
GBZ File Format
for Pangenome Graphs

Jouni Sirén and Benedict Paten

UCSC Genomics Institute

Overview

This talk is about the GBZ file format for
pangenome graphs.

GBZ is based on the GBWT index, which
stores a set of paths as sequences of node
identifiers.

GBWT is a run-length encoded FM-index
partitioned between the nodes of the graph.

FM-index is a space-efficient text index
based on the Burrows–Wheeler transform. 

Sirén and Paten: GBZ file format for
pangenome graphs. Bioinformatics, 2022.

Sirén et al: Haplotype-aware graph
indexes. Bioinformatics, 2020.

Ferragina and Manzini: Indexing
Compressed Text. JACM, 2005.

Burrows and Wheeler: A Block-sorting Data
Compression Algorithm. Technical report,
1994.

Pangenome graphs

Terminology (a slight abuse of)
DNA sequences are strings over alphabet
{ A, C, G, T, N }, where N indicates that we
do not know the actual base (character).

A genome is a collection of DNA sequences,
most of which are chromosomes.

Human genomes are diploid: there are two
copies of (almost) every chromosome.

The set of chromosomes inherited from the
same parent is called a haplotype.

Human haplotypes are ~3 Gbp long.

On the average, a human genome can be
derived from parental genomes with just
hundreds of edit operations.

Sequences are homologous if they have
been derived from the same ancestral
sequence.

Sequence alignment is an attempt to match
homologous substrings of related sequences.

An alignment can be represented as a graph.

The graph should be simple enough to be
practical while representing the true
homology between the sequences.

Directed acyclic graphs

Directed acyclic graphs (DAG) are the
simplest pangenome graph model.

They correspond to the edit distance model
with substitutions, insertions, and
deletions, but they also represent
recombinations implicitly.

DAGs are easy to work with, but they cannot
represent all biologically plausible
alignments.

GATTACA
GACTATACA

GATTA--CA
GACTATACA

GATTATACA
GACTACA

GA

C

T

TA

TA

CA

Cycles and reversals
By allowing cycles in the graph, we can
represent other edit operations, such as
rearrangements and repetitions.

Cycles also allow completely implausible
paths, unless we limit arbitrary iterations.

We can do that by storing the aligned
sequences as paths and using them to guide
us.

Cyclic graphs are more difficult to work with
and reason about than DAGs.

One key operation is still missing: reverse
complement.

GATCATACATACATATATACATACATA

GATCATACA
GATTATATACA GAT

TA

CA

GATTACA → TGTAATC

Bidirected sequence graphs

Each node has two sides and can be visited
in two orientations.

A forward visit enters from the left, reads the
label, and exits from the right.

A reverse visits enters from the right, reads
the reverse complement of the label, and
exits from the left.

Edges are undirected and connect two
node sides.

1: GATTACA

2: TAT

3: CAG

Traversal >1 >2 <3 <1 reads GATTACA, TAT,
CTG, and TGTAATC.

Traversal >1 >3 <2 <1 reads GATTACA, CAG,
ATA, and TGTAATC.

Simulating bidirected graphs

We can simulate bidirected graphs with
directed graphs by turning node visits into
nodes.

Edges adjacent to the right side become
outgoing edges from the forward node.

Edges adjacent to the left side become
outgoing edges from the reverse node.

1: GATTACA

2: TAT

3: CAG

>1: GATTACA
>2: TAT

>3: CAG

<1: TGTAATC
<2: ATA

<3: CTG

GFA file format
GFA is a TSV-based interchange format for
bidirected sequence graphs.

Originally intended for assembly graphs, a
subset of GFA is suitable for pangenome
graphs:

• Segment: name, sequence

• Link: from, orientation, to, orientation

• Path: name, node visits

• Walk: sample, haplotype, contig, interval,

node visits

https://github.com/GFA-spec/GFA-spec/
blob/master/GFA1.md

H VN:Z:1.1
S 11 G
S 12 A
S 13 T
S 14 T
S 15 A
S 16 C
S 17 A
S 21 G
S 22 A
S 23 T
S 24 T
S 25 A
L 11 + 12 + *
L 11 + 13 + *
L 12 + 14 + *
L 13 + 14 + *
L 14 + 15 + *
L 14 + 16 + *
L 15 + 17 + *
L 16 + 17 + *
L 21 + 22 + *
L 21 + 23 + *
L 22 + 24 + *
L 23 + 24 - *
L 24 + 25 + *
P A 11+,12+,14+,15+,17+ *
P B 21+,22+,24+,25+ *
W sample 1 A 0 5 >11>12>14>15>17
W sample 2 A 0 5 >11>13>14>16>17
W sample 1 B 0 5 >21>22>24<23<21
W sample 2 B 0 4 >21>22>24>25

https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md
https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md

GFA compression

GFA does not scale well when the number of
haplotypes increases.

