CAG

>1: GATTACA
>2: TAT

>3: CAG

<1: TGTAATC
<2: ATA

<3: CTG



GFA file format
GFA is a TSV-based interchange format for 
bidirected sequence graphs.


Originally intended for assembly graphs, a 
subset of GFA is suitable for pangenome 
graphs:

• Segment: name, sequence

• Link: from, orientation, to, orientation

• Path: name, node visits

• Walk: sample, haplotype, contig, interval, 

node visits


https://github.com/GFA-spec/GFA-spec/
blob/master/GFA1.md

H       VN:Z:1.1 
S       11      G 
S       12      A 
S       13      T 
S       14      T 
S       15      A 
S       16      C 
S       17      A 
S       21      G 
S       22      A 
S       23      T 
S       24      T 
S       25      A 
L       11      +       12      +       * 
L       11      +       13      +       * 
L       12      +       14      +       * 
L       13      +       14      +       * 
L       14      +       15      +       * 
L       14      +       16      +       * 
L       15      +       17      +       * 
L       16      +       17      +       * 
L       21      +       22      +       * 
L       21      +       23      +       * 
L       22      +       24      +       * 
L       23      +       24      -       * 
L       24      +       25      +       * 
P       A       11+,12+,14+,15+,17+     * 
P       B       21+,22+,24+,25+ * 
W       sample  1       A       0       5       >11>12>14>15>17 
W       sample  2       A       0       5       >11>13>14>16>17 
W       sample  1       B       0       5       >21>22>24<23<21 
W       sample  2       B       0       4       >21>22>24>25

https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md
https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md


GFA compression

GFA does not scale well when the number of 
haplotypes increases.


While the haplotype paths are highly similar, 
they are too long for standard compressors 
to compress them together.


The graph itself is reasonably small for 
today's computers, but it also grows with the 
number of haplotypes, if we include rare 
variants. 

The overall effect is superlinear growth with 
the number of haplotypes.


There is a need for a compressed file 
format for pangenome graphs with many 
haplotype paths.



Goals and challenges

• Stable and fully specified file format.


• Good compression.


• Fast loading into in-memory data 
structures.


• Should not make too specific 
requirements for the in-memory data 
structures.


• Easy to handle as a memory-mapped file. 

• Designing a portable file format based on 
highly specialized data structures?


• Simple enough for independent 
implementations vs. compatibility with 
existing files?


• Different priorities in the initial version 
and future versions?



Rank, select, and bitvectors



Notation

Many popular programming languages such 
as C++ and Rust start array indexing from 0 
and use semi-open intervals for 
representing substrings.


I am going to use the same conventions here. 

Substring S[i..j) starts with S[i] and ends just 
before S[j].


S.rank(i, c) is the number of occurrences of 
character c in the prefix S[0..i).


Let Ac be the sorted array of positions of 
character c in string S.


S.select(i, c) = Ac[i] is the position of the 
occurrence of rank i.



Bitvectors
A bitvector represents a binary sequence B 
and supports efficient rank/select queries.


Bitvectors are often used for representing the 
sorted integer array A = A1.


A common application is partitioning an 
interval [a..b) into subintervals 
[B.select(i, 1)..B.select(i + 1, 1)).


Offset j can be mapped to the subinterval 
containing it with a predecessor query 
B.pred(j) = (i, B.select(i, 1)), where 
i = B.rank(j + 1, 1) – 1.

B:   0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A:   2   3   7   8   12   13   16   17   19

B.rank(10, 1) = 4


B:   0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A:   2   3   7   8   12   13   16   17   19

B.select(5, 1) = 13


B:   0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A:   2   3   7   8   12   13   16   17   19



Rank on plain bitvectors

A plain bitvector stores binary sequence B 
as such. There are many structures that 
support rank queries in O(1) time.


The following is from SDSL: Gog and Petri: 
Optimized succinct data structures for 
massive data. Software – Practice and 
Experience, 2014.

Partition the bitvector into 512-bit blocks 
and store the rank at the start of each block 
using 64 bits.

Partition each block into 64-bit words and 
store rank-within-block at the start of each 
word (except the first) using 9 bits.


Compute rank-within-word using popcnt and 
return the sum of the three ranks. A query 
takes two memory accesses and the space 
overhead is 25%.



Select on plain bitvectors

select queries are also O(1) in theory, but 
practical implementations tend to have rare 
polylogarithmic worst cases.


