
Relative Select
Jouni Sirén

Wellcome Trust Sanger Institute

with

Christina Boucher, Alexander Bowe, Travis Gagie,
and Giovanni Manzini

Relative data structures
• Relative data compression encodes dataset y

relative to dataset x as y|x.

• If x and y are similar in an obvious way, the
similarities between f(x) and f(y) should also be
obvious, for most reasonable functions f.

• Most data structures D are reasonable functions.

• We should be able to encode D(y) relative to D(x)
as D(y|x), and simulate D(y) with D(x) and D(y|x).

An FM-index is a space-efficient full-text index with
similar functionality as the suffix array. It is based on
rank() queries on the Burrows-Wheeler transform of the
text.

BWT.rank(i,c) – the number of c’s in BWT[1,i]

We can represent the FM-index of a target sequence S
relative to the FM-index of a reference sequence R. This
approach is practical for individual human genomes.

Belazzougui, Gagie, Gog, Manzini, and Sirén: Relative
FM-indexes. SPIRE 2014.

Relative FM-index
R: CTAGCATAGAC$

$ C
AC$ G
AGAC$ T
AGCATAGAC$ T
ATAGAC$ C
C$ A
CATAGAC$ G
CTAGCATAGAC$ $
GAC$ A
GCATAGAC$ A
TAGAC$ A
TAGCATAGAC$ C

S: CTAGCATCGAC$

$ C
AC$ G
AGCATCGAC$ T
ATCGAC$ C
C$ A
CATCGAC$ G
CGAC$ T
CTAGCATCGAC$ $
GAC$ C
GCATCGAC$ A
TCGAC$ A
TAGCATCGAC$ C

Relative FM-index
 R: CTAGCATAGAC$
 BWT(R)
 C
CS(R) G
 T
 T
 C
T A
A G
 $
 A
 A
 A
 C

S: CTAGCATCGAC$
 BWT(S)
 C
 G CS(S)
 T
 C
 A
 G T
 T C
 $
 C
 A
 A
 C

C
G
T
C
A
G
$
A
A
C

Relative FM-index

BWT(S).rank = BWT(R).rank – CS(R).rank + CS(S).rank

 R: CTAGCATAGAC$
 BWT(R)
 C
CS(R) G
 T
 T
 C
T A
A G
 $
 A
 A
 A
 C

S: CTAGCATCGAC$
 BWT(S)
 C
 G CS(S)
 T
 C
 A
 G T
 T C
 $
 C
 A
 A
 C

C
G
T
C
A
G
$
A
A
C

We can move backward in the text with rank() queries
on the BWT. To move forward, we need select()
queries.

BWT.select(i,c) – the occurrence of c with rank i

Forward movement can be useful, when the FM-index
is a part of a compressed suffix tree, or when we are
using BWT-based de Bruijn graph representations.

We can solve select() queries by binary searching
with rank() queries. Native select() support should be
much faster.

Relative FM-index
 R: CTAGCATAGAC$
 BWT(R)
 C
CS(R) G
 T
 T
 C
T A
A G
 $
 A
 A
 A
 C

S: CTAGCATCGAC$
 BWT(S)
 C
 G CS(S)
 T
 C
 A
 G T
 T C
 $
 C
 A
 A
 C

C
G
T
C
A
G
$
A
A
C

The solution for relative select() is based on stable sorting.

Is select(i,c) in the common subsequence or in the complement?

Relative select
 R: CTAGCATAGAC$
 F(R)
 $
F(CS(R)) A
 A
 A
 A
A C
T C
 C
 G
 G
 T
 T

S: CTAGCATCGAC$
 F(S)
 $
 A F(CS(S))
 A
 A
 C
 C C
 C T
 C
 G
 G
 T
 T

$
A
A
A
C
C
C
G
G
T

Relative select

BWT(S).select(4,C): map BWT(R).select(3,C) to BWT(S)

 R: CTAGCATAGAC$
 F(R)
 $
F(CS(R)) A
 A
 A
 A
A C
T C
 C
 G
 G
 T
 T

S: CTAGCATCGAC$
 F(S)
 $
 A F(CS(S))
 A
 A
 C
 C C
 C T
 C
 G
 G
 T
 T

$
A
A
A
C
C
C
G
G
T

Relative select

BWT(S).select(3,C): map CS(S).select(1,C) to BWT(S)

 R: CTAGCATAGAC$
 F(R)
 $
F(CS(R)) A
 A
 A
 A
A C
T C
 C
 G
 G
 T
 T

S: CTAGCATCGAC$
 F(S)
 $
 A F(CS(S))
 A
 A
 C
 C C
 C T
 C
 G
 G
 T
 T

$
A
A
A
C
C
C
G
G
T

Experiments: FM-index
• Reference sequence: Human reference genome

with and without chromosome Y. Target sequence:
Maternal haplotypes of NA12878.

• Queries: 100 million random backward (rank(), LF())
and forward (select(),Ψ()) queries in a single thread.

• The implementation is based on SDSL.

https://github.com/jltsiren/relative-fm
https://github.com/simongog/sdsl-lite

https://github.com/jltsiren/relative-fm
https://github.com/simongog/sdsl-lite

Experiments: FM-index
ChrY Index Size Backward Forward

Yes SSA 1090 MB 0.55 µs 1.22 µs

Yes RFM 218 MB 3.95 µs 48.0 µs

Yes RFM
rselect 382 MB 3.95 µs 6.11 µs

No SSA 1090 MB 0.55 µs 1.11 µs

No RFM 181 MB 3.84 µs 44.8 µs

No RFM
rselect 331 MB 3.84 µs 6.12 µs

Experiments: CST
• Gagie, Navarro, Puglisi, and Sirén: Relative

Compressed Suffix Trees. arXiv:1508.02550.

• Comparison against the SDSL implementations of
CSTs using NA12878 and the reference without
chromosome Y.

• Full traversal using SDSL iterators.

• Matching statistics for another assembly of
chromosome 1 using forward searching.

Experiments: CST
Index Size Traversal Matching

statistics

cst_sada 12.33 bpc 5 min 315 min

cst_sct3
PLCP 10.79 bpc 18 min 195 min

cst_sct3
LCP-byte 18.08 bpc 18 min 120 min

cst_fully 4.98 bpc – –

RCST 3.16 bpc 39 min 910 min

RCST
rselect 3.61 bpc 39 min 389 min

Conclusions
• We augmented the relative FM-index with native

select() queries.

• The native select() support is 7–8 times faster than
using binary search with rank() queries.

• The augmented RFM index yields competitive time/
space trade-offs for forward searching in
compressed suffix trees.

