GBZ File Format for Pangenome Graphs
 Jouni Sirén and Benedict Paten
 UCSC Genomics Institute

Overview

This talk is about the GBZ file format for pangenome graphs.

GBZ is based on the GBWT index, which stores a set of paths as sequences of node identifiers.

GBWT is a run-length encoded FM-index partitioned between the nodes of the graph.

FM-index is a space-efficient text index based on the Burrows-Wheeler transform.

Sirén and Paten: GBZ file format for pangenome graphs. Bioinformatics, 2022.

Sirén et al: Haplotype-aware graph indexes. Bioinformatics, 2020.

Ferragina and Manzini: Indexing Compressed Text. JACM, 2005.

Burrows and Wheeler: A Block-sorting Data Compression Algorithm. Technical report, 1994.

Pangenome graphs

Terminology (a slight abuse of)

DNA sequences are strings over alphabet \{ $\mathbf{A}, \mathbf{C}, \mathbf{G}, \mathbf{T}, \mathbf{N}$ \}, where \mathbf{N} indicates that we do not know the actual base (character).

A genome is a collection of DNA sequences, most of which are chromosomes.

Human genomes are diploid: there are two copies of (almost) every chromosome.

The set of chromosomes inherited from the same parent is called a haplotype.

Human haplotypes are ~3 Gbp long.

On the average, a human genome can be derived from parental genomes with just hundreds of edit operations.

Sequences are homologous if they have been derived from the same ancestral sequence.

Sequence alignment is an attempt to match homologous substrings of related sequences.

An alignment can be represented as a graph.
The graph should be simple enough to be practical while representing the true homology between the sequences.

Directed acyclic graphs

Directed acyclic graphs (DAG) are the simplest pangenome graph model.

They correspond to the edit distance model with substitutions, insertions, and deletions, but they also represent recombinations implicitly.

DAGs are easy to work with, but they cannot represent all biologically plausible alignments.

$$
\begin{array}{cl}
\text { GATTACA } & \text { GATTA--CA } \\
\text { GACTATACA } & \text { GACTATACA }
\end{array}
$$

GATTATACA
GACTACA

Cycles and reversals

By allowing cycles in the graph, we can represent other edit operations, such as rearrangements and repetitions.

Cycles also allow completely implausible paths, unless we limit arbitrary iterations.

GATCATACA GATTATATACA

We can do that by storing the aligned sequences as paths and using them to guide us.

Cyclic graphs are more difficult to work with and reason about than DAGs.

One key operation is still missing: reverse complement.

GATCATACATACATATATACATACATA

GATTACA \rightarrow TGTAATC

Bicirecteorerand

Each node has two sides and can be visited in two orientations.

A forward visit enters from the left, reads the label, and exits from the right.

A reverse visits enters from the right, reads the reverse complement of the label, and exits from the left.

Edges are undirected and connect two node sides.

Traversal $>1>2<3<1$ reads GATTACA, TAT, CTG, and TGTAATC.

Traversal $>1>3<2<1$ reads GATTACA, CAG, ATA, and TGTAATC.

Simulating bidirected graphs

We can simulate bidirected graphs with directed graphs by turning node visits into nodes.

Edges adjacent to the right side become outgoing edges from the forward node.

Edges adjacent to the left side become outgoing edges from the reverse node.

GFA file format

GFA is a TSV-based interchange format for bidirected sequence graphs.

Originally intended for assembly graphs, a subset of GFA is suitable for pangenome graphs:

- Segment: name, sequence
- Link: from, orientation, to, orientation
- Path: name, node visits
- Walk: sample, haplotype, contig, interval, node visits
https://github.com/GFA-spec/GFA-spec/ blob/master/GFA1.md