While the haplotype paths are highly similar,
they are too long for standard compressors
to compress them together.

The graph itself is reasonably small for
today's computers, but it also grows with the
number of haplotypes, if we include rare
variants. 

The overall effect is superlinear growth with
the number of haplotypes.

There is a need for a compressed file
format for pangenome graphs with many
haplotype paths.

Goals and challenges

• Stable and fully specified file format.

• Good compression.

• Fast loading into in-memory data
structures.

• Should not make too specific
requirements for the in-memory data
structures.

• Easy to handle as a memory-mapped file. 

• Designing a portable file format based on
highly specialized data structures?

• Simple enough for independent
implementations vs. compatibility with
existing files?

• Different priorities in the initial version
and future versions?

Rank, select, and bitvectors

Notation

Many popular programming languages such
as C++ and Rust start array indexing from 0
and use semi-open intervals for
representing substrings.

I am going to use the same conventions here. 

Substring S[i..j) starts with S[i] and ends just
before S[j].

S.rank(i, c) is the number of occurrences of
character c in the prefix S[0..i).

Let Ac be the sorted array of positions of
character c in string S.

S.select(i, c) = Ac[i] is the position of the
occurrence of rank i.

Bitvectors
A bitvector represents a binary sequence B
and supports efficient rank/select queries.

Bitvectors are often used for representing the
sorted integer array A = A1.

A common application is partitioning an
interval [a..b) into subintervals 
[B.select(i, 1)..B.select(i + 1, 1)).

Offset j can be mapped to the subinterval
containing it with a predecessor query
B.pred(j) = (i, B.select(i, 1)), where 
i = B.rank(j + 1, 1) – 1.

B: 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A: 2 3 7 8 12 13 16 17 19

B.rank(10, 1) = 4

B: 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A: 2 3 7 8 12 13 16 17 19

B.select(5, 1) = 13

B: 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A: 2 3 7 8 12 13 16 17 19

Rank on plain bitvectors

A plain bitvector stores binary sequence B
as such. There are many structures that
support rank queries in O(1) time.

The following is from SDSL: Gog and Petri:
Optimized succinct data structures for
massive data. Software – Practice and
Experience, 2014.

Partition the bitvector into 512-bit blocks
and store the rank at the start of each block
using 64 bits.

Partition each block into 64-bit words and
store rank-within-block at the start of each
word (except the first) using 9 bits.

Compute rank-within-word using popcnt and
return the sum of the three ranks. A query
takes two memory accesses and the space
overhead is 25%.

Select on plain bitvectors

select queries are also O(1) in theory, but
practical implementations tend to have rare
polylogarithmic worst cases.

The following is also from SDSL.

We partition the bitvector into superblocks
of 4096 values (positions of ones) and store
the first value in each superblock.

If a superblock is longer than log4 |B| bits, we
store all values in it explicitly.

Otherwise we partition the superblock into
blocks of 64 values and store the first value
in each block relative to the start of the
superblock.

Within each block, we iterate popcnt to find
the word containing the position we are
interested in. This means O(log3 |B|) iterations
in the worst case.

Select-within-word uses uses somewhat
complicated bit manipulation.

Space overhead is 18.75% in the worst case.

Elias–Fano encoding
Elias–Fano encoding is good for sparse
bitvectors, where |A| ≪ |B|. It is a mix
between representations A and B.

For each value x, we store the lowest w bits
in integer sequence low and assign the value
to bucket floor(x / 2w).

We encode the buckets in unary: a bucket
with k values becomes 1k0. Concatenated
buckets form binary sequence high.

