
Pangenome Graphs
with Haplotype Paths

Jouni Sirén

UC Santa Cruz Genomics Institute

Data model
We have a representative set of haplotypes
from the relevant population.

We align the haplotypes and build a graph,
where each node represents aligned
positions in the haplotypes.

Any traversal of the graph is a potential
haplotype.

Traversals that are locally consistent with
the original haplotypes are more likely to be
biologically plausible.

For that reason, we store the original
haplotypes as paths.

path ~ walk 
path ~ stored traversal 

traversal ~ emergent path

Human genomes

The methods I am going to present are
general-purpose, but we always make
assumptions.

I mostly work with human genomes, which
has implications on things like:

• genome size;

• number and size of chromosomes;

• ploidy;

• repetitiveness of sequences; and

• similarity between haplotypes.

Human Pangenome Reference
Consortium (HPRC)

Wang et al.: The Human Pangenome
Project: a global resource to map genomic
diversity. Nature, 2022.

https://humanpangenome.org/

~45 high-quality diploid de novo assemblies
today and hundreds in the future.

https://humanpangenome.org/

Outline
Today: Data structures

• Bitvectors, rank, select

• Burrows–Wheeler transform (BWT)

• FM-index, RLBWT

• GBWT, construction algorithms

We will revisit topics Veli already talked about
on Monday, but from a different perspective. 

Tomorrow: GBWT applications

• Bidirected sequence graphs

• GBWTGraph

• Giraffe aligner

• GBZ file format

Focus on algorithm engineering and a little
bit of software development, not on
theoretical algorithms or biology.

Bitvectors

Notation
There are only two hard things in computer
science: cache invalidation, naming things,
and off-by-one errors.

(Phil Karlton, Leon Bambrick)

Off-by-one errors are often caused by
incorrect translations between various array
indexing conventions.

Many popular programming languages such
as C++ and Rust start array indexing from 0
and use semi-open intervals for
representing substrings.

I am going to use the same conventions here.

Substring S[i..j) starts with S[i] and ends just
before S[j].

S.rank(i, c) is the number of occurrences of
character c in the prefix S[0..i).

Let Ac be the sorted array of positions of
character c in string S.

S.select(i, c) = Ac[i] is the position of the
occurrence of rank i.

Bitvectors
A bitvector represents a binary sequence B
and supports efficient rank/select queries.

Bitvectors are often used for representing the
sorted integer array A = A1.

A common application is partitioning an
interval [a..b) into subintervals 
[B.select(i, 1)..B.select(i + 1, 1)).

Offset j can be mapped to the subinterval
containing it with a predecessor query
B.pred(j) = (i, B.select(i, 1)), where 
i = B.rank(j + 1, 1) – 1.

B: 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A: 2 3 7 8 12 13 16 17 19

B.rank(10, 1) = 4

B: 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A: 2 3 7 8 12 13 16 17 19

B.select(5, 1) = 13

B: 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A: 2 3 7 8 12 13 16 17 19

Rank on plain bitvectors
A plain bitvector stores binary sequence B
as such. There are many structures that
support rank queries in O(1) time.

The following is from SDSL: Gog, Petri:
Optimized succinct data structures for
massive data. Software – Practice and
Experience, 2014.

A CPU can execute multiple independent
operations in parallel using a single core.

Chained queries (such as in iterated LF-
mapping) are bound by memory latency.

Partition the bitvector into 512-bit blocks
and store the rank at the start of each block
using 64 bits.

Partition each block into 64-bit words and
store rank-within-block at the start of each
word (except the first) using 9 bits.

Compute rank-within-word using popcnt and
return the sum of the three ranks. A query
takes two memory accesses and the space
overhead is 25%.

Select on plain bitvectors

select queries are also O(1) in theory, but
practical implementations tend to have rare
polylogarithmic worst cases.

The following is also from SDSL.

We partition the bitvector into superblocks
of 4096 values (positions of ones) and store
the first value in each superblock.

If a superblock is longer than log4 |B| bits, we
store all values in it explicitly.

Otherwise we partition the superblock into
blocks of 64 values and store the first value
in each block relative to the start of the
superblock.

Within each block, we iterate popcnt to find
the word containing the position we are
interested in. This means O(log3 |B|) iterations
in the worst case.

Select-within-word uses uses somewhat
complicated bit manipulation.

Space overhead is 18.75% in the worst case.

Elias–Fano encoding
Elias–Fano encoding is good for sparse
bitvectors, where |A| ≪ |B|. It is a mix
between representations A and B.

For each value x, we store the lowest w bits
in integer sequence low and assign the value
to bucket floor(x / 2w).

We encode the buckets in unary: a bucket
with k values becomes 1k0. Concatenated
buckets form binary sequence high.

By choosing w ≈ log |B| – log |A|, the number
of buckets will be close to |A|, making the
density of high close to 0.5.