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{} \\
\hline \({ }^{\text {H }}\) \& vN:2:1.1 \& \& \& \\
\hline \({ }_{5}^{5}\) \& \({ }_{12}^{11}{ }_{1}{ }^{\text {a }}\) \& \& \& \\
\hline s \& \({ }_{13}{ }^{11}\) \& \& \& \\
\hline \({ }^{\text {s }}\) \& \& \& \& \\
\hline \({ }_{5}^{5}\) \& \({ }_{15}^{15}\) \& \& \& \\
\hline S \& 16
17
17
17 \& \& \& \\
\hline \({ }_{5}\) \& 21 \& \& \& \\
\hline \({ }_{5}\) \& 22 A \& A \& \& \\
\hline \& - \& \& \& \\
\hline 5 \& \(\begin{array}{ll}24 \& \text { a } \\ \\ 25 \& \text { A }\end{array}\) \& \& \& \\
\hline L \& \({ }_{11}{ }_{11}{ }^{\text {a }}\) \& \({ }_{13}^{12}\) \& * \& \\
\hline L \& \({ }_{1}^{11}\) \& \({ }_{14}^{12}\) \& \& \\
\hline L \& \({ }_{13}\) \& 14
14
14
1 \& * \& \\
\hline L \& \(14{ }_{1}^{14}+\) \& 15 \& * \& \\
\hline \(\stackrel{L}{L}\) \& \begin{tabular}{l}
14 \\
14 \\
\hline
\end{tabular} \& \({ }_{17}^{16}\) \& \% \& \\
\hline \({ }_{\text {L }}\) \& \& \({ }_{17}^{17}\) \& * \& \\
\hline \(\stackrel{L}{+}\) \& \({ }_{21}\) \& 22 \& * \& \\
\hline \(\stackrel{L}{\square}\) \& 21

21
¢ \& 23
24
24
24 \& * \&

\hline L \& ${ }_{2}^{23}$ \& 24 \& * \&

\hline ${ }_{\text {p }}^{\text {L }}$ \& ${ }_{2}^{24}$ \& ${ }_{\text {24 }}^{25}$ \& * \&

\hline \& ${ }_{\text {A }}^{\text {B }}$ \& \& \&

\hline w \& sample \& ${ }_{\text {a }}$ \& \& $\rightarrow 11>12>14>15 \gg 17$

\hline $\stackrel{W}{W}$ \& sample
sample

same \& A \& | 5 |
| :--- |
| 5 | \&

\hline w \& Sample
Sample
sel \& A \& \& (

\hline
\end{tabular}

GFA compression

GFA does not scale well when the number of haplotypes increases.

While the haplotype paths are highly similar, they are too long for standard compressors to compress them together.

The graph itself is reasonably small for today's computers, but it also grows with the number of haplotypes, if we include rare variants.

The overall effect is superlinear growth with the number of haplotypes.

There is a need for a compressed file format for pangenome graphs with many haplotype paths.

Goals and challenges

- Stable and fully specified file format.
- Good compression.
- Fast loading into in-memory data structures.
- Should not make too specific requirements for the in-memory data structures.
- Easy to handle as a memory-mapped file.
- Designing a portable file format based on highly specialized data structures?
- Simple enough for independent implementations vs. compatibility with existing files?
- Different priorities in the initial version and future versions?

Rank, select, and bitvectors

Notation

Many popular programming languages such as $\mathrm{C}++$ and Rust start array indexing from 0 and use semi-open intervals for representing substrings.

I am going to use the same conventions here.

Substring S[i..j) starts with $\mathrm{S}[\mathrm{i}]$ and ends just before $\mathrm{S}[\mathrm{j}]$.
S.rank(i, c) is the number of occurrences of character c in the prefix $\mathrm{S}[0 . . \mathrm{i})$.

Let A_{c} be the sorted array of positions of character c in string S .
S.select(i, c) = $A_{C}[i]$ is the position of the occurrence of rank i.

Bitvectors

A bitvector represents a binary sequence B and supports efficient rank/select queries.

Bitvectors are often used for representing the sorted integer array $A=A_{1}$.

A common application is partitioning an interval [a..b) into subintervals [B.select(i, 1)..B.select(i + 1, 1)).