By choosing w ≈ log |B| – log |A|, the number
of buckets will be close to |A|, making the
density of high close to 0.5.

B: 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A: 2 3 7 8 12 13 16 17 19

w = 2 

high: 1 1 0 1 0 1 0 1 1 0 1 1 1 0

Value 2 3 7 8 12 13 16 17 19
Low 2 3 3 0 0 1 0 1 3
Bucket 0 0 1 2 3 3 4 4 4

low: 2 3 3 0 0 1 0 1 3

A: 2 3 7 8 12 13 16 17 19

high: 1 1 0 1 0 1 0 1 1 0 1 1 1 0

Sparse bitvectors
Accessing the original values is simple: 
A[i] = (high.select(i, 1) – i) · 2w + low[i].

We can iterate over A by iterating over high and
low.

A B.rank(i, 1) query starts by finding the end of
the bucket with high.select(floor(i / 2w), 0). We
then iterate backward as long as the values are
too large.

B.pred(i) can be answered directly in a similar
way.

Okanohara and Sadakane: Practical Entropy-
Compressed Rank/Select Dictionary. ALENEX
2007.

low 2 bits

in bucket 1

B.select(2, 1)

low: 2 3 3 0 0 1 0 1 3

A: 2 3 7 8 12 13 16 17 19

high: 1 1 0 1 0 1 0 1 1 0 1 1 1 0

Sparse bitvectors

in bucket 4 
that ends at 13

last value in 
bucket 4 is at 
13 – 1 – 4 = 8

too largesmall enough

B.rank(18, 1)

still in same 
bucket

Accessing the original values is simple: 
A[i] = (high.select(i, 1) – i) · 2w + low[i].

We can iterate over A by iterating over high and
low.

A B.rank(i, 1) query starts by finding the end of
the bucket with high.select(floor(i / 2w), 0). We
then iterate backward as long as the values are
too large.

B.pred(i) can be answered directly in a similar
way.

Okanohara and Sadakane: Practical Entropy-
Compressed Rank/Select Dictionary. ALENEX
2007.

Burrows–Wheeler transform

From suffix array to BWT
Let T be a text string of length n over
alphabet Σ = [0..|Σ|) such that T[n – 1] = $ = 0
and $ does not occur anywhere else.

The suffix array of T is an array SA[0..n) of
pointers to the suffixes of T in lexicographic
order.

The BWT of T is a permutation of the
character occurrences BWT[0..n) that lists
the character preceding each suffix:

• BWT[i] = T[SA[i] – 1] if SA[i] > 0; and

• BWT[i] = $ if SA[i] = 0.

BWT SA Suffix

A 7 $

C 6 A$

T 4 ACA$

G 1 ATTACA$

A 5 CA$

$ 0 GATTACA$

T 3 TACA$

A 2 TTACA$

LF-mapping
The lexicographic rank of string X among
the suffixes of text T is the number of suffixes
Y such that Y < X in lexicographic order.

We define LF-mapping as a function such
that if the lexicographic rank of string X is i,
the lexicographic rank of string cX is LF(i, c).

We compute LF(i, c) = C[c] + BWT.rank(i, c):

• C[c] is the number of suffixes starting with
a character c' < c; and

• BWT.rank(i, c) is the number of suffixes 
Y < X preceded by character c.

BWT SA Suffix

A 7 $

C 6 A$

T 4 ACA$

G 1 ATTACA$

A 5 CA$

$ 0 GATTACA$

T 3 TACA$

A 2 TTACA$

ACAT

TACAT

LF(3, T)

BWT.rank(3, T)

C[T]

Inverting the BWT
Because $ is the smallest character, we
know that SA[0] = n – 1 and BWT[0] is the
character preceding the endmarker.

We use LF(i) = LF(i, BWT[i]) for finding the
previous suffix.

If BWT[i] ≠ $, it is the previous character in
the text, and we continue iterating.

This way, we recover the text from the BWT
backwards.

Jumping around in the BWT causes cache
misses.

BWT SA Suffix

A 7 $

C 6 A$

T 4 ACA$

G 1 ATTACA$

A 5 CA$

$ 0 GATTACA$

T 3 TACA$

A 2 TTACA$

Multi-string BWT
Let T0, ..., Tm – 1 be an ordered collection of
m texts.