B: 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A: 2 3 7 8 12 13 16 17 19

w = 2 

high: 1 1 0 1 0 1 0 1 1 0 1 1 1 0

Value 2 3 7 8 12 13 16 17 19
Low 2 3 3 0 0 1 0 1 3
Bucket 0 0 1 2 3 3 4 4 4

low: 2 3 3 0 0 1 0 1 3

A: 2 3 7 8 12 13 16 17 19

high: 1 1 0 1 0 1 0 1 1 0 1 1 1 0

Sparse bitvectors
Accessing the original values is simple: 
A[i] = (high.select(i, 1) – i) · 2w + low[i].

We can iterate over A by iterating over high and
low.

A B.rank(i, 1) query starts by finding the end of
the bucket with high.select(floor(i / 2w), 0). We
then iterate backward as long as the values are
too large.

B.pred(i) can be answered directly in a similar
way.

Okanohara, Sadakane: Practical Entropy-
Compressed Rank/Select Dictionary. ALENEX
2007.

low 2 bits

in bucket 1

B.select(2, 1)

low: 2 3 3 0 0 1 0 1 3

A: 2 3 7 8 12 13 16 17 19

high: 1 1 0 1 0 1 0 1 1 0 1 1 1 0

Sparse bitvectors

in bucket 4 
that ends at 13

last value in 
bucket 4 is at 
13 – 1 – 4 = 8

too largesmall enough

B.rank(18, 1)

still in same 
bucket

Accessing the original values is simple: 
A[i] = (high.select(i, 1) – i) · 2w + low[i].

We can iterate over A by iterating over high and
low.

A B.rank(i, 1) query starts by finding the end of
the bucket with high.select(floor(i / 2w), 0). We
then iterate backward as long as the values are
too large.

B.pred(i) can be answered directly in a similar
way.

Okanohara, Sadakane: Practical Entropy-
Compressed Rank/Select Dictionary. ALENEX
2007.

SDSL versions
Succinct Data Structures Library (SDSL)

Gog et al.: From Theory to Practice: Plug
and Play with Succinct Data Structures.
Proc. SEA 2014.

https://github.com/simongog/sdsl-lite

Wide range of efficient and scalable data
structures.

Unfortunately the original library (SDSL 2) has
been abandoned.

SDSL 3
• https://github.com/xxsds/sdsl-lite

• Maintained (for now) by SeqAn people.

• Requires C++17.

vgteam fork

• https://github.com/vgteam/sdsl-lite

• Some improvements to SDSL 2.

• Limited support.

Simple-SDS
• https://github.com/jltsiren/simple-sds

• Limited scope, written in Rust.

https://github.com/simongog/sdsl-lite
https://github.com/xxsds/sdsl-lite
https://github.com/vgteam/sdsl-lite
https://github.com/jltsiren/simple-sds

Burrows–Wheeler transform

Empirical entropy
Entropy and information are based on the
equation , where

is an alphabet (a finite set of symbols).

We can interpret this as the expected
number of bits required for encoding one
symbol .

If we use observed frequencies (in a specific
text) as probabilities, we get the order-0
empirical entropy , which is useful in data
compression.

If we have an order-0 encoder (such as
Huffman), we can compress a text of length

 using bits, plus overhead from the
encoder and the model (probability
distribution).

In (one version of) GRCh38, :

H = − ∑
c∈Σ

P(c)log2 P(c) Σ

c ∈ Σ

H0

n nH0

H0 ≈ 2.17

Symbol Count Probability

A 866420001 0.279497

C 598683433 0.193129

G 600854940 0.193829

N 165045996 0.053242

T 868918077 0.280303

High-order entropy
If we know the context a symbol appears in,
we can often predict it more accurately.

Given a set of possible contexts , we can
redefine entropy as the weighted sum

 of

entropies over contexts .

By using the preceding characters as the
context, we get the order- empirical
entropy .

This does not help much with DNA, but the
usual estimate for the entropy of English text
is approximately 1 bit/character.

By using a separate order-0 encoder for
each context, we can compress a text of
length using bits, plus overhead.

At , model overhead becomes
the dominant term in space usage.

We need a better encoding for the model.

S

H = − ∑
s∈S

P(s)∑
c∈Σ

P(c ∣ s)log2 P(c ∣ s)

s ∈ S

k
k

Hk

n nHk

k ≈ log|Σ| n

Burrows–Wheeler transform

The Burrows–Wheeler transform (BWT) is
a permutation of the text that is useful for
encoding both the text and the model.

If we sort each character occurrence by the
text following it, we group them by the
order- context for all simultaneously.

