
Relative FM-indexes
Jouni Sirén, University of Chile

with
Djamal Belazzougui, University of Helsinki

Travis Gagie, University of Helsinki
Simon Gog, Karlsruhe Institute of Technology

Giovanni Manzini, University of Eastern Piedmont

Relative data compression
• Individual genomes are represented by their

differences to the reference genome.

• Version control systems store revisions of a
document as insertions and deletions to older
revisions.

• Relative Lempel-Ziv parsing (Kuruppu et al., SPIRE
2010) represents a string as a concatenation of
substrings of another string.

Compressed data structures

• Provide the functionality of a data structure, while
using similar space as a compressed
representation of the data.

• Take advantage of the repetitiveness of the data to
store it in less space than the information-theoretic
minimum.

• Are always trade-offs between space usage and
query performance.

Relative data structures
• Let R and S be similar datasets.

• If we build data structure D for the datasets, D(R)
and D(S) should also be similar.

• We can encode D(S) relative to D(R) as D(S | R).

• Given D(R) and D(S | R), we can query D(S)
efficiently or decompress it.

Relative data structures Compressed data structures

Individual data structures for each
of the datasets.

A single data structure containing
all the datasets.

The encoding of S depends only
on S and R.

The encoding of S may depend on
all the other datasets.

Compression depends on the
similarity between S and R.

Compression may take advantage
of the similarities between all the

datasets.

Construction for multiple datasets
is easy to distribute.

Construction for multiple datasets
may require significant resources

and specialized algorithms.

Datasets can be added and
removed easily.

Insertion and deletion require
specialized algorithms.

Sorted suffixes!
$!
ACATCAG$!
ACGATTACATCAG$!
AG$!
ATCAG$!
ATTACATCAG$!
CAG$!
CATCAG$!
CGATTACATCAG$!
G$!
GATTACATCAG$!
TACATCAG$!
TCAG$!
TTACATCAG$

SA!
14!!
7  
1!
12!
9!
4!
11!
8!
2!
13!
3!
6!
10!
5

BWT!
G!
T  
$!
C!
C!
G!
T!
A!
A!
A!
C!
T!
A!
A

The suffix array (SA) is an
array of pointers to the
suffixes of the text in
lexicographic order.
!
The Burrows-Wheeler
transform (BWT) lists the
characters preceding the
suffixes.
!
The FM-index (Ferragina,
Manzini, JACM 2005)
simulates the SA with BWT
and additional structures to
support rankc(BWT, i).

ACGATTACATCAG$!
$!
ACATCAG$!
ACGATTACATCAG$!
AG$!
ATCAG$!
ATTACATCAG$!
CAG$!
CATCAG$!
CGATTACATCAG$!
G$!
GATTACATCAG$!
TACATCAG$!
TCAG$!
TTACATCAG$

BWT!
G!
T  
$!
C!
C!
G!
T!
A!
A!
A!
C!
T!
A!
A

BWT!
G!
$  
G!
C!
T!
T!
T!
A!
A!
A!
C!
C!
A!
A

ACGACTATATCAG$!
$!
ACGACTATATCAG$!
ACTATATCAG$!
AG$!
ATATCAG$!
ATCAG$!
CAG$!
CGACTATATCAG$!
CTATATCAG$!
G$!
GACTATATCAG$!
TATATCAG$!
TATCAG$!
TCAG$

ACGATTACATCAG$!
$!
ACATCAG$!
ACGATTACATCAG$!
AG$!
ATCAG$!
ATTACATCAG$!
CAG$!
CATCAG$!
CGATTACATCAG$!
G$!
GATTACATCAG$!
TACATCAG$!
TCAG$!
TTACATCAG$

BWT!
G!
T  
$!
C!
C!
G!
T!
A!
A!
A!
C!
T!
A!
A

BWT!
G!
$  
G!
C!
T!
T!
T!
A!
A!
A!
C!
C!
A!
A

ACGACTATATCAG$!
$!
ACGACTATATCAG$!
ACTATATCAG$!
AG$!
ATATCAG$!
ATCAG$!
CAG$!
CGACTATATCAG$!
CTATATCAG$!
G$!
GACTATATCAG$!
TATATCAG$!
TATCAG$!
TCAG$

Computing rankc(i)
 10110011111011 select1(5) = 8!
BWT(R) GT$CCGTAAACTAA rankC(8) = 2
!
BWT(R) – LCS TCGT rankC(3) = 1
!
LCS G$CTAAACAA rankC(5) = 1
!
BWT(S) – LCS GTTC rankC(3) = 0
!
BWT(S) G$GCTTTAAACCAA rankC(8) = 1
 11010011111011 rank1(8) = 5

Relative FM-index
• Sequences BWT(R) – LCS and BWT(S) – LCS with

rank support (e.g. as wavelet trees [Grossi et al.,
SODA 2003]).

• Compressed bitvectors marking LCS in BWT(R)
and BWT(S).

• We use SDSL (Gog et al., SEA 2014) in the
implementation.

Index construction
• Finding the longest common subsequence (LCS) of

two long strings is expensive.

• Myers’ algorithm (Algorithmica, 1986) takes O(nD)
time, which is roughly n2/50 for the BWTs of human
genomes.

• We approximate the LCS by partitioning the BWTs
and using Myers’ algorithm for each pair of
partitions.

$ G G $

ACATCAG$!
ACGATTACATCAG$

T!
$

$!
G

ACGACTATATCAG$!
ACTATATCAG$

AG$ C C AG$

ATCAG$!
ATTACATCAG$

C!
G

T!
T

ATATCAG$!
ATCAG$

CAG$!
CATCAG$

T!
A

T!CAG$!

CGATTACATCAG$ A A CGACTATATCAG$

A CTATATCAG$

G$ A A G$

GATTACATCAG$ C C GACTATATCAG$

TACATCAG$! T! C!
A

TATATCAG$!
TATCAG$

TCAG$ A A TCAG$

TTACATCAG$ A

Datasets
• Reference: 1000 Genomes Project assembly of the

human reference genome (3096M bases).

• YanHuang: An older assembly of the genome of a Han
Chinese male (3002M bases).

• NA12878: The maternal haplotype of a Utah female
from the 1000 Genomes Project (3036M bases).

• Patterns: 3.68 million reads of length 108 from the 1000
Genomes Project individual HG00122 (British female).

Dataset LCS Construction Plain!
FM-index

RRR!
FM-index

Relative!
FM-index

YanHuang
2935M
94.82%
97.79%

708 s 1090 MB
56.45 s

628 MB
328.86 s

288 MB
621.47 s

NA12878
2992M
96.65%
98.54%

589 s 1090 MB
57.31 s

636 MB
325.48 s

218 MB
619.81 s

NA12878!
(reference

without!
chr Y)

2991M
98.51%
98.51%

1090 MB 636 MB 181 MB

Conclusions
• Compressing data structures relative to similar

datasets seems like an interesting idea.

• The relative FM-index is roughly 5x smaller and 10x
slower than a plain FM-index, or 3x smaller and 2x
slower than a compressed FM-index.

• There is a report of some ongoing work on data
structures based on relative Lempel-Ziv parsing in
the workshop.