To make each suffix unique, we assume that
the endmarker of Ti is smaller than that of Tj,
for all i < j.

The BWT generalizes to this model easily,
except that we cannot use LF-mapping with
character $.

SA[x] = (i, j) refers to suffix Ti[j..) and points to
the endmarker of Tx for x < m.

If SA[x] refers to a suffix of text Ti, we have
DA[x] = i in the document array.

BWT DA SA Suffix
A 0 (0, 7) $
A 1 (1, 5) $
C 0 (0, 6) A$
T 1 (1, 4) A$
T 0 (0, 4) ACA$
C 1 (1, 1) ATTA$
G 0 (0, 1) ATTACA$
A 0 (0, 5) CA$
$ 1 (1, 0) CATTA$
$ 0 (0, 0) GATTACA$
T 1 (1, 3) TA$
T 0 (0, 3) TACA$
A 1 (1, 2) TTA$
A 0 (0, 2) TTACA$

Backward searching
If SA[i..j) is the range of suffixes starting with
string X, the range of suffixes starting with
string cX is SA[LF(i, c)..LF(j, c)).

Given a pattern P, we can find the range of
suffixes starting with it with backward
searching:

• Start with [i..j) = [0..|SA|) matching an
empty pattern.

• For k from |P| – 1 down to 0, update with
[i..j) ← [LF(i, P[k])..LF(j, P[k])) to get the
range matching pattern P[k..).

BWT Suffix
A $
A $
C A$
T A$
T ACA$
C ATTA$
G ATTACA$
A CA$
$ CATTA$
$ GATTACA$
T TA$
T TACA$
A TTA$
A TTACA$

Range [10..14) 
matches pattern T

Range [5..7) = 
[LF(10, A)..LF(14, A)) 
matches pattern AT

FM-index
If we have the C array and the BWT with
efficient rank queries, we can support the
following:

• find(P) that returns the lexicographic
range [i..j) starting with pattern P with 
O(|P|) rank queries.

• extract(i) that returns the text Ti with O(|Ti|)
rank queries.

This is the core functionality of the FM-index.

Ferragina and Manzini: Indexing
Compressed Text. JACM, 2005. 

If we have non-compressible text over a
small alphabet (such as DNA), we can
simply partition the BWT into fixed-length
blocks and store rank(i, c) at the start of each
block for each character c.

Other common rank structures include:

• Bitvectors Bc that mark the positions
where BWT[i] = c.

• Wavelet trees that reduce rank on the
BWT to rank on log |Σ| bitvectors.

Bidirectional FM-index
A bidirectional FM-index has an index F for
the texts and an index R for the reverse
texts.

For any character c, we have F.find(c) =
R.find(c).

Because rev(cX) = rev(X) · c, range
R.find(rev(cX)) is a subrange of R.find(rev(X)).

Because the occurrences of P in forward
texts are occurrences of rev(P) in reverse
texts, |R.find(rev(cX))| = |F.find(cX)|.

For any c' < c, we have find(Xc') < find(Xc).

Let o be the number of occurrences of
characters c' < c in the BWT range F.find(X)
and l = |F.find(cX)|. If R.find(rev(X)) = [i..j), we
know that R.find(rev(cX)) = [i+o..i+o+l).

By extending the pattern backward in F, we
also extend it forward in R, and the other
way around.

Lam et al.: High Throughput Short Read
Alignment via Bi-directional BWT. BIBM
2009.

Forward and backward

An FMD-index stores DNA sequences and
their reverse complements in the same
index and effectively matches both
orientations of the pattern against both
orientations of the texts.

It works in a similar way to bidirectional FM-
indexes.

Li: Exploring single-sample SNP and
INDEL calling with whole-genome de novo
assembly. Bioinformatics, 2012. 

If we use the forward index F, we sort
suffixes of the texts and match the pattern
backward.

We can also use the reverse index R as an
index of the original texts. Then we sort the
reverse prefixes of the texts and match the
pattern forward.

Sometimes using the reverse index is more
natural.

Runs in BWT
Repetitiveness in a text collection manifests
as long equal letter runs in its BWT.

Adding a new copy of an existing text does
not increase the number of runs.

Each edit operation creates O(1) points of
discontinuity and moves a number of suffixes
preceding them in lexicographic order.