Offset j can be mapped to the subinterval containing it with a predecessor query
B.pred(j) $=(\mathrm{i}, \mathrm{B} \cdot \operatorname{select}(\mathrm{i}, 1))$, where $i=B \cdot \operatorname{rank}(j+1,1)-1$.

```
B: 0011000110001100110100
A: 2 
```

B.rank $(10,1)=4$

B: 0011000110001100110100
A: $\begin{array}{llllllllll}2 & 3 & 7 & 8 & 12 & 13 & 16 & 17 & 19\end{array}$
B.select $(5,1)=13$

B: 0011000110001100110100
A: $2 \begin{array}{lllllllll}3 & 7 & 8 & 12 & 13 & 16 & 17 & 19\end{array}$

Rank on plain bitvectors

Partition the bitvector into 512-bit blocks and store the rank at the start of each block using 64 bits.

A plain bitvector stores binary sequence B as such. There are many structures that support rank queries in $\mathrm{O}(1)$ time.

The following is from SDSL: Gog and Petri: Optimized succinct data structures for massive data. Software - Practice and Experience, 2014.

Partition each block into 64-bit words and store rank-within-block at the start of each word (except the first) using 9 bits.

Compute rank-within-word using popcnt and return the sum of the three ranks. A query takes two memory accesses and the space overhead is 25%.

Select on plain bitvectors

select queries are also O(1) in theory, but practical implementations tend to have rare polylogarithmic worst cases.

The following is also from SDSL.

We partition the bitvector into superblocks of 4096 values (positions of ones) and store the first value in each superblock.

If a superblock is longer than $\log ^{4}|B|$ bits, we store all values in it explicitly.

Otherwise we partition the superblock into blocks of 64 values and store the first value in each block relative to the start of the superblock.

Within each block, we iterate popcnt to find the word containing the position we are interested in. This means $\mathrm{O}\left(\log ^{3}|\mathrm{~B}|\right)$ iterations in the worst case.

Select-within-word uses uses somewhat complicated bit manipulation.

Space overhead is 18.75% in the worst case.

Elias-Fano encoding

Elias-Fano encoding is good for sparse bitvectors, where $|A| \ll|B|$. It is a mix between representations A and B.

For each value x, we store the lowest w bits in integer sequence low and assign the value to bucket floor(x / 2w).

We encode the buckets in unary: a bucket with k values becomes $1^{k} 0$. Concatenated buckets form binary sequence high.

By choosing $w \approx \log |B|-\log |A|$, the number of buckets will be close to $|A|$, making the density of high close to 0.5 .

Sparse bitvectors

Accessing the original values is simple:
$A[i]=($ high.select $(i, 1)-i) \cdot 2^{w}+\operatorname{low}[i]$.
We can iterate over A by iterating over high and low.

A B.rank($(\mathrm{i}, 1)$ query starts by finding the end of the bucket with high.select(floor(i / 2^{w}), 0). We then iterate backward as long as the values are too large.
B.pred(i) can be answered directly in a similar way.

Okanohara and Sadakane: Practical EntropyCompressed Rank/Select Dictionary. ALENEX 2007.

Sparse bitvectors

Accessing the original values is simple:
$A[i]=(h i g h . \operatorname{select}(i, 1)-i) \cdot 2^{w}+\operatorname{low}[i]$.
We can iterate over A by iterating over high and low.

A B.rank($(\mathrm{i}, 1)$ query starts by finding the end of the bucket with high.select(floor(i / 2w), 0). We then iterate backward as long as the values are too large.
B.pred(i) can be answered directly in a similar way.

Okanohara and Sadakane: Practical EntropyCompressed Rank/Select Dictionary. ALENEX 2007.

Burrows-Wheeler transform

From suffix array to BWT

Let T be a text string of length n over alphabet $\Sigma=[0 . .|\Sigma|)$ such that $T[n-1]=\$=0$ and $\$$ does not occur anywhere else.

The suffix array of T is an array $\mathrm{SA}[0 . . n$) of pointers to the suffixes of T in lexicographic order.

The BWT of T is a permutation of the character occurrences BWT[0..n) that lists the character preceding each suffix:

- $B W T[i]=T[S A[i]-1]$ if $S A[i]>0$; and
- $B W T[i]=\$$ if $S A[i]=0$.

