
Indexing Graphs
for Path Queries

Jouni Sirén
Wellcome Trust Sanger Institute

J. Sirén, N. Välimäki, V. Mäkinen: Indexing Graphs for
Path Queries with Applications in Genome Research.
WABI 2011, TCBB 2014.

A. Bowe, T. Onodera, K. Sadakane, T. Shibuya:
Succinct de Bruijn Graphs. WABI 2012.

J. Sirén: GCSA2. https://github.com/jltsiren/gcsa2

https://github.com/jltsiren/gcsa2

G

A

T

C T

C

T

A

G

A

CAT

Given a graph where paths are labeled by strings, a
path index is a text index for the strings.

A path query finds the (start nodes of) the paths
labeled by a kmer.

A$$ 10
ATA 8
ATC 3
ATG 3
CAT 2, 6
CTT 2
GCA 1
GCT 1
GTA 7
TA$ 9
TCA 5
TGT 5
TTC 4
TTG 4

• A kmer index based on a
hash table supports queries
of length k efficiently.

• If we sort the kmers, we can
use them as a suffix array-like
index for shorter queries.

• The kmer index can also
simulate a de Bruijn graph.

G

A

T

C T

C

T

A

G

A

1 2
3

4
5

6

7

8
9 10

G

A

T

C T

C

T

A

G

A

We can search for longer patterns by representing the
kmer index as a de Bruijn graph.

GCA CAT

CTT

ATC

ATG

TTC

TTG

TCA

TGT GTA

ATA

TA$ A$$

GCT

Original graph

de Bruijn graph

G

A

T

C T

C

T

A

G

A

The results of long queries must be verified in the
original graph to avoid false positives.

GCA CAT

CTT

ATC

ATG

TTC

TTG

TCA

TGT GTA

ATA

TA$ A$$

GCT

Original graph

de Bruijn graph

Some parts of the original graph
may have too many paths
through them. Those parts must
be pruned before indexing.

The de Bruijn graph can also be
pruned by merging the nodes
with a common prefix of the
label, if:
1. the shorter label uniquely

defines the start node in the
original graph; or

2. the start nodes cannot be
distinguished by length-k
extensions of the label.

G

A

T

C T

C

T

A

G

A

GCA CAT

CTT

ATC

ATG

TTC

TTG

TCA

TGT GTA

ATA

TA$ A$$

GCT

GC

CAT

CT

ATC

ATG

TT

TC

TG GT

ATA

TA A$

Original graph

de Bruijn graph

Pruned de Bruijn graph

GC

CAT

CT

ATC

ATG

TT

TC

TG GT

ATA

TA A$

We store predecessor labels, indegree, and outdegree
for each node. For the nodes at the beginning of unary
paths, we also store pointers to the original graph.
Edges can be determined if the nodes are stored in
sorted order.

The encoding is similar to the Burrows-Wheeler
transform and the FM-index. Typical space usage is
1–2 bytes/node.

AG, 2, 1

A
T
C
C
C
G
T
G
$
T
A
G
A
T
A
T
C

BWT
1
1
1
1
1
0
0
1
1
0
1
1
1
1
1
0
1

Outdegree

$
A$
ATA
ATC
ATG
CAT
CT
GC
GT
TA
TC
TG
TT

Nodes
1
1
1
1
1
0
1
1
1
1
0
1
0
1
0
1
1

Indegree

$
A$
ATA
ATC
ATG
CAT
CT
GC
GT
TA
TC
TG
TT

Nodes

LF()rank() select()

GCSA construction

• Start from paths of length k and use a prefix-doubling
algorithm to build the pruned de Bruijn graph.

• extend(): Double the path length by joining paths
A→B and B→C into paths A→C.

• prune(): If all paths sharing a common prefix start
from the same node, merge them into a single path.

• merge(): Merge all paths with the same label.

Chr 1

Chr 2

Chr 3

extend()

extend()

extend()

Chr 1

Chr 2

Chr 3

prune()

Chr 1

Chr 2

Chr 3

Chr 1

Chr 2

Chr 3

sort()

sort()

sort()

Chr 1

Chr 2

Chr 3

merge()

Nodes

Labels

Path starts

The files are sorted by path
labels. GCSA construction
determines the lexicographic
ranges of potential predecessors
of each node in the pruned de
Bruijn graph and creates an
edge from each node
intersecting with the range.

Path length 16→32 16→64 16→128

Nodes:
de Bruijn graph

Pruned
6.23G
4.39G

16.9G
5.27G

118G
5.76G

Index size:
Full index

Without pointers
9.99 GB
4.10 GB

9.22 GB
4.84 GB

9.23 GB
5.27 GB

Construction:
Time

Memory
Disk

7.20 h
43.8 GB
401 GB

11.4 h
43.8 GB
424 GB

15.5 h
43.8 GB
489 GB

I/O:
Read
Write

1.43 TB
1.05 TB

2.11 TB
1.71 TB

2.89 TB
2.47 TB

1000GP human variation, vg mod -p -l 16 -e 4 | vg mod -S -l 100
32 cores, 256 GB memory, distributed Lustre file system

Conclusions

• We can use pruned de Bruijn graphs encoded using
the BWT to index variation graphs.

• GCSA2 is a practical implementation for whole-
genome graphs and queries of length up to 128.

• The index is an FM-index: We can extend it with
many techniques from text indexing literature.

Graph pruning
• Split the graph into two layers: primary graph and

additional edges.

• Index the forward and reverse complement strands
of the primary graph.

• If x is a node in the original graph, let V(x) and V’(x)
be the sets forward and reverse complement paths
with x as the start node.

• For each additional edge (a,b), create edges from
V’(a) to V(b).

Chris Thachuk: Indexing
Hypertext. JDA, 2013.

GATTACA

AATC

ACA

In order to match kmers with one
recombination, we:
• Split the kmer into prefix-suffix

pairs.
• Search for the reverse

complement of the prefix and for
the suffix.

• Combine the partial matches
with a 2D range query over the
matrix of created edges.

In practice, we search for the kmer
and its reverse complement, and
do k–1 range queries. This finds
both forward and reverse
complement occurrences.
There may be false positives from
paths with multiple start nodes.

Representing rearrangements

We may have the
same sequence or
even subgraph in
different positions.

Duplicated subgraphs Unsupported cycles

We may need something
stronger than graphs,
which correspond to
regular languages.

A →
B →
C →
D →

S → ABCD | ACBD A B1 B2 C1 C2 D
A 0 1 0 0 1 0

B1 0 0 0 1 0 0
B2 0 0 0 0 0 1
C1 0 0 0 0 0 1
C2 0 0 1 0 0 0
D 0 0 0 0 0 0

The solution from Indexing Hypertext can be made to work with non-
nested grammars. In the nested case, we need a way to index arbitrary
context-free grammars.