Burrows, Wheeler: A Block-sorting
Lossless Data Compression Algorithm.
Technical report, 1994.

k k

C A T T A $
C A T T A A T T A G A T T A C A T T A
G A T T A C A C A T T A C A G A T T A
G A T T A C A G A C C T T A G A C A G
T A T T A C A G A T T A G A T T A C G
C A T T A C A G A T T A T A T T A C A
G A T T A C A T T A $
G A T T A C A T T A A T T A G A T T A
G A T T A C A T T A G A C A T T A G A
G A T T A C G T T A T A T A G A T T A
C A T T A G A C A T T A G A G A T T A
C A T T A G A G A T T A C A C A T T A
G A T T A G A G A T T A C A T T A G A
A A T T A G A T T A C A T T A $
G A T T A G A T T A C G T T A T A T A
G A T T A T A T T A C A G A T T A G A

Compression boosting

We can partition the BWT into optimal
contexts (according to a cost function) using
a greedy algorithm and compress each of
them separately with an order-0 encoder.

This theoretical approach to BWT-based
compression is called compression
boosting.

Ferragina et al.: Boosting Textual
Compression in Optimal Linear Time.
Journal of the ACM, 2005. 

We get similar results with a specific order-0
encoder (wavelet tree with RRR bitvectors)
without any partitioning.

Mäkinen, Navarro: Implicit compression
boosting with applications to self-
indexing. SPIRE 2007.

Or we can just partition the BWT into fixed-
length blocks and use any order-0 encoder.

Gog et al.: Fixed Block Compression
Boosting in FM-indexes: Theory and
Practice. Algorithmica, 2019.

From suffix array to BWT
Let T be a text string of length n over
alphabet Σ = [0..|Σ|) such that T[n – 1] = $ = 0
and $ does not occur anywhere else.

The suffix array of T is an array SA[0..n) of
pointers to the suffixes of T in lexicographic
order.

The BWT of T is a permutation of the
character occurrences BWT[0..n) that lists
the character preceding each suffix:

• BWT[i] = T[SA[i] – 1] if SA[i] > 0; and

• BWT[i] = $ if SA[i] = 0.

BWT SA Suffix

A 7 $

C 6 A$

T 4 ACA$

G 1 ATTACA$

A 5 CA$

$ 0 GATTACA$

T 3 TACA$

A 2 TTACA$

LF-mapping
The lexicographic rank of string X among
the suffixes of text T is the number of suffixes
Y such that Y < X in lexicographic order.

We define LF-mapping as a function such
that if the lexicographic rank of string X is i,
the lexicographic rank of string cX is LF(i, c).

We compute LF(i, c) = C[c] + BWT.rank(i, c):

• C[c] is the number of suffixes starting with
a character c' < c; and

• BWT.rank(i, c) is the number of suffixes 
Y < X preceded by character c.

BWT SA Suffix

A 7 $

C 6 A$

T 4 ACA$

G 1 ATTACA$

A 5 CA$

$ 0 GATTACA$

T 3 TACA$

A 2 TTACA$

ACAT

TACAT

LF(3, T)

BWT.rank(3, T)

C[T]

Inverting the BWT
Because $ is the smallest character, we
know that SA[0] = n – 1 and BWT[0] is the
character preceding the endmarker.

We use LF(i) = LF(i, BWT[i]) for finding the
previous suffix.

If BWT[i] ≠ $, it is the previous character in
the text, and we continue iterating.

This way, we recover the text from the BWT
backwards.

Jumping around in the BWT causes cache
misses.

BWT SA Suffix

A 7 $

C 6 A$

T 4 ACA$

G 1 ATTACA$

A 5 CA$

$ 0 GATTACA$

T 3 TACA$

A 2 TTACA$

Multi-string BWT
Let T0, ..., Tm – 1 be an ordered collection of
m texts.

To make each suffix unique, we assume that
the endmarker of Ti is smaller than that of Tj,
for all i < j.

The BWT generalizes to this model easily,
except that we cannot use LF-mapping with
character $.

SA[x] = (i, j) refers to suffix Ti[j..) and points to
the endmarker of Tx for x < m.

If SA[x] refers to a suffix of text Ti, we have
DA[x] = i in the document array.

BWT DA SA Suffix
A 0 (0, 7) $
A 1 (1, 5) $
C 0 (0, 6) A$
T 1 (1, 4) A$
T 0 (0, 4) ACA$
C 1 (1, 1) ATTA$
G 0 (0, 1) ATTACA$
A 0 (0, 5) CA$
$ 1 (1, 0) CATTA$
$ 0 (0, 0) GATTACA$
T 1 (1, 3) TA$
T 0 (0, 3) TACA$
A 1 (1, 2) TTA$
A 0 (0, 2) TTACA$

FM-index

Backward searching
If SA[i..j) is the range of suffixes starting with
string X, the range of suffixes starting with
string cX is SA[LF(i, c)..LF(j, c)).

Given a pattern P, we can find the range of
suffixes starting with it with backward
searching:

• Start with [i..j) = [0..|SA|) matching an
empty pattern.

• For k from |P| – 1 down to 0, update with
[i..j) ← [LF(i, P[k])..LF(j, P[k])) to get the
range matching pattern P[k..).