Suffixes far enough from the edits maintain
their positions relative to unrelated suffixes.

An insertion of length k may create O(k)
additional runs.

If we start from a single text T and the total
length of T and all insertions is n, there
should be O(n + s logσ n) runs after s edits,
where σ is effective alphabet size.

Remember that there are only hundreds of
edits in a human generation.

Mäkinen et al.: Storage and Retrieval of
Highly Repetitive Sequence Collections.
Journal of Computational Biology, 2010.

BWT ~ stable sorting

There are generalizations of the BWT for:

de Bruijn graphs: Nodes and edges
represent substrings of length k and k + 1.
(Bowe et al: Succinct de Bruijn Graphs.
WABI 2012.)

DAGs, but potentially with an exponential
blowup. (Sirén et al: Indexing Graphs for
Path Queries with Applications in Genome
Research. TCBB, 2014.)

Positional string collections: If Tj[i] = c, the
effective character value is (i, c). (Durbin:
Efficient haplotype matching and storage
using the positional Burrows–Wheeler
transform (PBWT). Bioinformatics, 2014.)

They rely on the following interpretation of
LF(i, c) = C[c] + BWT.rank(i, c):

• C[c]: Sort positions by the most significant
character.

• BWT.rank(i, c): Break ties by maintaining
the existing order.

Wheeler graphs
A directed edge-labeled graph is a Wheeler
graph, if the nodes have an ordering such
that:

1. Nodes with indegree 0 precede those with
a positive indegree.

2. For any pair of edges (u, v) and (u', v')
labeled a and a', respectively:

A. a < a' ⟹ v < v',

B. a = a' and u < u' ⟹ v ≤ v'.

Wheeler graphs can be represented using the
BWT and bitvectors encoding the indegrees
and outdegrees in unary.

The BWT is that of reverse path labels,
because we want LF-mapping to follow
edges forward.

Gagie, Manzini, and Sirén: Wheeler graphs:
A framework for BWT-based data
structures. TCS, 2017.

###
0 : 2

##G
0 : 1

#G
0

CA
2, 6

CT
2

ATC
3

ATG
3

TT
4

TC
5

TG
5

ATA
7

GT
8

TA
9

A$
10

$$$
11

GC
1

key OUT BWT IN key BS BV VS

$$$
A$
ATA
ATC
ATG
CA
CT
GC
GT
TA
TC
TG
TT
#G
##G
###

1

0

1
1
1
1

1
1
1
1
0
1
0
1
0
1
1
1
1
1

$$$
A$
ATA
ATC
ATG
CA
CT
GC
GT
TA
TC
TG
TT
#G
##G
###

1
1
1
1
1
0
0
1
1
0
1

1
1
1

1

0
1
1
1
1

A
T
C
C
C
G

T
#

A

A

A

G

T

G
T

T
C
#
#
$

0
0
1
1
1
1
0
0
1
1
1
1
1
0
0
1

1
1
1

1
1
1
1
1
1

0

7
3
3
2

8
9
5
5
4

0 : 2

1 6

GBWT

GBWT
The GBWT is a reverse FM-index (or FMD-
index) of paths in a directed graph.

We sort reverse prefixes of the paths and
match patterns forward, following the
direction of the edges.

To improve memory locality, we partition the
BWT between the nodes and use the
adjacency lists as rank structures.

A find query determines how many indexed
paths contain the corresponding traversal as
a subpath.

Sirén et al.: Haplotype-aware graph
indexes. Bioinformatics, 2020.

https://github.com/jltsiren/gbwt

https://github.com/jltsiren/gbwt

Let BWTv = BWT[C[v]..C[v + 1]).

That substring corresponds to prefixes where
the most significant character in the sorting
order (the last character) is v.

BWTv tells where the path corresponding to
each prefix continues after visiting node v.

BWT partitioning
Prefix BWT

$ 1
$ 1
$ 1

$ 1 2
$ 1 2
$ 1 3

$ 1 2 4
$ 1 2 5
$ 1 3 4

$ 1 2 4 6
$ 1 3 4 5
$ 1 2 5 7

$ 1 3 4 5 7
$ 1 2 4 6 7
$ 1 2 5 7 $

$ 1 3 4 5 7 $
$ 1 2 4 6 7 $

BWT4

LF-mapping
BWT offsets: (v, i) vs. C[v] + i vs. BWTv[i].

