
Relative Compression
of Data Structures

Jouni Sirén
with

Djamal Belazzougui, University of Helsinki
Travis Gagie, University of Helsinki

Simon Gog, Karlsruhe Institute of Technology
Giovanni Manzini, University of Eastern Piedmont

Gonzalo Navarro, University of Chile
Simon J. Puglisi, University of Helsinki

1. Algorithms vs. data structures!

2. Relative data structures!

3. Relative FM-index!

4. Relative Lempel-Ziv bitvector

Algorithms
• Most problems in CS (and elsewhere) are

algorithmic: given some data, we want to answer
some questions about the data.

• Computer scientists like well-defined algorithmic
problems.

• Solutions can be evaluated by resource usage
(e.g. time, space, communication), accuracy,
reliability…

Data structures
• Given some data, we want to store the data in a

way that makes some queries efficient.

• Computer scientists like to think that data
structures implement well-defined interfaces.

• Data structures implementing the same interface
are typically compared by query performance and
space usage.

Sorted suffixes!
$!
ACATCAG$!
ACGATTACATCAG$!
AG$!
ATCAG$!
ATTACATCAG$!
CAG$!
CATCAG$!
CGATTACATCAG$!
G$!
GATTACATCAG$!
TACATCAG$!
TCAG$!
TTACATCAG$

SA!
14!!
7  
1!
12!
9!
4!
11!
8!
2!
13!
3!
6!
10!
5

BWT!
G!
T  
$!
C!
C!
G!
T!
A!
A!
A!
C!
T!
A!
A

Suffixes matching A.

Suffixes matching CA.

BWT-based indexes
• FM-index (FMI) (Ferragina, Manzini, JACM 2005)

• Compressed suffix array (CSA) (Grossi, Vitter, SIAM
J. Comput. 2005)

• The index consists of the BWT, an additional
structure to support rankc(BWT, i) queries, and
some sampled SA values.

• Rarely the best data structures for a specific
problem, but often almost as good.

The original interface
count P ⟼ ep + 1 - sp
locate P ⟼ SA[sp, ep]
extract (i, j) ⟼ T[i, j]
!
More exact matching
find P ⟼ (sp, ep)
locate i ⟼ SA[i]
locate (sp, ep) ⟼ SA[sp, ep]
!
!
!
People always find new ways of
using a data structure. Fixed
interfaces rarely capture the full
functionality of the structure.

Low-level interface
LF (spi, epi, c) ⟼
 (spi–1, epi–1)
LF i ⟼ SA–1[SA[i] – 1]
Ψ i ⟼ SA–1[SA[i] + 1]
char i ⟼ T[SA[i]]
!
Really low-level interface
rank (c, i) ⟼ rankc(BWT, i)
select (c, i) ⟼ selectc(BWT, i)
access i ⟼ BWT[i]
next (c, i) ⟼
(min j ≥ i: BWT[j] = c, rank(c, j))
next (c, i, r) ⟼
(min j > i: BWT[j] = c, r + 1)

Compressed data structures

• Provide the functionality of a data structure, while
using similar space as a compressed
representation of the data.

• Take advantage of the repetitiveness of the data to
store it in less space than the information-theoretic
minimum.

• Are always trade-offs between space usage and
query performance.

Relative data compression
• Individual genomes can be represented by their

differences to the reference genome.

• Version control systems store revisions of a
document as insertions and deletions to older
revisions.

• Relative Lempel-Ziv parsing (Kuruppu et al., SPIRE
2010) represents a string as a concatenation of
substrings of another string.

Relative data structures
• Let R and S be similar datasets.

• If we build data structure D for the datasets, D(R)
and D(S) should also be similar.

• We can encode D(S) relative to D(R) as D(S | R).

• Given D(R) and D(S | R), we can query D(S)
efficiently or decompress it.

Relative data structures Compressed data structures

Individual data structures for each
of the datasets.

A single data structure containing
all the datasets.

The encoding of S depends only
on S and R.