The following is also from SDSL.


We partition the bitvector into superblocks 
of 4096 values (positions of ones) and store 
the first value in each superblock.


If a superblock is longer than log4 |B| bits, we 
store all values in it explicitly.


Otherwise we partition the superblock into 
blocks of 64 values and store the first value 
in each block relative to the start of the 
superblock.


Within each block, we iterate popcnt to find 
the word containing the position we are 
interested in. This means O(log3 |B|) iterations 
in the worst case.


Select-within-word uses uses somewhat 
complicated bit manipulation.


Space overhead is 18.75% in the worst case.



Elias–Fano encoding
Elias–Fano encoding is good for sparse 
bitvectors, where |A| ≪ |B|. It is a mix 
between representations A and B.


For each value x, we store the lowest w bits 
in integer sequence low and assign the value 
to bucket floor(x / 2w).


We encode the buckets in unary: a bucket 
with k values becomes 1k0. Concatenated 
buckets form binary sequence high.


By choosing w ≈ log |B| – log |A|, the number 
of buckets will be close to |A|, making the 
density of high close to 0.5.

B:   0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A:   2   3   7   8   12   13   16   17   19


w = 2 

high:  1 1 0 1 0 1 0 1 1 0 1 1 1 0

Value 2 3 7 8 12 13 16 17 19
Low 2 3 3 0 0 1 0 1 3
Bucket 0 0 1 2 3 3 4 4 4



low:  2   3   3   0   0   1   0   1   3


A:   2   3   7   8   12   13   16   17   19


high:  1 1 0 1 0 1 0 1 1 0 1 1 1 0

Sparse bitvectors
Accessing the original values is simple: 
A[i] = (high.select(i, 1) – i) · 2w + low[i].


We can iterate over A by iterating over high and 
low.


A B.rank(i, 1) query starts by finding the end of 
the bucket with high.select(floor(i / 2w), 0). We 
then iterate backward as long as the values are 
too large.


B.pred(i) can be answered directly in a similar 
way.


Okanohara and Sadakane: Practical Entropy-
Compressed Rank/Select Dictionary. ALENEX 
2007.

low 2 bits

in bucket 1

B.select(2, 1)



low:  2   3   3   0   0   1   0   1   3


A:   2   3   7   8   12   13   16   17   19


high:  1 1 0 1 0 1 0 1 1 0 1 1 1 0

Sparse bitvectors

in bucket 4 
that ends at 13

last value in 
bucket 4 is at 
13 – 1 – 4 = 8

too largesmall enough

B.rank(18, 1)

still in same 
bucket

Accessing the original values is simple: 
A[i] = (high.select(i, 1) – i) · 2w + low[i].


We can iterate over A by iterating over high and 
low.


A B.rank(i, 1) query starts by finding the end of 
the bucket with high.select(floor(i / 2w), 0). We 
then iterate backward as long as the values are 
too large.


B.pred(i) can be answered directly in a similar 
way.


Okanohara and Sadakane: Practical Entropy-
Compressed Rank/Select Dictionary. ALENEX 
2007.



Burrows–Wheeler transform



From suffix array to BWT
Let T be a text string of length n over 
alphabet Σ = [0..|Σ|) such that T[n – 1] = $ = 0 
and $ does not occur anywhere else.


The suffix array of T is an array SA[0..n) of 
pointers to the suffixes of T in lexicographic 
order.


The BWT of T is a permutation of the 
character occurrences BWT[0..n) that lists 
the character preceding each suffix:


• BWT[i] = T[SA[i] – 1] if SA[i] > 0; and


• BWT[i] = $ if SA[i] = 0.

BWT SA Suffix

A 7 $

C 6 A$

T 4 ACA$

G 1 ATTACA$

A 5 CA$

$ 0 GATTACA$

T 3 TACA$

A 2 TTACA$



LF-mapping
The lexicographic rank of string X among 
the suffixes of text T is the number of suffixes 
Y such that Y < X in lexicographic order.


We define LF-mapping as a function such 
that if the lexicographic rank of string X is i, 
the lexicographic rank of string cX is LF(i, c).


We compute LF(i, c) = C[c] + BWT.rank(i, c):


• C[c] is the number of suffixes starting with 
a character c' < c; and


• BWT.rank(i, c) is the number of suffixes 
Y < X preceded by character c.