BWT Suffix
A $
A $
C A$
T A$
T ACA$
C ATTA$
G ATTACA$
A CA$
$ CATTA$
$ GATTACA$
T TA$
T TACA$
A TTA$
A TTACA$

Range [10..14) 
matches pattern T

Range [5..7) = 
[LF(10, A)..LF(14, A)) 
matches pattern AT

FM-index
If we have the C array and the BWT with
efficient rank queries, we can support the
following:

• find(P) that returns the lexicographic
range [i..j) starting with pattern P with 
O(|P|) rank queries.

• extract(i) that returns the text Ti with O(|Ti|)
rank queries.

This is the core functionality of the FM-index.

Ferragina, Manzini: Indexing Compressed
Text. Journal of the ACM, 2005. 

If we have non-compressible text over a
small alphabet (such as DNA), we can
simply partition the BWT into fixed-length
blocks and store rank(i, c) at the start of each
block for each character c.

Other common rank structures include:

• Bitvectors Bc that mark the positions
where BWT[i] = c.

• Wavelet trees that reduce rank on the
BWT to rank on log |Σ| bitvectors.

Locating the matches
We sample some suffix array values in order
to determine the text positions matching the
pattern.

In text order sampling, we sample SA[i] if it
is a multiple of d. Sampled positions are
marked in a bitvector.

If SA[i] is not sampled, we iterate i ←LF(i)
until we find a sampled position. If we need k
iterations, the value we wanted is SA[i] + k.

Now we can support:

• locate(i) that returns SA[i] with O(d) rank
queries and O(n / d) words of extra space.

SA Suffix
(0, 7) $
(1, 5) $
(0, 6) A$
(1, 4) A$
(0, 4) ACA$
(1, 1) ATTA$
(0, 1) ATTACA$
(0, 5) CA$
(1, 0) CATTA$
(0, 0) GATTACA$
(1, 3) TA$
(0, 3) TACA$
(1, 2) TTA$
(0, 2) TTACA$

SA[12]: not sampled

SA[5]: not sampled

SA[8]: sampled

Bidirectional FM-index
A bidirectional FM-index has an index F for
the texts and an index R for the reverse
texts.

For any character c, we have F.find(c) =
R.find(c).

Because rev(cX) = rev(X) · c, range
R.find(rev(cX)) is a subrange of R.find(rev(X)).

Because the occurrences of P in forward
texts are occurrences of rev(P) in reverse
texts, |R.find(rev(cX))| = |F.find(cX)|.

For any c' < c, we have find(Xc') < find(Xc).

Let o be the number of occurrences of
characters c' < c in the BWT range F.find(X)
and l = |F.find(cX)|. If R.find(rev(X)) = [i..j), we
know that R.find(rev(cX)) = [i+o..i+o+l).

By extending the pattern backward in F, we
also extend it forward in R, and the other
way around.

Lam et al.: High Throughput Short Read
Alignment via Bi-directional BWT. BIBM
2009.

Forward and backward

An FMD-index stores DNA sequences and
their reverse complements in the same
index and effectively matches both
orientations of the pattern against both
orientations of the texts.

It works in a similar way to bidirectional FM-
indexes.

Li: Exploring single-sample SNP and
INDEL calling with whole-genome de novo
assembly. Bioinformatics, 2012. 

If we use the forward index F, we sort
suffixes of the texts and match the pattern
backward.

We can also use the reverse index R as an
index of the original texts. Then we sort the
reverse prefixes of the texts and match the
pattern forward.

Sometimes using the reverse index is more
natural.

FM-index in practice
Key features of FM-indexes:

• Reasonably fast find, slow locate.

• Very space-efficient.

• Cache misses for each character.

• Arbitrary pattern length.

• No need for word boundaries or other
structure.

Short read alignment is the primary
application of FM-indexes.

Space-efficiency is no longer that important if
text size is only a few gigabytes.

Long reads (especially with high error rates)
favor k-mer indexes with fast locate, because
the alignment must be chained from many
seed hits.

Information retrieval applications prefer
using words or other tokens instead of
characters, and they often have loose
requirements for the relative order and
spacing of query terms.

Run-length encoded BWT

Back to compression
Traditional BWT-based compressor:

1. BWT rearranges the symbols by context.

2. Move-to-front uses a list of symbols.
Each symbol is encoded by its current
position in the list, and the symbol is then
moved to the front of the list.

3. Run-length encoding (RLE) replaces
each run of symbols cl with a pair (c, l).

4. Order-0 encoder such as Huffman
encodes the pairs. 

bzip2 adds some additional stages but uses
the same basic idea.

Move-to-front is similar to implicit
compression boosting, turning the global
order-0 encoder into a local one.

Run-length encoding becomes useful with
highly repetitive data.

BWT of identical texts
If there are R equal letter runs in the BWT of
text T of length n, there are also R runs in the
BWT of m copies of text T, for any m > 0.

If we run-length encode the BWT and use
any reasonable encoding (such as a sparse
bitvector) for run lengths, the RLBWT takes
R log |Σ| + O(R log (mn / R)) bits.