The encoding of S may depend on
all the other datasets.

Compression depends on the
similarity between S and R.

Compression may take advantage
of the similarities between all the

datasets.

Construction for multiple datasets
is easy to distribute.

Construction for multiple datasets
may require significant resources

and specialized algorithms.

Datasets can be added and
removed easily.

Insertion and deletion require
specialized algorithms.

BWT construction
• Space-efficient merging algorithm (Hon et al.,

Algorithmica 2007) adds a new sequence S to the
BWT of collection C.

• Build BWT(S); search for S in BWT(C) to find the
positions for the suffixes of S; merge the BWTs.

• A similar algorithm can remove sequences from the
collection and modify the existing sequences.

• What if we skip the merging step?

ACGATTACATCAG$!
$!
ACATCAG$!
ACGATTACATCAG$!
AG$!
ATCAG$!
ATTACATCAG$!
CAG$!
CATCAG$!
CGATTACATCAG$!
G$!
GATTACATCAG$!
TACATCAG$!
TCAG$!
TTACATCAG$

BWT!
G!
T  
$!
C!
C!
G!
T!
A!
A!
A!
C!
T!
A!
A

BWT!
G!
$  
G!
C!
T!
T!
T!
A!
A!
A!
C!
C!
A!
A

ACGACTATATCAG$!
$!
ACGACTATATCAG$!
ACTATATCAG$!
AG$!
ATATCAG$!
ATCAG$!
CAG$!
CGACTATATCAG$!
CTATATCAG$!
G$!
GACTATATCAG$!
TATATCAG$!
TATCAG$!
TCAG$

ACGATTACATCAG$!
$!
ACATCAG$!
ACGATTACATCAG$!
AG$!
ATCAG$!
ATTACATCAG$!
CAG$!
CATCAG$!
CGATTACATCAG$!
G$!
GATTACATCAG$!
TACATCAG$!
TCAG$!
TTACATCAG$

BWT!
G!
T  
$!
C!
C!
G!
T!
A!
A!
A!
C!
T!
A!
A

BWT!
G!
$  
G!
C!
T!
T!
T!
A!
A!
A!
C!
C!
A!
A

ACGACTATATCAG$!
$!
ACGACTATATCAG$!
ACTATATCAG$!
AG$!
ATATCAG$!
ATCAG$!
CAG$!
CGACTATATCAG$!
CTATATCAG$!
G$!
GACTATATCAG$!
TATATCAG$!
TATCAG$!
TCAG$

Computing rankc(i)
 10110011111011 select1(5) = 8!
BWT(R) GT$CCGTAAACTAA rankC(8) = 2
!
BWT(R) – LCS TCGT rankC(3) = 1
!
LCS G$CTAAACAA rankC(5) = 1
!
BWT(S) – LCS GTTC rankC(3) = 0
!
BWT(S) G$GCTTTAAACCAA rankC(8) = 1
 11010011111011 rank1(8) = 5

Relative FM-index
• Sequences BWT(R) – LCS and BWT(S) – LCS with

rank support (e.g. as wavelet trees [Grossi et al.,
SODA 2003]).

• Compressed bitvectors marking LCS in BWT(R)
and BWT(S).

• We use SDSL (Gog et al., SEA 2014) in the
implementation.

Index construction
• Finding the longest common subsequence (LCS) of

two long strings is expensive.

• Myers’ algorithm (Algorithmica, 1986) takes O(nD)
time, where nD ≈ n2/50 for the BWTs of human
genomes.

• We approximate the LCS by partitioning the BWTs
and using Myers’ algorithm for each pair of
partitions.

$ G G $

ACATCAG$!
ACGATTACATCAG$

T!
$

$!
G

ACGACTATATCAG$!
ACTATATCAG$

AG$ C C AG$

ATCAG$!
ATTACATCAG$

C!
G

T!
T

ATATCAG$!
ATCAG$

CAG$!
CATCAG$

T!
A

T!CAG$!