BWT	SA	Suffix
A	7	\$
C	6	A\$
T	4	ACA\$
G	1	ATTACA\$
A	5	CA\$
\$	0	GATTACA\$
T	3	TACA\$
A	2	TTACA\$

LF-mapping

The lexicographic rank of string X among the suffixes of text T is the number of suffixes Y such that $Y<X$ in lexicographic order.

We define LF-mapping as a function such that if the lexicographic rank of string X is i, the lexicographic rank of string $c X$ is $L F(i, c)$.

We compute $L F(i, c)=C[c]+B W T \cdot r a n k(i, c)$:

- $C[c]$ is the number of suffixes starting with a character $\mathrm{c}^{\prime}<\mathrm{c}$; and
- BWT.rank(i, c) is the number of suffixes $\mathrm{Y}<\mathrm{X}$ preceded by character c .

Inverting the BWT

Because \$ is the smallest character, we know that $\mathrm{SA}[0]=\mathrm{n}-1$ and BWT[0] is the character preceding the endmarker.

We use LF(i) = LF(i, BWT[i]) for finding the previous suffix.

If BWT[i] $\neq \$$, it is the previous character in the text, and we continue iterating.

This way, we recover the text from the BWT backwards.

Jumping around in the BWT causes cache misses.

BWT	SA	Suffix
A	7	\$
C	6	A\$
T^{\top}	4	ACA\$
$/ x_{0}^{G}$	1	ATTACA\$
$\mathrm{C}_{\text {A }}$	5	CA\$
	0	GATTACA\$
	3	TACA\$
$\}_{A}$	2	TTACA\$

Multi-string BWT

Let T_{0}, \ldots, T_{m-1} be an ordered collection of m texts.

To make each suffix unique, we assume that the endmarker of T_{i} is smaller than that of T_{j}, for all $\mathrm{i}<\mathrm{j}$.

The BWT generalizes to this model easily, except that we cannot use LF-mapping with character \$.
$S A[x]=(i, j)$ refers to suffix $T_{i}[j .$.$) and points to$ the endmarker of T_{x} for $x<m$.

If $S A[x]$ refers to a suffix of text T_{i}, we have
$D A[x]=i$ in the document array.

BWT	DA	SA	Suffix
A	0	$(0,7)$	$\$$
A	1	$(1,5)$	$\$$
C	0	$(0,6)$	A\$
T	1	$(1,4)$	A\$
T	0	$(0,4)$	ACA\$
C	1	$(1,1)$	ATTA\$
G	0	$(0,1)$	ATTACA\$
A	0	$(0,5)$	CA\$
\$	1	$(1,0)$	CATTA\$
\$	0	$(0,0)$	GATTACA\$
T	1	$(1,3)$	TA\$
T	0	$(0,3)$	TACA\$
A	1	$(1,2)$	TTA\$
A	0	$(0,2)$	TTACA\$

Backward searching

If $S A[i . . j)$ is the range of suffixes starting with string X, the range of suffixes starting with string cX is $\operatorname{SA[LF}(\mathrm{i}, \mathrm{c}) . . \mathrm{LF}(\mathrm{j}, \mathrm{c}))$.

Given a pattern P, we can find the range of suffixes starting with it with backward searching:

- Start with [i..j) = [0..|SA|) matching an empty pattern.
- For k from $|P|-1$ down to 0 , update with $[i . . j) \leftarrow[L F(i, P[k]) . . L F(j, P[k]))$ to get the range matching pattern $P[k .$.$) .$

FM-index

If we have the C array and the BWT with efficient rank queries, we can support the following:

- find (P) that returns the lexicographic range [i..j) starting with pattern P with $\mathrm{O}(|\mathrm{P}|)$ rank queries.
- extract(i) that returns the text T_{i} with $\mathrm{O}\left(\left|\mathrm{T}_{i}\right|\right)$ rank queries.

This is the core functionality of the FM-index.
Ferragina and Manzini: Indexing
Compressed Text. JACM, 2005.

If we have non-compressible text over a small alphabet (such as DNA), we can simply partition the BWT into fixed-length blocks and store rank(i, c) at the start of each block for each character c.

Other common rank structures include:

- Bitvectors B_{c} that mark the positions where BWT[i] = c.
- Wavelet trees that reduce rank on the BWT to rank on $\log |\Sigma|$ bitvectors.

