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Relative data compression 
• Individual genomes are represented by their 

differences to the reference genome. 

• Version control systems store revisions of a 
document as insertions and deletions to older 
revisions. 

• Relative Lempel-Ziv parsing (Kuruppu et al., SPIRE 
2010) represents a string as a concatenation of 
substrings of another string.



Compressed data structures

• Provide the functionality of a data structure, while 
using similar space as a compressed 
representation of the data. 

• Take advantage of the repetitiveness of the data to 
store it in less space than the information-theoretic 
minimum. 

• Are always trade-offs between space usage and 
query performance.



Relative data structures
• Let R and S be similar datasets. 

• If we build data structure D for the datasets, D(R) 
and D(S) should also be similar. 

• We can encode D(S) relative to D(R) as D(S | R). 

• Given D(R) and D(S | R), we can query D(S) 
efficiently or decompress it.



Relative data structures Compressed data structures

Individual data structures for each 
of the datasets.

A single data structure containing 
all the datasets.

The encoding of S depends only 
on S and R.

The encoding of S may depend on 
all the other datasets.

Compression depends on the 
similarity between S and R.

Compression may take advantage 
of the similarities between all the 

datasets.

Construction for multiple datasets 
is easy to distribute.

Construction for multiple datasets 
may require significant resources 

and specialized algorithms.

Datasets can be added and 
removed easily.

Insertion and deletion require 
specialized algorithms.



Sorted suffixes!
$!
ACATCAG$!
ACGATTACATCAG$!
AG$!
ATCAG$!
ATTACATCAG$!
CAG$!
CATCAG$!
CGATTACATCAG$!
G$!
GATTACATCAG$!
TACATCAG$!
TCAG$!
TTACATCAG$

SA!
14!!
7  
1!
12!
9!
4!
11!
8!
2!
13!
3!
6!
10!
5

BWT!
G!
T  
$!
C!
C!
G!
T!
A!
A!
A!
C!
T!
A!
A

The suffix array (SA) is an 
array of pointers to the 
suffixes of the text in 
lexicographic order. 
!
The Burrows-Wheeler 
transform (BWT) lists the 
characters preceding the 
suffixes. 
!
The FM-index (Ferragina, 
Manzini, JACM 2005) 
simulates the SA with BWT 
and additional structures to 
support rankc(BWT, i).



ACGATTACATCAG$!
$!
ACATCAG$!
ACGATTACATCAG$!
AG$!
ATCAG$!
ATTACATCAG$!
CAG$!
CATCAG$!
CGATTACATCAG$!
G$!
GATTACATCAG$!
TACATCAG$!
TCAG$!
TTACATCAG$

BWT!
G!
T  
$!
C!
C!
G!
T!
A!
A!
A!
C!
T!
A!
A

BWT!
G!
$  
G!
C!
T!
T!
T!
A!
A!
A!
C!
C!
A!
A

ACGACTATATCAG$!
$!
ACGACTATATCAG$!
ACTATATCAG$!
AG$!
ATATCAG$!
ATCAG$!
CAG$!
CGACTATATCAG$!
CTATATCAG$!
G$!
GACTATATCAG$!
TATATCAG$!
TATCAG$!
TCAG$



ACGATTACATCAG$!
$!
ACATCAG$!
ACGATTACATCAG$!
AG$!
ATCAG$!
ATTACATCAG$!
CAG$!
CATCAG$!
CGATTACATCAG$!
G$!
GATTACATCAG$!
TACATCAG$!
TCAG$!
TTACATCAG$

BWT!
G!
T  
$!
C!
C!
G!
T!
A!
A!
A!
C!
T!
A!
A

BWT!
G!
$  
G!
C!
T!
T!
T!
A!
A!
A!
C!
C!
A!
A

ACGACTATATCAG$!
$!
ACGACTATATCAG$!
ACTATATCAG$!
AG$!
ATATCAG$!
ATCAG$!
CAG$!
CGACTATATCAG$!
CTATATCAG$!
G$!
GACTATATCAG$!
TATATCAG$!
TATCAG$!
TCAG$



Computing rankc(i)
      10110011111011  select1(5) = 8!
BWT(R)    GT$CCGTAAACTAA  rankC(8) = 2 
!
BWT(R) – LCS TCGT       rankC(3) = 1 
!
LCS     G$CTAAACAA    rankC(5) = 1 
!
BWT(S) – LCS  GTTC       rankC(3) = 0 
!
BWT(S)    G$GCTTTAAACCAA  rankC(8) = 1 
      11010011111011  rank1(8) = 5



Relative FM-index
• Sequences BWT(R) – LCS and BWT(S) – LCS with 

rank support (e.g. as wavelet trees [Grossi et al., 
SODA 2003]). 

• Compressed bitvectors marking LCS in BWT(R) 
and BWT(S). 

• We use SDSL (Gog et al., SEA 2014) in the 
implementation.



Index construction
• Finding the longest common subsequence (LCS) of 

two long strings is expensive. 

• Myers’ algorithm (Algorithmica, 1986) takes O(nD) 
time, which is roughly n2/50 for the BWTs of human 
genomes. 

• We approximate the LCS by partitioning the BWTs 
and using Myers’ algorithm for each pair of 
partitions.
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Datasets
• Reference: 1000 Genomes Project assembly of the 

human reference genome (3096M bases). 

• YanHuang: An older assembly of the genome of a Han 
Chinese male (3002M bases). 

• NA12878: The maternal haplotype of a Utah female 
from the 1000 Genomes Project (3036M bases). 

• Patterns: 3.68 million reads of length 108 from the 1000 
Genomes Project individual HG00122 (British female).



Dataset LCS Construction Plain!
FM-index

RRR!
FM-index

Relative!
FM-index

YanHuang
2935M 
94.82% 
97.79%

708 s 1090 MB 
56.45 s

628 MB 
328.86 s

288 MB 
621.47 s

NA12878
2992M 
96.65% 
98.54%

589 s 1090 MB 
57.31 s

636 MB 
325.48 s

218 MB 
619.81 s

NA12878!
(reference 

without!
chr Y)

2991M 
98.51% 
98.51%

1090 MB 636 MB 181 MB



Conclusions
• Compressing data structures relative to similar 

datasets seems like an interesting idea. 

• The relative FM-index is roughly 5x smaller and 10x 
slower than a plain FM-index, or 3x smaller and 2x 
slower than a compressed FM-index. 

• There is a report of some ongoing work on data 
structures based on relative Lempel-Ziv parsing in 
the workshop.