When we follow an edge (v, w), we use
LF(C[v] + i, w) = C[w] + BWT.rank(C[v] + i, w).

C[w] is just a reference to node w.

We can partition BWT.rank(C[v] + i, w) into
the sum of BWT.rank(C[v], w) and
BWTv.rank(i, w).

If we store BWTv in node v and
BWT.rank(C[v], w) in edge (v, w), we can
compute LF-mapping using local
information.

Prefix BWT
$ 1
$ 1
$ 1

$ 1 2
$ 1 2
$ 1 3

$ 1 2 4
$ 1 2 5
$ 1 3 4

$ 1 2 4 6
$ 1 3 4 5
$ 1 2 5 7

$ 1 3 4 5 7
$ 1 2 4 6 7
$ 1 2 5 7 $

$ 1 3 4 5 7 $
$ 1 2 4 6 7 $

BWT4

BWT5

LF(C[4] + 1, 5)

BWT.rank(C[4], 5) = 1

BWT4.rank(1, 5) = 0

Node records
The record for node v contains a list of
outgoing edges (v, w) and the BWT substring
BWTv.

For each edge (v, w), the adjacency list
stores the destination node w as well as
BWT.rank(C[v], w).

In BWTv, nodes are replaced by their ranks in
the adjacency list and and the substring is
then run-length encoded.

The record is encoded as a byte sequence,
using a 7+1-bit encoding for integers. The
encoding for runs depends on the outdegree.

Node 1

• Outdegree 2 encoded as 2

• Edge to 2, offset 0 encoded as (2, 0)

• Edge to 3, offset 0 encoded as (1, 0)

• Run 02 encoded as 0 + 2 * (2 – 1) = 2

• Run 11 encoded as 1 + 2 * (1 – 1) = 1

Using the GBWT
We concatenate the records and use a
sparse bitvector B for finding the substring
[B.select(v, 1)..B.select(v + 1, 1))
corresponding to node v.

When we compute LF-mapping from node v,
we decompress the adjacency list and scan
BWTv sequentially.

This assumes that node degrees are not too
high and paths do not visit the same nodes
too many times.

Memory locality of iterated LF-mapping
depends on the memory layout of the graph.

1102 2201021 2401001 1410 2511010 1701 1720 1002  
1000 1000000 1000000 1000 1000000 1000 1000 1000

Encoding of the records and bitvector B 
(each byte is a single digit).

Path / subgraph traversals

As we traverse a path in the graph using LF-
mapping, the length of the BWT range tells
the number of times the traversal occurs as a
subpath in the haplotypes.

We often traverse all possible extensions in
a subgraph, as long as some invariant holds
and the traversal is supported by the
haplotypes.

Cluster of seeds

Forward extensions 
of a seed

Backward extensions 
of an extension

GBWTGraph
We simulate a bidirected sequence graph
using a directed graph and store the paths in
a bidirectional GBWT index.

The GBWT represents the topology of the
subgraph induced by the paths. Nodes and
edges exist only if they are used on a path.

We store the node labels in a string array
(concatenated strings + array of starting
positions).

GFA segments have string names, while
GBWT nodes have integer identifiers.

Segments can be arbitrarily long, but we may
want to restrict the length of nodes for
various reasons.

A translation between GFA segments and
(ranges of) GBWT nodes can be stored using
a string array for segment names and a
sparse bitvector for the ranges.

Sirén et al.: Pangenomics enables
genotyping of known structural variants in
5202 diverse genomes. Science, 2021.

https://github.com/jltsiren/gbwtgraph

https://github.com/jltsiren/gbwtgraph

Incremental BWT construction
BWT Suffix

A $
$ $
C A$

T ACA$
G ATTACA$
A CA$
$ GATTACA$

T TACA$
A TTACA$

BWT Suffix
A $
A $
C A$
$ A$
T ACA$
G ATTACA$
A CA$
$ GATTACA$

T TACA$
A TTACA$

BWT Suffix
A $
A $
C A$
T A$
T ACA$
G ATTACA$
A CA$
$ GATTACA$
$ TA$
T TACA$
A TTACA$

Add an empty text Prepend A Prepend T

LF(· , A)

LF(· , T)

Hon et al.: A space and time efficient
algorithm for constructing compressed
suffix arrays. Algorithmica, 2007.