BWT SA Suffix

A 7 $

C 6 A$

T 4 ACA$

G 1 ATTACA$

A 5 CA$

$ 0 GATTACA$

T 3 TACA$

A 2 TTACA$

ACAT

TACAT

LF(3, T)

BWT.rank(3, T)

C[T]



Inverting the BWT
Because $ is the smallest character, we 
know that SA[0] = n – 1 and BWT[0] is the 
character preceding the endmarker.


We use LF(i) = LF(i, BWT[i]) for finding the 
previous suffix.


If BWT[i] ≠ $, it is the previous character in 
the text, and we continue iterating.


This way, we recover the text from the BWT 
backwards.


Jumping around in the BWT causes cache 
misses.

BWT SA Suffix

A 7 $

C 6 A$

T 4 ACA$

G 1 ATTACA$

A 5 CA$

$ 0 GATTACA$

T 3 TACA$

A 2 TTACA$



Multi-string BWT
Let T0, ..., Tm – 1 be an ordered collection of 
m texts.


To make each suffix unique, we assume that 
the endmarker of Ti is smaller than that of Tj, 
for all i < j.


The BWT generalizes to this model easily, 
except that we cannot use LF-mapping with 
character $.


SA[x] = (i, j) refers to suffix Ti[j..) and points to 
the endmarker of Tx for x < m.


If SA[x] refers to a suffix of text Ti, we have 
DA[x] = i in the document array.

BWT DA SA Suffix
A 0 (0, 7) $
A 1 (1, 5) $
C 0 (0, 6) A$
T 1 (1, 4) A$
T 0 (0, 4) ACA$
C 1 (1, 1) ATTA$
G 0 (0, 1) ATTACA$
A 0 (0, 5) CA$
$ 1 (1, 0) CATTA$
$ 0 (0, 0) GATTACA$
T 1 (1, 3) TA$
T 0 (0, 3) TACA$
A 1 (1, 2) TTA$
A 0 (0, 2) TTACA$



Backward searching
If SA[i..j) is the range of suffixes starting with 
string X, the range of suffixes starting with 
string cX is SA[LF(i, c)..LF(j, c)).


Given a pattern P, we can find the range of 
suffixes starting with it with backward 
searching:


• Start with [i..j) = [0..|SA|) matching an 
empty pattern.


• For k from |P| – 1 down to 0, update with 
[i..j) ← [LF(i, P[k])..LF(j, P[k])) to get the 
range matching pattern P[k..).

BWT Suffix
A $
A $
C A$
T A$
T ACA$
C ATTA$
G ATTACA$
A CA$
$ CATTA$
$ GATTACA$
T TA$
T TACA$
A TTA$
A TTACA$

Range [10..14) 
matches pattern T

Range [5..7) = 
[LF(10, A)..LF(14, A)) 
matches pattern AT



FM-index
If we have the C array and the BWT with 
efficient rank queries, we can support the 
following:


• find(P) that returns the lexicographic 
range [i..j) starting with pattern P with 
O(|P|) rank queries.


• extract(i) that returns the text Ti with O(|Ti|) 
rank queries.


This is the core functionality of the FM-index.


Ferragina and Manzini: Indexing 
Compressed Text. JACM, 2005. 

If we have non-compressible text over a 
small alphabet (such as DNA), we can 
simply partition the BWT into fixed-length 
blocks and store rank(i, c) at the start of each 
block for each character c.


Other common rank structures include:


• Bitvectors Bc that mark the positions 
where BWT[i] = c.


• Wavelet trees that reduce rank on the 
BWT to rank on log |Σ| bitvectors.



Bidirectional FM-index
A bidirectional FM-index has an index F for 
the texts and an index R for the reverse 
texts.


For any character c, we have F.find(c) = 
R.find(c).


Because rev(cX) = rev(X) · c, range 
R.find(rev(cX)) is a subrange of R.find(rev(X)).


Because the occurrences of P in forward 
texts are occurrences of rev(P) in reverse 
texts, |R.find(rev(cX))| = |F.find(cX)|.


For any c' < c, we have find(Xc') < find(Xc).


Let o be the number of occurrences of 
characters c' < c in the BWT range F.find(X) 
and l = |F.find(cX)|. If R.find(rev(X)) = [i..j), we 
know that R.find(rev(cX)) = [i+o..i+o+l).