Adding duplicate texts to the collection is
almost free.

Entropy-based compression would require
mnH bits, plus overhead.

BWT Suffix
A $
A $
A $
T A$
T A$
T A$
C ATTA$
C ATTA$
C ATTA$
$ CATTA$
$ CATTA$
$ CATTA$
T TA$
T TA$
T TA$
A TTA$
A TTA$
A TTA$

Edits in RLBWT
We changed a single character in the blue
text.

The edit may break an existing run and
create a new run where it appears in the
BWT.

Some suffixes preceding the edit may move
around and do the same.

Suffixes far before the edit remain in the
same runs (but possibly in new positions).

In some models, an edit adds O(log|Σ| (mn))
runs in the expected case.

BWT Suffix
A $
A $
A $
T A$
T A$
T A$
C ACTA$
C ATTA$
C ATTA$
$ CACTA$
$ CATTA$
$ CATTA$
A CTA$
T TA$
C TA$
T TA$
A TTA$
A TTA$

The edit broke 
a run of Ts

This suffix moved and 
became a new run

These suffixes are 
in their original runs

The "RLCSA model"
We start with m identical aligned texts.

Each edit affects some suffixes, but most
remain unaffected.

If there are R runs in the BWT of the original
text and s affected suffixes in total, there are
at most R + O(s) runs in the BWT of the
collection.

This implies a graph where unaffected
columns can (usually) be merged into nodes.

Generalizations of the BWT for graphs, such
as GCSA and Wheeler graphs, started from
this model.

As the generalizations can grow
exponentially in size, they were ultimately
more useful in formal languages and
automata than in bioinformatics.

Mäkinen et al.: Storage and Retrieval of
Highly Repetitive Sequence Collections.
Journal of Computational Biology, 2010.

FM-indexes based on RLBWT
With highly repetitive text collections,
RLBWT can be orders of magnitude smaller
than entropy-compressed BWT.

RLCSA and other early indexes showed that
this also applies to FM-indexes, as long as
the rank/select overhead scales
proportionally to the compressed size.

While find queries were fast, locate queries
still used SA samples, with the product of
query time and space overhead scaling
proportionally to mn rather than R.

The r-index finally solved the issue with a
structure that can compute SA[i + 1] from
SA[i] in O(log log (mn)) time and O(R) words
of space overhead.

(Veli and/or Christina should talk more about
the r-index on Thursday.)

Gagie et al.: Fully Functional Suffix Trees
and Optimal Text Searching in BWT-Runs
Bounded Space. Journal of the ACM, 2020.

GBWT

Data model
We have a representative set of haplotypes
from the relevant population.

We align the haplotypes and build a graph,
where each node represents aligned
positions in the haplotypes.

Any traversal of the graph is a potential
haplotype.

Traversals that are locally consistent with
the original haplotypes are more likely to be
biologically plausible.

For that reason, we store the original
haplotypes as paths.

path ~ walk 
path ~ stored traversal 

traversal ~ emergent path

What do we need?
We want to store a collection of haplotypes
as paths in a graph G = (V, E).

A path can be represented as a sequence of
nodes, which can be interpreted as a string
over alphabet V.

Because we expect the haplotypes to be
highly similar, the collection is highly
repetitive.

Therefore the data structure we choose is
RLBWT tailored for strings over a large
alphabet but where the local alphabet
(adjacency list) is usually small.

path ~ walk 
path ~ stored traversal 

traversal ~ emergent path

GBWT
The GBWT is a reverse RLBWT of paths in a
directed graph.

We sort reverse prefixes of the paths and
match patterns forward, following the
direction of the edges.

To improve memory locality, we partition the
BWT between the nodes and use the
adjacency lists as rank structures.

A find query determines how many indexed
paths contain the corresponding traversal as
a subpath.

Sirén et al.: Haplotype-aware graph
indexes. Bioinformatics, 2020.

https://github.com/jltsiren/gbwt

https://github.com/jltsiren/gbwt

Let BWTv = BWT[C[v]..C[v + 1]).

That substring corresponds to prefixes where
the most significant character in the sorting
order (the last character) is v.

BWTv tells where the path corresponding to
each prefix continues after visiting node v.

BWT partitioning
Prefix BWT

$ 1
$ 1
$ 1

$ 1 2
$ 1 2
$ 1 3

$ 1 2 4
$ 1 2 5
$ 1 3 4

$ 1 2 4 6
$ 1 3 4 5
$ 1 2 5 7

$ 1 3 4 5 7
$ 1 2 4 6 7
$ 1 2 5 7 $

$ 1 3 4 5 7 $
$ 1 2 4 6 7 $

BWT4

LF-mapping
BWT offsets: (v, i) vs. C[v] + i vs. BWTv[i].

When we follow an edge (v, w), we use
LF(C[v] + i, w) = C[w] + BWT.rank(C[v] + i, w).