Bidirectional FM-index

A bidirectional FM-index has an index F for the texts and an index R for the reverse texts.

For any character c , we have F.find(c) $=$ R.find(c).

Because rev(cX) $=\operatorname{rev}(X) \cdot c$, range R.find(rev(cX)) is a subrange of R.find(rev(X)).

Because the occurrences of P in forward texts are occurrences of rev(P) in reverse texts, \mid R.find(rev(cX))| $=\mid$ F.find $(c X) \mid$.

Let o be the number of occurrences of characters $c^{\prime}<c$ in the BWT range F.find (X) and $I=\mid F$.find $(c X) \mid$. If R.find $(\operatorname{rev}(X))=[i . . j)$, we know that R.find $(\operatorname{rev}(\mathrm{cX}))=[i+0 . . i+0+1)$.

By extending the pattern backward in F, we also extend it forward in R, and the other way around.

Lam et al.: High Throughput Short Read Alignment via Bi-directional BWT. BIBM 2009.

For any $c^{\prime}<c$, we have find $\left(X_{c}{ }^{\prime}\right)<\operatorname{find}(X c)$.

Forward and backward

An FMD-index stores DNA sequences and their reverse complements in the same index and effectively matches both orientations of the pattern against both orientations of the texts.

It works in a similar way to bidirectional FMindexes.

Li: Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly. Bioinformatics, 2012.

If we use the forward index F, we sort suffixes of the texts and match the pattern backward.

We can also use the reverse index R as an index of the original texts. Then we sort the reverse prefixes of the texts and match the pattern forward.

Sometimes using the reverse index is more natural.

Runs in BWT

Repetitiveness in a text collection manifests as long equal letter runs in its BWT.

Adding a new copy of an existing text does not increase the number of runs.

Each edit operation creates $O(1)$ points of discontinuity and moves a number of suffixes preceding them in lexicographic order.

Suffixes far enough from the edits maintain their positions relative to unrelated suffixes.

An insertion of length k may create $O(k)$ additional runs.

If we start from a single text T and the total length of T and all insertions is n , there should be $O\left(n+s \log _{\sigma} n\right)$ runs after s edits, where σ is effective alphabet size.

Remember that there are only hundreds of edits in a human generation.

Mäkinen et al.: Storage and Retrieval of Highly Repetitive Sequence Collections.
Journal of Computational Biology, 2010.

BWT ~ stable sorting

There are generalizations of the BWT for:
de Bruijn graphs: Nodes and edges represent substrings of length k and $\mathrm{k}+1$. (Bowe et al: Succinct de Bruijn Graphs. WABI 2012.)

DAGs, but potentially with an exponential blowup. (Sirén et al: Indexing Graphs for Path Queries with Applications in Genome Research. TCBB, 2014.)

Positional string collections: If $\mathrm{T}_{\mathrm{j}}[\mathrm{i}]=\mathrm{c}$, the effective character value is (i, c). (Durbin: Efficient haplotype matching and storage using the positional Burrows-Wheeler transform (PBWT). Bioinformatics, 2014.)

They rely on the following interpretation of LF(i, c) = C[c] + BWT.rank(i, c):

- $\mathrm{C}[\mathrm{c}]$: Sort positions by the most significant character.
- BWT.rank(i, c): Break ties by maintaining the existing order.

Wheeler graphs

A directed edge-labeled graph is a Wheeler graph, if the nodes have an ordering such that:

1. Nodes with indegree 0 precede those with a positive indegree.
2. For any pair of edges (u, v) and (u^{\prime}, v^{\prime}) labeled a and a^{\prime}, respectively:
A. $\mathrm{a}<\mathrm{a}^{\prime} \Longrightarrow \mathrm{v}<\mathrm{v}^{\prime}$,
B. $a=a^{\prime}$ and $u<u^{\prime} \Longrightarrow v \leq v^{\prime}$.

Wheeler graphs can be represented using the BWT and bitvectors encoding the indegrees and outdegrees in unary.

The BWT is that of reverse path labels, because we want LF-mapping to follow edges forward.