By extending the pattern backward in F, we 
also extend it forward in R, and the other 
way around.


Lam et al.: High Throughput Short Read 
Alignment via Bi-directional BWT. BIBM 
2009.



Forward and backward

An FMD-index stores DNA sequences and 
their reverse complements in the same 
index and effectively matches both 
orientations of the pattern against both 
orientations of the texts.


It works in a similar way to bidirectional FM-
indexes.


Li: Exploring single-sample SNP and 
INDEL calling with whole-genome de novo 
assembly. Bioinformatics, 2012. 

If we use the forward index F, we sort 
suffixes of the texts and match the pattern 
backward.


We can also use the reverse index R as an 
index of the original texts. Then we sort the 
reverse prefixes of the texts and match the 
pattern forward.


Sometimes using the reverse index is more 
natural.



Runs in BWT
Repetitiveness in a text collection manifests 
as long equal letter runs in its BWT.


Adding a new copy of an existing text does 
not increase the number of runs.


Each edit operation creates O(1) points of 
discontinuity and moves a number of suffixes 
preceding them in lexicographic order.


Suffixes far enough from the edits maintain 
their positions relative to unrelated suffixes.


An insertion of length k may create O(k) 
additional runs.


If we start from a single text T and the total 
length of T and all insertions is n, there 
should be O(n + s logσ n) runs after s edits, 
where σ is effective alphabet size.


Remember that there are only hundreds of 
edits in a human generation.


Mäkinen et al.: Storage and Retrieval of 
Highly Repetitive Sequence Collections. 
Journal of Computational Biology, 2010.



BWT ~ stable sorting

There are generalizations of the BWT for:


de Bruijn graphs: Nodes and edges 
represent substrings of length k and k + 1. 
(Bowe et al: Succinct de Bruijn Graphs. 
WABI 2012.)


DAGs, but potentially with an exponential 
blowup. (Sirén et al: Indexing Graphs for 
Path Queries with Applications in Genome 
Research. TCBB, 2014.)


Positional string collections: If Tj[i] = c, the 
effective character value is (i, c). (Durbin: 
Efficient haplotype matching and storage 
using the positional Burrows–Wheeler 
transform (PBWT). Bioinformatics, 2014.)


They rely on the following interpretation of 
LF(i, c) = C[c] + BWT.rank(i, c):


• C[c]: Sort positions by the most significant 
character.


• BWT.rank(i, c): Break ties by maintaining 
the existing order.



Wheeler graphs
A directed edge-labeled graph is a Wheeler 
graph, if the nodes have an ordering such 
that:


1. Nodes with indegree 0 precede those with 
a positive indegree.


2. For any pair of edges (u, v) and (u', v') 
labeled a and a', respectively:


A. a < a' ⟹ v < v',


B. a = a' and u < u' ⟹ v ≤ v'.


Wheeler graphs can be represented using the 
BWT and bitvectors encoding the indegrees 
and outdegrees in unary.


The BWT is that of reverse path labels, 
because we want LF-mapping to follow 
edges forward.


Gagie, Manzini, and Sirén: Wheeler graphs: 
A framework for BWT-based data 
structures. TCS, 2017.
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GBWT



GBWT
The GBWT is a reverse FM-index (or FMD-
index) of paths in a directed graph.


We sort reverse prefixes of the paths and 
match patterns forward, following the 
direction of the edges.


To improve memory locality, we partition the 
BWT between the nodes and use the 
adjacency lists as rank structures.


A find query determines how many indexed 
paths contain the corresponding traversal as 
a subpath.

Sirén et al.: Haplotype-aware graph 
indexes. Bioinformatics, 2020.


https://github.com/jltsiren/gbwt

https://github.com/jltsiren/gbwt


Let BWTv = BWT[C[v]..C[v + 1]).


That substring corresponds to prefixes where 
the most significant character in the sorting 
order (the last character) is v.


BWTv tells where the path corresponding to 
each prefix continues after visiting node v.

BWT partitioning
Prefix BWT

$ 1
$ 1
$ 1

$ 1 2
$ 1 2
$ 1 3

$ 1 2 4
$ 1 2 5
$ 1 3 4

$ 1 2 4 6
$ 1 3 4 5
$ 1 2 5 7

$ 1 3 4 5 7
$ 1 2 4 6 7
$ 1 2 5 7 $

$ 1 3 4 5 7 $
$ 1 2 4 6 7 $

BWT4



LF-mapping
BWT offsets: (v, i) vs. C[v] + i vs. BWTv[i].