C[w] is just a reference to node w.

We can partition BWT.rank(C[v] + i, w) into
the sum of BWT.rank(C[v], w) and
BWTv.rank(i, w).

If we store BWTv in node v and
BWT.rank(C[v], w) in edge (v, w), we can
compute LF-mapping using local
information stored in the node.

Prefix BWT
$ 1
$ 1
$ 1

$ 1 2
$ 1 2
$ 1 3

$ 1 2 4
$ 1 2 5
$ 1 3 4

$ 1 2 4 6
$ 1 3 4 5
$ 1 2 5 7

$ 1 3 4 5 7
$ 1 2 4 6 7
$ 1 2 5 7 $

$ 1 3 4 5 7 $
$ 1 2 4 6 7 $

BWT4

BWT5

LF(C[4] + 1, 5)

BWT.rank(C[4], 5) = 1

BWT4.rank(1, 5) = 0

Node records
The record for node v contains a list of
outgoing edges (v, w) and the BWT substring
BWTv.

For each edge (v, w), the adjacency list
stores the destination node w as well as
BWT.rank(C[v], w).

In BWTv, nodes are replaced by their ranks in
the adjacency list and and the substring is
then run-length encoded.

The record is encoded as a byte sequence.

Node 1

• Outdegree 2 encoded as 2

• Edge to 2, offset 0 encoded as (2, 0)

• Edge to 3, offset 0 encoded as (1, 0)

• Run 02 encoded as 0 + 2 * (2 – 1) = 2

• Run 11 encoded as 1 + 2 * (1 – 1) = 1

Using the GBWT
We concatenate the records and use a
sparse bitvector B for finding the substring
[B.select(v, 1)..B.select(v + 1, 1))
corresponding to node v.

When we compute LF-mapping from node v,
we decompress the adjacency list and scan
BWTv sequentially.

This assumes that node degrees are not too
high and paths do not visit the same nodes
too many times.

Memory locality of iterated LF-mapping
depends on the memory layout of the graph.

1102 2201021 2401001 1410 2511010 1701 1720 1002  
1000 1000000 1000000 1000 1000000 1000 1000 1000

Encoding of the records and bitvector B 
(each byte is a single number).

More functionality
locate queries using DA samples for
determining which haplotypes contain the
given subpath.

r-index add-on as a larger and faster
alternative for the same task.

Bidirectional GBWT implemented as a
single index similar to the FMD-index.

Metadata mapping text identifiers to
structured path names.

A path name consists of sample, contig,
haplotype, and fragment identifiers.

Sample and contig identifiers map to string
names.

Example path names

• (HG002, chr1, 1, 0)

• (HG002, chr1, 2, 0)

• (HG002, chr2, 1, 0)

• (HG002, chr2, 2, 0)

• (HG002, chr3, 1, 0)

• (HG002, chr3, 2, 0)

• (HG002, chr4, 1, 0)

• (HG002, chr4, 2, 0)

GBWT construction

Incremental BWT construction
BWT Suffix

A $
$ $
C A$

T ACA$
G ATTACA$
A CA$
$ GATTACA$

T TACA$
A TTACA$

BWT Suffix
A $
A $
C A$
$ A$
T ACA$
G ATTACA$
A CA$
$ GATTACA$

T TACA$
A TTACA$

BWT Suffix
A $
A $
C A$
T A$
T ACA$
G ATTACA$
A CA$
$ GATTACA$
$ TA$
T TACA$
A TTACA$

Add an empty text Prepend A Prepend T

LF(· , A)

LF(· , T)

Hon et al.: A space and time efficient
algorithm for constructing compressed
suffix arrays. Algorithmica, 2007.

Batch insertion
The BCR algorithm builds the BWT for a
collection of short reads incrementally.

It starts from the BWT of m empty texts and
extends each text backward by a single
character in each step.

Bauer et al.: Lightweight algorithms for
constructing and inverting the BWT of
string collections. Theoretical Computer
Science, 2013.

RopeBWT2 inserts a batch of texts into an
existing BWT using the same algorithm.

Li: Fast construction of FM-index for long
sequence reads. Bioinformatics, 2014.

This is also the main GBWT construction
algorithm.

During construction, we use a naive dynamic
representation for the GBWT, where each
node has an std::vector of edges and
std::vector of runs.

In each step, we rebuild the node records for
all nodes we touch.

Disjoint subgraphs
Paths are strings over the set of nodes V.

If we have two collections of paths in disjoint
subgraphs, the strings in the collections are
over disjoint alphabets.

We can build GBWTs for the collections
independently and then merge them by
simply reusing the node records.

More generally, we can partition the graph
into weakly connected components and
parallelize GBWT construction over the
components.

We can easily build the GBWT for the 1000
Genomes Project (1000GP) data consisting
of 5000 human haplotypes.

A few years ago, the construction took 17
hours on a system with 16 physical / 32
logical CPU cores and 244 GiB of memory.

