
Indexing Graphs 
for Path Queries

Jouni Sirén 
Wellcome Trust Sanger Institute



J. Sirén, N. Välimäki, V. Mäkinen: Indexing Graphs for 
Path Queries with Applications in Genome Research. 
WABI 2011, TCBB 2014. 

A. Bowe, T. Onodera, K. Sadakane, T. Shibuya: 
Succinct de Bruijn Graphs. WABI 2012. 

J. Sirén: GCSA2. https://github.com/jltsiren/gcsa2

https://github.com/jltsiren/gcsa2


G

A

T

C T

C

T

A

G

A

CAT

Given a graph where paths are labeled by strings, a 
path index is a text index for the strings. 

A path query finds the (start nodes of) the paths 
labeled by a kmer.



A$$  10
ATA  8
ATC  3
ATG  3
CAT  2, 6
CTT  2
GCA  1
GCT  1
GTA  7
TA$  9
TCA  5
TGT  5
TTC  4
TTG  4

• A kmer index based on a 
hash table supports queries 
of length k efficiently. 

• If we sort the kmers, we can 
use them as a suffix array-like 
index for shorter queries. 

• The kmer index can also 
simulate a de Bruijn graph.
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We can search for longer patterns by representing the 
kmer index as a de Bruijn graph.
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The results of long queries must be verified in the 
original graph to avoid false positives.
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Some parts of the original graph 
may have too many paths 
through them. Those parts must 
be pruned before indexing. 

The de Bruijn graph can also be 
pruned by merging the nodes 
with a common prefix of the 
label, if: 
1. the shorter label uniquely 

defines the start node in the 
original graph; or 

2. the start nodes cannot be 
distinguished by length-k 
extensions of the label.
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We store predecessor labels, indegree, and outdegree 
for each node. For the nodes at the beginning of unary 
paths, we also store pointers to the original graph. 
Edges can be determined if the nodes are stored in 
sorted order. 

The encoding is similar to the Burrows-Wheeler 
transform and the FM-index. Typical space usage is 
1–2 bytes/node.
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GCSA construction

• Start from paths of length k and use a prefix-doubling 
algorithm to build the pruned de Bruijn graph. 

• extend(): Double the path length by joining paths 
A→B and B→C into paths A→C. 

• prune(): If all paths sharing a common prefix start 
from the same node, merge them into a single path. 

• merge(): Merge all paths with the same label.
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The files are sorted by path 
labels. GCSA construction 
determines the lexicographic 
ranges of potential predecessors 
of each node in the pruned de 
Bruijn graph and creates an 
edge from each node 
intersecting with the range.



Path length 16→32 16→64 16→128

Nodes:
de Bruijn graph

Pruned
6.23G 
4.39G

16.9G 
5.27G

118G 
5.76G

Index size:
Full index

Without pointers
9.99 GB 
4.10 GB

9.22 GB 
4.84 GB

9.23 GB 
5.27 GB

Construction:
Time

Memory
Disk

7.20 h 
43.8 GB 
401 GB

11.4 h 
43.8 GB 
424 GB

15.5 h 
43.8 GB 
489 GB

I/O:
Read
Write

1.43 TB 
1.05 TB

2.11 TB 
1.71 TB

2.89 TB 
2.47 TB

1000GP human variation, vg mod -p -l 16 -e 4 | vg mod -S -l 100 
32 cores, 256 GB memory, distributed Lustre file system



Conclusions

• We can use pruned de Bruijn graphs encoded using 
the BWT to index variation graphs. 

• GCSA2 is a practical implementation for whole-
genome graphs and queries of length up to 128. 

• The index is an FM-index: We can extend it with 
many techniques from text indexing literature.



Graph pruning
• Split the graph into two layers: primary graph and 

additional edges. 

• Index the forward and reverse complement strands 
of the primary graph. 

• If x is a node in the original graph, let V(x) and V’(x) 
be the sets forward and reverse complement paths 
with x as the start node. 

• For each additional edge (a,b), create edges from 
V’(a) to V(b).



Chris Thachuk: Indexing 
Hypertext. JDA, 2013.

GATTACA

AATC

ACA

In order to match kmers with one 
recombination, we: 
• Split the kmer into prefix-suffix 

pairs. 
• Search for the reverse 

complement of the prefix and for 
the suffix. 

• Combine the partial matches 
with a 2D range query over the 
matrix of created edges. 

In practice, we search for the kmer 
and its reverse complement, and 
do k–1 range queries. This finds 
both forward and reverse 
complement occurrences. 
There may be false positives from 
paths with multiple start nodes.



Representing rearrangements

We may have the 
same sequence or 
even subgraph in 
different positions.

Duplicated subgraphs Unsupported cycles



We may need something 
stronger than graphs, 
which correspond to 
regular languages.

A →
B →
C →
D →

S → ABCD | ACBD A B1 B2 C1 C2 D
A 0 1 0 0 1 0

B1 0 0 0 1 0 0
B2 0 0 0 0 0 1
C1 0 0 0 0 0 1
C2 0 0 1 0 0 0
D 0 0 0 0 0 0

The solution from Indexing Hypertext can be made to work with non-
nested grammars. In the nested case, we need a way to index arbitrary 
context-free grammars.