Gagie, Manzini, and Sirén: Wheeler graphs:
A framework for BWT-based data structures. TCS, 2017.

GBWT

GBWT

The GBWT is a reverse FM-index (or FMDindex) of paths in a directed graph.

We sort reverse prefixes of the paths and match patterns forward, following the direction of the edges.

To improve memory locality, we partition the BWT between the nodes and use the adjacency lists as rank structures.

A find query determines how many indexed paths contain the corresponding traversal as a subpath.

Sirén et al.: Haplotype-aware graph indexes. Bioinformatics, 2020.
https://github.com/jltsiren/gbwt

BWT partitioning

Let $B W T_{v}=B W T[C[v] . . C[v+1])$.
That substring corresponds to prefixes where the most significant character in the sorting order (the last character) is v .
$B W T_{v}$ tells where the path corresponding to each prefix continues after visiting node v .

LF-mapping

BWT offsets: (v, i) vs. C[v] + i vs. $B W T_{v}[i]$.

$L F(C[4]+1,5)$	Prefix	BWT
	\$	1
	\$	1
	\$	1
	\$ 1	2
	\$ 1	2
	\$ 1	3
	\$ 12	4
	\$ 12	$\begin{aligned} & 5 \\ & 4 \end{aligned} \quad \mathrm{BWT}_{4} \cdot \operatorname{rank}(1,5)=0$
	\$13	
BWT_{4}	\$ 124	$6 \Perp$
	\$134	5
BWT_{5}	\$ 125	7
	\$1345	$7 \pm$
	\$1246	7
	\$1257	\$
	\$13457	\$ BW T.rank $(C[4], 5)=1$
	\$12467	\$ ${ }^{\text {d }}$ (${ }^{\text {a }}$

Node records

The record for node v contains a list of outgoing edges (v, w) and the BWT substring $B W T$.

For each edge (v, w), the adjacency list stores the destination node w as well as BWT.rank(C[v], w).

In BWT ${ }_{v}$, nodes are replaced by their ranks in the adjacency list and and the substring is then run-length encoded.

The record is encoded as a byte sequence, using a 7+1-bit encoding for integers. The encoding for runs depends on the outdegree.

Node 1

- Outdegree 2 encoded as 2
- Edge to 2 , offset 0 encoded as $(2,0)$
- Edge to 3 , offset 0 encoded as $(1,0)$
- Run 0^{2} encoded as $0+2$ * $(2-1)=2$
- Run 1^{11} encoded as $1+2$ * $(1-1)=1$

Using the GBWT

We concatenate the records and use a sparse bitvector B for finding the substring [B.select(v, 1)..B.select(v + 1, 1)) corresponding to node v .

When we compute LF-mapping from node v , we decompress the adjacency list and scan $B W T_{v}$ sequentially.

This assumes that node degrees are not too high and paths do not visit the same nodes too many times.

Memory locality of iterated LF-mapping depends on the memory layout of the graph.

11022201021240100114102511010170117201002 10001000000100000010001000000100010001000

Encoding of the records and bitvector B (each byte is a single digit).

Path / subgraph traversals

Cluster of seeds
As we traverse a path in the graph using LFmapping, the length of the BWT range tells the number of times the traversal occurs as a subpath in the haplotypes.

We often traverse all possible extensions in a subgraph, as long as some invariant holds and the traversal is supported by the haplotypes.

Forward extensions of a seed

Backward extensions of an extension

GBWTGraph

We simulate a bidirected sequence graph using a directed graph and store the paths in a bidirectional GBWT index.

The GBWT represents the topology of the subgraph induced by the paths. Nodes and edges exist only if they are used on a path.

We store the node labels in a string array (concatenated strings + array of starting positions).

GFA segments have string names, while GBWT nodes have integer identifiers.

Segments can be arbitrarily long, but we may want to restrict the length of nodes for various reasons.

A translation between GFA segments and (ranges of) GBWT nodes can be stored using a string array for segment names and a sparse bitvector for the ranges.

Sirén et al.: Pangenomics enables genotyping of known structural variants in 5202 diverse genomes. Science, 2021.
https://github.com/jltsiren/gbwtgraph

Incremental BWT construction

Hon et al.: A space and time efficient algorithm for constructing compressed suffix arrays. Algorithmica, 2007.