When we follow an edge (v, w), we use 
LF(C[v] + i, w) = C[w] + BWT.rank(C[v] + i, w).


C[w] is just a reference to node w.


We can partition BWT.rank(C[v] + i, w) into 
the sum of BWT.rank(C[v], w) and 
BWTv.rank(i, w).


If we store BWTv in node v and 
BWT.rank(C[v], w) in edge (v, w), we can 
compute LF-mapping using local 
information.

Prefix BWT
$ 1
$ 1
$ 1

$ 1 2
$ 1 2
$ 1 3

$ 1 2 4
$ 1 2 5
$ 1 3 4

$ 1 2 4 6
$ 1 3 4 5
$ 1 2 5 7

$ 1 3 4 5 7
$ 1 2 4 6 7
$ 1 2 5 7 $

$ 1 3 4 5 7 $
$ 1 2 4 6 7 $

BWT4

BWT5

LF(C[4] + 1, 5)

BWT.rank(C[4], 5) = 1

BWT4.rank(1, 5) = 0



Node records
The record for node v contains a list of 
outgoing edges (v, w) and the BWT substring 
BWTv.


For each edge (v, w), the adjacency list 
stores the destination node w as well as 
BWT.rank(C[v], w).


In BWTv, nodes are replaced by their ranks in 
the adjacency list and and the substring is 
then run-length encoded.


The record is encoded as a byte sequence, 
using a 7+1-bit encoding for integers. The 
encoding for runs depends on the outdegree.

Node 1

• Outdegree 2 encoded as 2

• Edge to 2, offset 0 encoded as (2, 0)

• Edge to 3, offset 0 encoded as (1, 0)

• Run 02 encoded as 0 + 2 * (2 – 1) = 2

• Run 11 encoded as 1 + 2 * (1 – 1) = 1



Using the GBWT
We concatenate the records and use a 
sparse bitvector B for finding the substring 
[B.select(v, 1)..B.select(v + 1, 1)) 
corresponding to node v.


When we compute LF-mapping from node v, 
we decompress the adjacency list and scan 
BWTv sequentially.


This assumes that node degrees are not too 
high and paths do not visit the same nodes 
too many times.


Memory locality of iterated LF-mapping 
depends on the memory layout of the graph.

1102 2201021 2401001 1410 2511010 1701 1720 1002  
1000 1000000 1000000 1000 1000000 1000 1000 1000

Encoding of the records and bitvector B 
(each byte is a single digit).



Path / subgraph traversals

As we traverse a path in the graph using LF-
mapping, the length of the BWT range tells 
the number of times the traversal occurs as a 
subpath in the haplotypes.


We often traverse all possible extensions in 
a subgraph, as long as some invariant holds 
and the traversal is supported by the 
haplotypes.

Cluster of seeds

Forward extensions 
of a seed

Backward extensions 
of an extension



GBWTGraph
We simulate a bidirected sequence graph 
using a directed graph and store the paths in 
a bidirectional GBWT index.


The GBWT represents the topology of the 
subgraph induced by the paths. Nodes and 
edges exist only if they are used on a path.


We store the node labels in a string array 
(concatenated strings + array of starting 
positions).


GFA segments have string names, while 
GBWT nodes have integer identifiers.


Segments can be arbitrarily long, but we may 
want to restrict the length of nodes for 
various reasons.


A translation between GFA segments and 
(ranges of) GBWT nodes can be stored using 
a string array for segment names and a 
sparse bitvector for the ranges. 

Sirén et al.: Pangenomics enables 
genotyping of known structural variants in 
5202 diverse genomes. Science, 2021.


https://github.com/jltsiren/gbwtgraph

https://github.com/jltsiren/gbwtgraph


Incremental BWT construction
BWT Suffix

A $
$ $
C A$

T ACA$
G ATTACA$
A CA$
$ GATTACA$

T TACA$
A TTACA$

BWT Suffix
A $
A $
C A$
$ A$
T ACA$
G ATTACA$
A CA$
$ GATTACA$

T TACA$
A TTACA$

BWT Suffix
A $
A $
C A$
T A$
T ACA$
G ATTACA$
A CA$
$ GATTACA$
$ TA$
T TACA$
A TTACA$

Add an empty text Prepend A Prepend T

LF( · , A)

LF( · , T)

Hon et al.: A space and time efficient 
algorithm for constructing compressed 
suffix arrays. Algorithmica, 2007.