Batch insertion
The BCR algorithm builds the BWT for a
collection of short reads incrementally.

It starts from the BWT of m empty texts and
extends each text backward by a single
character in each step.

Bauer et al.: Lightweight algorithms for
constructing and inverting the BWT of
string collections. TCS, 2013.

RopeBWT2 inserts a batch of texts into an
existing BWT using the same algorithm.

Li: Fast construction of FM-index for long
sequence reads. Bioinformatics, 2014.

This is also the main GBWT construction
algorithm.

During construction, we use a naive dynamic
representation for the GBWT, where each
node has an std::vector of edges and
std::vector of runs.

In each step, we rebuild the node records for
all nodes we touch.

Disjoint subgraphs
Paths are strings over the set of nodes V.

If we have two collections of paths in disjoint
subgraphs, the strings in the collections are
over disjoint alphabets.

We can build GBWTs for the collections
independently and then merge them by
simply reusing the node records.

More generally, we can partition the graph
into weakly connected components and
parallelize GBWT construction over the
components.

We can easily build the GBWT for the 1000
Genomes Project (1000GP) data consisting
of 5000 human haplotypes.

A few years ago, the construction took 17
hours on a system with 16 physical / 32
logical CPU cores and 244 GiB of memory.

Total length: 2194349057386
Sequences: 240232
Alphabet size: 612023760
Effective: 612023759
Runs: 2767709379
DA samples: 2143033346
BWT: 8636.28 MB
DA samples: 8368.48 MB
Total: 17006.6 MB

GBZ file format

GFA compression
GFA is the most common interchange
format for pangenome graphs.

It does not scale well when the number of
haplotypes increases.

While the haplotype paths are highly similar,
they are too long for standard compressors
to compress them together.

The graph itself is reasonably small for
today's computers, but it also grows with the
number of haplotypes, if we include rare
variants.

The overall effect is superlinear growth with
the number of haplotypes.

There is a need for a compressed file
format for pangenome graphs with many
haplotype paths.

The GBWT and the GBWTGraph already
store the necessary information!

Goals and challenges

• Stable and fully specified file format.

• Good compression.

• Fast loading into in-memory data
structures.

• Should not make too specific
requirements for the in-memory data
structures.

• Easy to handle as a memory-mapped file. 

• Designing a portable file format based on
highly specialized data structures?

• Simple enough for independent
implementations vs. compatibility with
existing files?

• Different priorities in the initial version
and future versions?

File format basics
Element: Unsigned little-endian 64-bit
integer.

File: Sequence of elements. Most objects are
properly aligned in a memory-mapped file.

A limited number of building blocks to make
implementation easier.

Serializable: Anything with size a multiple of
64 bits that can be serialized by copying the
bits.

Vector: Length as an element, followed by
concatenated items. Padded with 0-bits if
necessary.

Optional structure: Size in elements as an
element, followed by the structure. Can be
passed through as a vector of elements. For
implementation-dependent or application-
dependent structures.

Simple-SDS 
https://github.com/jltsiren/simple-sds

vgteam fork of SDSL 
https://github.com/vgteam/sdsl-lite

https://github.com/jltsiren/simple-sds
https://github.com/vgteam/sdsl-lite

Building blocks
Bitvector: Plain bitvector with optional rank/
select structures.

Integer vector: Bit-packed integer array.

Sparse bitvector: Elias–Fano encoded
bitvector with a bitvector as high and an
integer vector as low.

String array: Concatenated alphabet-
compacted ({ A, C, G, N, T } → [0..5)) strings
as an integer vector and starting positions as
a sparse bitvector. Usually decompressed as
an in-memory structure.

Dictionary: Mapping between strings and
their identifiers. Stored as a string array, with
a permutation of the identifiers in
lexicographic order as an integer vector.
Usually decompressed in memory.

Tags: Key–value structure with case-
insensitive keys. Stored as a string array. Key
source identifies the library that wrote the file.
The reader can use that information for
determining if it can understand the optional
structures.