Batch insertion

The BCR algorithm builds the BWT for a collection of short reads incrementally.

It starts from the BWT of m empty texts and extends each text backward by a single character in each step.

Bauer et al.: Lightweight algorithms for constructing and inverting the BWT of string collections. TCS, 2013.

RopeBWT2 inserts a batch of texts into an existing BWT using the same algorithm.

Li: Fast construction of FM-index for long sequence reads. Bioinformatics, 2014.

This is also the main GBWT construction algorithm.

During construction, we use a naive dynamic representation for the GBWT, where each node has an std::vector of edges and std::vector of runs.

In each step, we rebuild the node records for all nodes we touch.

Disjoint subgraphs

Paths are strings over the set of nodes V .

If we have two collections of paths in disjoint subgraphs, the strings in the collections are over disjoint alphabets.

We can build GBWTs for the collections independently and then merge them by simply reusing the node records.

More generally, we can partition the graph into weakly connected components and parallelize GBWT construction over the components.

We can easily build the GBWT for the 1000 Genomes Project (1000GP) data consisting of 5000 human haplotypes.

A few years ago, the construction took 17 hours on a system with 16 physical / 32 logical CPU cores and 244 GiB of memory.

```
Total length:
Sequences:
Alphabet size:
Effective:
Runs:
DA samples:
BWT
DA samples:
Total:
2194349057386
240232
612023760
612023759
2767709379
2143033346
8636.28 MB
8368.48 MB
17006.6 MB
```

GBZ file format

GFA compression

GFA is the most common interchange format for pangenome graphs.

It does not scale well when the number of haplotypes increases.

While the haplotype paths are highly similar, they are too long for standard compressors to compress them together.

The graph itself is reasonably small for today's computers, but it also grows with the number of haplotypes, if we include rare variants.

The overall effect is superlinear growth with the number of haplotypes.

There is a need for a compressed file format for pangenome graphs with many haplotype paths.

The GBWT and the GBWTGraph already store the necessary information!

Goals and challenges

- Stable and fully specified file format.
- Good compression.
- Fast loading into in-memory data structures.
- Should not make too specific requirements for the in-memory data structures.
- Easy to handle as a memory-mapped file.
- Designing a portable file format based on highly specialized data structures?
- Simple enough for independent implementations vs. compatibility with existing files?
- Different priorities in the initial version and future versions?

File format basics

Element: Unsigned little-endian 64-bit integer.

File: Sequence of elements. Most objects are properly aligned in a memory-mapped file.

A limited number of building blocks to make implementation easier.

Serializable: Anything with size a multiple of 64 bits that can be serialized by copying the bits.

Vector: Length as an element, followed by concatenated items. Padded with 0-bits if necessary.

Optional structure: Size in elements as an element, followed by the structure. Can be passed through as a vector of elements. For implementation-dependent or applicationdependent structures.

Simple-SDS

https://github.com/jltsiren/simple-sds
vgteam fork of SDSL
https://github.com/vgteam/sdsl-lite

Building blocks

Bitvector: Plain bitvector with optional rank/ select structures.

Integer vector: Bit-packed integer array.
Sparse bitvector: Elias-Fano encoded bitvector with a bitvector as high and an integer vector as low.

String array: Concatenated alphabetcompacted (\{ A, C, G, N, T \} \rightarrow [0..5)) strings as an integer vector and starting positions as a sparse bitvector. Usually decompressed as an in-memory structure.

Dictionary: Mapping between strings and their identifiers. Stored as a string array, with a permutation of the identifiers in lexicographic order as an integer vector. Usually decompressed in memory.

Tags: Key-value structure with caseinsensitive keys. Stored as a string array. Key source identifies the library that wrote the file. The reader can use that information for determining if it can understand the optional structures.

GBZ file format

Full implementation in C++, partial implementation in Rust.

https://github.com/jltsiren/gbwt

 https://github.com/jiltsiren/gbwtgraph https://github.com/jltsiren/gbwt-rsSirén and Paten: GBZ file format for pangenome graphs. Bioinformatics, 2022.