Batch insertion
The BCR algorithm builds the BWT for a 
collection of short reads incrementally.


It starts from the BWT of m empty texts and 
extends each text backward by a single 
character in each step.


Bauer et al.: Lightweight algorithms for 
constructing and inverting the BWT of 
string collections. TCS, 2013.


RopeBWT2 inserts a batch of texts into an 
existing BWT using the same algorithm.


Li: Fast construction of FM-index for long 
sequence reads. Bioinformatics, 2014.


This is also the main GBWT construction 
algorithm.


During construction, we use a naive dynamic 
representation for the GBWT, where each 
node has an std::vector of edges and 
std::vector of runs.


In each step, we rebuild the node records for 
all nodes we touch.



Disjoint subgraphs
Paths are strings over the set of nodes V.


If we have two collections of paths in disjoint 
subgraphs, the strings in the collections are 
over disjoint alphabets.


We can build GBWTs for the collections 
independently and then merge them by 
simply reusing the node records.


More generally, we can partition the graph 
into weakly connected components and 
parallelize GBWT construction over the 
components.


We can easily build the GBWT for the 1000 
Genomes Project (1000GP) data consisting 
of 5000 human haplotypes.


A few years ago, the construction took 17 
hours on a system with 16 physical / 32 
logical CPU cores and 244 GiB of memory.

Total length:     2194349057386 
Sequences:        240232 
Alphabet size:    612023760 
Effective:        612023759 
Runs:             2767709379 
DA samples:       2143033346 
BWT:              8636.28 MB 
DA samples:       8368.48 MB 
Total:            17006.6 MB



GBZ file format



GFA compression
GFA is the most common interchange 
format for pangenome graphs.


It does not scale well when the number of 
haplotypes increases.


While the haplotype paths are highly similar, 
they are too long for standard compressors 
to compress them together.


The graph itself is reasonably small for 
today's computers, but it also grows with the 
number of haplotypes, if we include rare 
variants.


The overall effect is superlinear growth with 
the number of haplotypes.


There is a need for a compressed file 
format for pangenome graphs with many 
haplotype paths.


The GBWT and the GBWTGraph already 
store the necessary information!



Goals and challenges

• Stable and fully specified file format.


• Good compression.


• Fast loading into in-memory data 
structures.


• Should not make too specific 
requirements for the in-memory data 
structures.


• Easy to handle as a memory-mapped file. 

• Designing a portable file format based on 
highly specialized data structures?


• Simple enough for independent 
implementations vs. compatibility with 
existing files?


• Different priorities in the initial version 
and future versions?



File format basics
Element: Unsigned little-endian 64-bit 
integer.


File: Sequence of elements. Most objects are 
properly aligned in a memory-mapped file.


A limited number of building blocks to make 
implementation easier.


Serializable: Anything with size a multiple of 
64 bits that can be serialized by copying the 
bits.


Vector: Length as an element, followed by 
concatenated items. Padded with 0-bits if 
necessary.


Optional structure: Size in elements as an 
element, followed by the structure. Can be 
passed through as a vector of elements. For 
implementation-dependent or application-
dependent structures.


Simple-SDS 
https://github.com/jltsiren/simple-sds


vgteam fork of SDSL 
https://github.com/vgteam/sdsl-lite

https://github.com/jltsiren/simple-sds
https://github.com/vgteam/sdsl-lite


Building blocks
Bitvector: Plain bitvector with optional rank/
select structures.


Integer vector: Bit-packed integer array.


Sparse bitvector: Elias–Fano encoded 
bitvector with a bitvector as high and an 
integer vector as low.


String array: Concatenated alphabet-
compacted ({ A, C, G, N, T } → [0..5)) strings 
as an integer vector and starting positions as 
a sparse bitvector. Usually decompressed as 
an in-memory structure.


Dictionary: Mapping between strings and 
their identifiers. Stored as a string array, with 
a permutation of the identifiers in 
lexicographic order as an integer vector. 
Usually decompressed in memory.


Tags: Key–value structure with case-
insensitive keys. Stored as a string array. Key 
source identifies the library that wrote the file. 
The reader can use that information for 
determining if it can understand the optional 
structures.