Total length: 2194349057386
Sequences: 240232
Alphabet size: 612023760
Effective: 612023759
Runs: 2767709379
DA samples: 2143033346
BWT: 8636.28 MB
DA samples: 8368.48 MB
Total: 17006.6 MB

BWT merging
BWT Suffix

A $

C A$

T ACA$

G ATTACA$
A CA$

$ GATTACA$

T TACA$

A TTACA$

BWT Suffix

A $

T A$

C ATTA$

$ CATTA$

T TA$

A TTA$

BWT Suffix
A $
A $
C A$
T A$
T ACA$
C ATTA$
G ATTACA$
A CA$
$ CATTA$
$ GATTACA$
T TA$
T TACA$
A TTA$
A TTACA$

BWT of one text BWT of another text Interleaved BWTs

GBWT merging
In order to merge the BWTs texts S and T, we
must find the interleaving of their suffixes in
lexicographic order.

By iterating LF-mapping in the BWT of S, we
can determine the lexicographic rank of
each suffix of T among the suffixes of S.

This produces the lexicographic ranks in an
arbitrary order. We get the interleaving by
sorting the ranks.

Sirén: Compressed Suffix Arrays for
Massive Data. SPIRE 2009.

We can make BWT merging fast and space-
efficient with a careful use of multiple search
threads, buffering, compression, temporary
files, and multithreaded sorting.

Sirén: Burrows-Wheeler transform for
terabases. DCC 2016.

This allows us to build GBWTs for datasets
larger than 1000GP.

It is unclear if indexing such large haplotype
collections is useful, as recent projects such
as HPRC are focusing on quality over
quantity.

Bidirected sequence graphs

Data model
We have a representative set of haplotypes
from the relevant population.

We align the haplotypes and build a graph,
where each node represents aligned
positions in the haplotypes.

Any traversal of the graph is a potential
haplotype.

Traversals that are locally consistent with
the original haplotypes are more likely to be
biologically plausible.

For that reason, we store the original
haplotypes as paths.

path ~ walk 
path ~ stored traversal 

traversal ~ emergent path

GBWT
The GBWT is a reverse RLBWT of paths in a
directed graph.

We sort reverse prefixes of the paths and
match patterns forward, following the
direction of the edges.

To improve memory locality, we partition the
BWT between the nodes and use the
adjacency lists as rank structures.

A find query determines how many indexed
paths contain the corresponding traversal as
a subpath.

Sirén et al.: Haplotype-aware graph
indexes. Bioinformatics, 2020.

https://github.com/jltsiren/gbwt

https://github.com/jltsiren/gbwt

Three models
GBWT libhandlegraph / vg GFA

Nodes Simple Bidirected Bidirected

Node ids Integers Integers Strings 
(but often integers)

Node labels N/A Any length but 
preferably short Any length

Edges Directed Undirected Undirected

Path ids Integers 
(with optional metadata) Strings or structured Strings or structured

Path navigation Forward only Both directions N/A

Bidirected sequence graphs

Each node has two sides and can be visited
in two orientations.

A forward visit enters from the left, reads the
label, and exits from the right.

A reverse visits enters from the right, reads
the reverse complement of the label, and
exits from the left.

Edges are undirected and connect two
node sides.

1: GATTACA

2: TAT

3: CAG

Traversal >1 >2 <3 <1 reads GATTACA, TAT,
CTG, and TGTAATC.

Traversal >1 >3 <2 <1 reads GATTACA, CAG,
ATA, and TGTAATC.

libhandlegraph

Some graph implementations are mutable,
others are immutable, and they make
different time/space trade-offs.

A common interface reduces the need for
rewriting code for each implementation.

In the vg ecosystem, that interface is
provided by the libhandlegraph library.

Objects such as node visits, paths, and path
steps have handles (opaque identifiers).

The interface uses functions that iterate over
the relevant set of handles and call a user-
provided function with each handle:

• for_each_handle(function, parallel)

• follow_edges(handle, backward, function)

• for_each_path_handle(function)

• for_each_step_in_path(path, function)

• for_each_step_on_handle(handle, function)

Eizenga et al.: Efficient dynamic variation
graphs. Bioinformatics, 2020.

https://github.com/vgteam/libhandlegraph

https://github.com/vgteam/libhandlegraph

GFA file format
GFA is a TSV-based interchange format for
bidirected sequence graphs.