GBZ

Header: 16 bytes
Tags
GBWT
Header: 48 bytes
Tags
BWT: sparse bitvector, byte vector
DA samples: optional, unspecified
Optional metadata
Header: 40 bytes
Path names: vector of 16-byte items
Sample names: dictionary
Contig names: dictionary

GBWTGraph

Header: 24 bytes
Sequences: string array
Translation: string array, sparse bitvector

Compression algorithm

The input file is memory-mapped and the algorithm assumes that the order of the lines is reasonable.

1. Record the starting position and type of each line, determine if a translation is necessary, and determine GBWT construction buffer size.
2. Process segments and build the translation if necessary.
3. Process links, create a temporary graph, find weakly connected components, and determine GBWT construction jobs.
4. Process path and walk headers, build GBWT metadata.
5. Process paths and walks, running multiple GBWT construction jobs in parallel.
6. Merge partial GBWTs and build GBWTGraph.

Graph	Haplotypes	.gfa	.gfa.gz	.gbz	Compression	Decompression
HPRC	90	44.9 GiB	11.1 GiB	3.11 GiB	$\begin{gathered} 19 \mathrm{~min} \\ 111.0 \mathrm{GiB} \end{gathered}$	$\begin{gathered} 2 \mathrm{~min} \\ 14.5 \mathrm{GiB} \end{gathered}$
1000GP	~5000	9534.9 GiB	2231.3 GiB	16.84 GiB	$\begin{gathered} 779 \mathrm{~min} \\ 489.2 \mathrm{GiB} \end{gathered}$	$\begin{aligned} & 124 \mathrm{~min} \\ & 49.3 \mathrm{GiB} \end{aligned}$

HPRC: AWS i3.8xlarge

- 16 physical / 32 logical CPU cores
- 244 GiB RAM
- 16 parallel GBWT construction jobs
- 16 decompression threads

1000GP: AWS i4i.16xlarge

- 32 physical / 64 logical CPU cores
- 512 GiB RAM
- 32 parallel GBWT construction jobs
- 32 decompression threads

Sirén and Paten: GBZ file format for pangenome graphs. Bioinformatics, 2022.

Focus on data layout

- Designing a portable file format based on highly specialized data structures?

Two data structures sharing the same layout can often be built efficiently from each other.

We can then optimize the structures for different tasks.

GBWT: Compressed version for querying, dynamic version that supports inserting and deleting paths.

GBZ: C++ implementation focuses on fast access to sequences, while Rust implementation uses much less memory.

GBZ at its core:

- A collection of node records containing an adjacency list, a BWT fragment, and a sequence.
- The records are encoded as byte sequences.
- There is an index for finding a record based on its identifier.

GBZ in SQLite

We could do something like this:

```
CREATE TABLE Nodes (
    handle INTEGER PRIMARY KEY,
    edges BLOB,
    bwt BLOB,
    sequence BLOB
)
```

Inserting the key parts of an HPRC GBZ graph into a SQLite database takes ~90 seconds on this laptop.

Size increases from 3.06 GiB to 9.66 GiB without sequence compression. (Probably less than 6 GiB with alphabet compaction.)

Graph traversal speed is $\sim 150 \mathrm{k}$ nodes per second, vs. a few million nodes/second with the in-memory GBZ graph.

The database is available immediately, vs. $15-20$ seconds for loading the GBZ.

Potentially useful for interactive applications.

Overview

This talk was about the GBZ file format for pangenome graphs.

GBZ is based on the GBWT index, which stores a set of paths as sequences of node identifiers.

GBWT is a run-length encoded FM-index partitioned between the nodes of the graph.

FM-index is a space-efficient text index based on the Burrows-Wheeler transform.

Sirén and Paten: GBZ file format for pangenome graphs. Bioinformatics, 2022.

Sirén et al: Haplotype-aware graph indexes. Bioinformatics, 2020.

Ferragina and Manzini: Indexing
Compressed Text. JACM, 2005.

Burrows and Wheeler: A Block-sorting Data Compression Algorithm. Technical report, 1994.

Thank you!