CGATTACATCAG$ A A CGACTATATCAG$

A CTATATCAG$

G$ A A G$

GATTACATCAG$ C C GACTATATCAG$

TACATCAG$! T! C!
A

TATATCAG$!
TATCAG$

TCAG$ A A TCAG$

TTACATCAG$ A

Dataset LCS
Relative!
FM-index!

construction
Plain!

FM-index
RRR!

FM-index
Relative!
FM-index

NA12878!
vs.!

1000GP!
reference

2992M
96.65%
98.54%

589 s
1090 MB
3.01 bpc
57.31 s

636 MB
1.76 bpc
325.48 s

218 MB
0.60 bpc
619.81 s

NA12878!
(reference

without!
chr Y)

2991M
98.51%
98.51%

181 MB
0.50 bpc

Relative Lempel-Ziv
• Relative Lempel-Ziv (RLZ) parsing (Kuruppu et al.,

SPIRE 2010) encodes string S as a concatenation
of substrings of string R.

• Because pointers are large and the differences
between S and R are often single-character
substitutions, we add the first mismatching
character to the end of each phrase.

• See Ferrada et al., SPIRE 2014, for techniques for
supporting fast random access.

Bitvectors
• A bitvector is a binary sequence supporting rank0,

rank1, select0, and select1.

• rank1 is the basic operation, with rank0(i) = i – rank1(i).

• select0 and select1 either require separate structures
or use binary search with rank1.

• Common encodings include plain, entropy-
compressed, sparse/gap-encoded, and run-length
encoded.

RLZ bitvector
• Each phrase Pi = (si, li, ci) consists of the starting position

si in R, the length li, and the mismatching character ci.

• We use relative encoding with optional run-length
encoding for the starting positions (Ferrada et al., SPIRE
2014).

• A sparse bitvector maps between the positions in S and
the phrases they belong in.

• Another sparse bitvector does the same for 1-bits.

• If fast select0 is needed, a third bitvector is used for 0-bits.

uint64_t!
RLZVector::rank(uint64_t i) const!
{!
 if(i >= this->size()) { return this->items(); }!
!
 uint64_t phrase = this->blocks.blockFor(i);!
 if(phrase == 0)!
 {!
 return this->oneBits(this->phrases.decode(0, 0), i);!
 }!
 uint64_t text_pos = this->blocks.itemsAfter(phrase - 1);!
!
 return this->ones.itemsAfter(phrase - 1) +!
 this->oneBits(this->phrases.decode(phrase, text_pos),!
 i - text_pos);!
}

RLZ parsing
• RLZ parsing uses SA(R) or CSA(reverse(R)).

• The merging algorithm of Hon et al. (Algorithmica,
2007) works here as well.

• With block size m = 226, parsing speed is roughly 1
Mb/s, or 5 Mb/s by reusing a prebuilt index.

• In principle, memory usage is just 8m bytes in
addition to the reference.

Bitvector!
(n = 2 Size rank select select access

Plain 190 MB
1.49 bpc 52 ns 272 ns 280 ns 15 ns

RRR 137 MB
1.07 bpc 451 ns 784 ns 769 ns 430 ns

RLZ!
0.001

6.1 MB
0.05 bpc 510 ns 899 ns 887 ns 255 ns

RLZ!
0.003

17 MB
0.13 bpc 639 ns 996 ns 1026 ns 348 ns

RLZ!
0.010

57 MB
0.45 bpc 865 ns 1128 ns 1167 ns 447 ns

RLZ!
0.030

151 MB
1.18 bpc 1019 ns 1311 ns 1329 ns 541 ns

Conclusions
• Given a collection of similar datasets, relative data

compression can be used to store data structures for
individual datasets space-efficiently.

• Compared to compressed data structures for the
entire collection, relative data structures are larger
but easier to handle.

• The relative FM-index stores the symmetric difference
between BWT(R) and BWT(S), while the RLZ bitvector
represents S as a concatenation of pieces of R.