GBZ file format

Full implementation in C++, partial
implementation in Rust.

https://github.com/jltsiren/gbwt 
https://github.com/jltsiren/gbwtgraph 
https://github.com/jltsiren/gbwt-rs

Sirén and Paten: GBZ file format for
pangenome graphs. Bioinformatics, 2022.

Header: 16 bytes 
Tags

GBZ

Header: 48 bytes 
Tags 
BWT: sparse bitvector, byte vector 
DA samples: optional, unspecified 

GBWT

Header: 40 bytes 
Path names: vector of 16-byte items 
Sample names: dictionary 
Contig names: dictionary

Optional metadata

Header: 24 bytes 
Sequences: string array 
Translation: string array, sparse bitvector

GBWTGraph

https://github.com/jltsiren/gbwt
https://github.com/jltsiren/gbwtgraph
https://github.com/jltsiren/gbwt-rs

Compression algorithm
The input file is memory-mapped and the
algorithm assumes that the order of the lines
is reasonable.

1. Record the starting position and type of
each line, determine if a translation is
necessary, and determine GBWT
construction buffer size.

2. Process segments and build the
translation if necessary.

3. Process links, create a temporary graph,
find weakly connected components, and
determine GBWT construction jobs.

4. Process path and walk headers, build
GBWT metadata.

5. Process paths and walks, running
multiple GBWT construction jobs in
parallel.

6. Merge partial GBWTs and build
GBWTGraph.

GBZ benchmarks

HPRC: AWS i3.8xlarge

• 16 physical / 32 logical CPU cores

• 244 GiB RAM

• 16 parallel GBWT construction jobs

• 16 decompression threads

1000GP: AWS i4i.16xlarge

• 32 physical / 64 logical CPU cores

• 512 GiB RAM

• 32 parallel GBWT construction jobs

• 32 decompression threads

Sirén and Paten: GBZ file format for
pangenome graphs. Bioinformatics, 2022.

Graph Haplotypes .gfa .gfa.gz .gbz Compression Decompression

HPRC 90 44.9 GiB 11.1 GiB 3.11 GiB 19 min

111.0 GiB

2 min

14.5 GiB

1000GP ~5000 9534.9 GiB 2231.3 GiB 16.84 GiB 779 min

489.2 GiB

124 min

49.3 GiB

Focus on data layout
• Designing a portable file format based on

highly specialized data structures?

Two data structures sharing the same layout
can often be built efficiently from each other.

We can then optimize the structures for
different tasks.

GBWT: Compressed version for querying,
dynamic version that supports inserting and
deleting paths.

GBZ: C++ implementation focuses on fast
access to sequences, while Rust
implementation uses much less memory. 

GBZ at its core:

• A collection of node records containing an
adjacency list, a BWT fragment, and a
sequence.

• The records are encoded as byte
sequences.

• There is an index for finding a record
based on its identifier.

GBZ in SQLite

We could do something like this:

CREATE TABLE Nodes (
 handle INTEGER PRIMARY KEY,
 edges BLOB,
 bwt BLOB,
 sequence BLOB
)

Inserting the key parts of an HPRC GBZ
graph into a SQLite database takes ~90
seconds on this laptop. 

Size increases from 3.06 GiB to 9.66 GiB
without sequence compression. (Probably
less than 6 GiB with alphabet compaction.)

Graph traversal speed is ~150k nodes per
second, vs. a few million nodes/second with
the in-memory GBZ graph.

The database is available immediately, vs.
15–20 seconds for loading the GBZ.

Potentially useful for interactive applications.

Overview

This talk was about the GBZ file format for
pangenome graphs.

GBZ is based on the GBWT index, which
stores a set of paths as sequences of node
identifiers.

GBWT is a run-length encoded FM-index
partitioned between the nodes of the graph.

FM-index is a space-efficient text index
based on the Burrows–Wheeler transform. 

Sirén and Paten: GBZ file format for
pangenome graphs. Bioinformatics, 2022.

Sirén et al: Haplotype-aware graph
indexes. Bioinformatics, 2020.

Ferragina and Manzini: Indexing
Compressed Text. JACM, 2005.

Burrows and Wheeler: A Block-sorting Data
Compression Algorithm. Technical report,
1994.

Thank you!