GBZ file format

Full implementation in C++, partial 
implementation in Rust.


https://github.com/jltsiren/gbwt 
https://github.com/jltsiren/gbwtgraph 
https://github.com/jltsiren/gbwt-rs


Sirén and Paten: GBZ file format for 
pangenome graphs. Bioinformatics, 2022.

Header: 16 bytes 
Tags


GBZ

Header: 48 bytes 
Tags 
BWT: sparse bitvector, byte vector 
DA samples: optional, unspecified 

GBWT

Header: 40 bytes 
Path names: vector of 16-byte items 
Sample names: dictionary 
Contig names: dictionary

Optional metadata

Header: 24 bytes 
Sequences: string array 
Translation: string array, sparse bitvector

GBWTGraph

https://github.com/jltsiren/gbwt
https://github.com/jltsiren/gbwtgraph
https://github.com/jltsiren/gbwt-rs


Compression algorithm
The input file is memory-mapped and the 
algorithm assumes that the order of the lines 
is reasonable.


1. Record the starting position and type of 
each line, determine if a translation is 
necessary, and determine GBWT 
construction buffer size.


2. Process segments and build the 
translation if necessary.


3. Process links, create a temporary graph, 
find weakly connected components, and 
determine GBWT construction jobs.


4. Process path and walk headers, build 
GBWT metadata.


5. Process paths and walks, running 
multiple GBWT construction jobs in 
parallel.


6. Merge partial GBWTs and build 
GBWTGraph.



GBZ benchmarks

HPRC: AWS i3.8xlarge 

• 16 physical / 32 logical CPU cores

• 244 GiB RAM

• 16 parallel GBWT construction jobs

• 16 decompression threads


1000GP: AWS i4i.16xlarge

• 32 physical / 64 logical CPU cores

• 512 GiB RAM

• 32 parallel GBWT construction jobs

• 32 decompression threads


Sirén and Paten: GBZ file format for 
pangenome graphs. Bioinformatics, 2022.

Graph Haplotypes .gfa .gfa.gz .gbz Compression Decompression

HPRC 90 44.9 GiB 11.1 GiB 3.11 GiB 19 min

111.0 GiB

2 min

14.5 GiB

1000GP ~5000 9534.9 GiB 2231.3 GiB 16.84 GiB 779 min

489.2 GiB

124 min

49.3 GiB



Focus on data layout
• Designing a portable file format based on 

highly specialized data structures?


Two data structures sharing the same layout 
can often be built efficiently from each other.


We can then optimize the structures for 
different tasks.


GBWT: Compressed version for querying, 
dynamic version that supports inserting and 
deleting paths.


GBZ: C++ implementation focuses on fast 
access to sequences, while Rust 
implementation uses much less memory. 

GBZ at its core:


• A collection of node records containing an 
adjacency list, a BWT fragment, and a 
sequence.


• The records are encoded as byte 
sequences.


• There is an index for finding a record 
based on its identifier.



GBZ in SQLite

We could do something like this:


CREATE TABLE Nodes ( 
    handle INTEGER PRIMARY KEY, 
    edges BLOB, 
    bwt BLOB, 
    sequence BLOB 
) 

Inserting the key parts of an HPRC GBZ 
graph into a SQLite database takes ~90 
seconds on this laptop. 

Size increases from 3.06 GiB to 9.66 GiB 
without sequence compression. (Probably 
less than 6 GiB with alphabet compaction.)


Graph traversal speed is ~150k nodes per 
second, vs. a few million nodes/second with 
the in-memory GBZ graph. 


The database is available immediately, vs. 
15–20 seconds for loading the GBZ.


Potentially useful for interactive applications.



Overview

This talk was about the GBZ file format for 
pangenome graphs.


GBZ is based on the GBWT index, which 
stores a set of paths as sequences of node 
identifiers.


GBWT is a run-length encoded FM-index 
partitioned between the nodes of the graph.


FM-index is a space-efficient text index 
based on the Burrows–Wheeler transform. 

Sirén and Paten: GBZ file format for 
pangenome graphs. Bioinformatics, 2022.


Sirén et al: Haplotype-aware graph 
indexes. Bioinformatics, 2020.


Ferragina and Manzini: Indexing 
Compressed Text. JACM, 2005.


Burrows and Wheeler: A Block-sorting Data 
Compression Algorithm. Technical report, 
1994.



Thank you!