Originally intended for assembly graphs,
recent extensions have made a subset of
GFA suitable for pangenome graphs:

• Segment: name, sequence

• Link: from, orientation, to, orientation

• Path: name, node visits

• Walk: sample, haplotype, contig, interval,

node visits

https://github.com/GFA-spec/GFA-spec/
blob/master/GFA1.md

H VN:Z:1.1
S 11 G
S 12 A
S 13 T
S 14 T
S 15 A
S 16 C
S 17 A
S 21 G
S 22 A
S 23 T
S 24 T
S 25 A
L 11 + 12 + *
L 11 + 13 + *
L 12 + 14 + *
L 13 + 14 + *
L 14 + 15 + *
L 14 + 16 + *
L 15 + 17 + *
L 16 + 17 + *
L 21 + 22 + *
L 21 + 23 + *
L 22 + 24 + *
L 23 + 24 - *
L 24 + 25 + *
P A 11+,12+,14+,15+,17+ *
P B 21+,22+,24+,25+ *
W sample 1 A 0 5 >11>12>14>15>17
W sample 2 A 0 5 >11>13>14>16>17
W sample 1 B 0 5 >21>22>24<23<21
W sample 2 B 0 4 >21>22>24>25

https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md
https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md

Simulating bidirected graphs

We can simulate bidirected graphs with
directed graphs by turning node visits into
nodes.

Edges adjacent to the right side become
outgoing edges from the forward node.

Edges adjacent to the left side become
outgoing edges from the reverse node.

1: GATTACA

2: TAT

3: CAG

>1: GATTACA
>2: TAT

>3: CAG

<1: TGTAATC
<2: ATA

<3: CTG

Path names
A GBWT path name is a unique
combination of four numerical identifiers:

• Samples are top-level items and may

correspond to string names.

• Contigs are non-overlapping parts of a

sample and may correspond to string
names.

• Haplotypes are overlapping sequences for
the same (sample, contig).

• Fragments are non-overlapping parts of
(sample, contig, haplotype).

External string names can be parsed or
stored as (_gbwt_ref, name, 0, 0).

Sample Contig Haplotype Fragment
_gbwt_ref chr1 0 0

HG001 chr1 1 0
HG001 chr1 2 0
HG002 chr1 1 0
HG002 chr1 2 0
HG003 chr1 1 0
HG003 chr1 2 0

_gbwt_ref chr2 0 0
HG001 chr2 1 0
HG001 chr2 2 0
HG002 chr2 1 0
HG002 chr2 2 0
HG003 chr2 1 0
HG003 chr2 2 0

Path navigation
The GBWT does not support inverse LF-
mapping, because the nodes do not know
their predecessors.

In order to navigate backward on a path, we
store each path in both orientations in a
bidirectional index similar to the FMD-index.

We then find the predecessors by flipping
node orientation, finding the successors, and
flipping the results.

The reverse path visits the same nodes in
reverse order and the other orientation.

reverse(>1 >2 > 4 >6 >7) = <7 <6 <4 <2 <1

Node labels
Because the GBWT does not store node
labels, we need a separate structure for
them.

As the graph is immutable, we can reduce
memory and I/O overhead by
concatenating the labels.

The starting positions can be an integer
array or a sparse bitvector.

Storing vs. deriving the reverse complements
is a relevant time/space trade-off.

>1: GATTACA
>2: TAT

>3: CAG

<1: TGTAATC
<2: ATA

<3: CTG

GATTACATGTAATCTATATACAGCTG

0 7 14 17 20 23

Node-to-segment translation
GFA segments can be long in regions with
no variation.

Long node labels are inconvenient in many
applications:

• Indexes may want to store graph positions
(node id, orientation, offset) in 64 bits.

• Long labels do not work in some graph
visualizations.

• Interfaces may create temporary copies
of node labels.

The usual solution is chopping long
segments into at most 1024 bp nodes, so
that each segment corresponds to an
interval of node identifiers.

If segment names cannot be interpreted as
integer identifiers, we also need a translation
between the names and ranks of node id
intervals.

GBWTGraph

GBWTGraph
We simulate a bidirected sequence graph
using a directed graph and store the paths in
a bidirectional GBWT index.

The GBWT represents the topology of the
subgraph induced by the paths. Nodes and
edges exist only if they are used on a path.

We store the node labels in a string array
(concatenated strings + array of starting
positions).

Another string array stores a mapping
between nodes and GFA segments.

Paths corresponding to sample _gbwt_ref are
exposed as named libhandlegraph paths.

Samples can be designated as reference
samples, making the corresponding paths
reference sequences.

Sirén et al.: Pangenomics enables
genotyping of known structural variants in
5202 diverse genomes. Science, 2021.

https://github.com/jltsiren/gbwtgraph

https://github.com/jltsiren/gbwtgraph

Path operations
GBWT search states are pairs (v, [i..j))
representing intervals BWTv[i..j).

States are typically search results for a
pattern; j – i is then the number of indexed
paths containing the pattern as a subpath.

Bidirectional states contain search states for
the pattern and its reverse. They can be used
for extending the pattern in both directions.

The key operation follow_paths finds all non-
empty single-node extensions of a search
state.

// Get the most promising alignment from the
// priority queue.
GaplessExtension curr = extensions.top();
extensions.pop();

// Extend the alignment over all successor nodes.
graph.follow_paths(curr.state, false,
 [&](BidirectionalState next_state) {
 handle_t handle =
 node_to_handle(next_state.forward.node);
 GaplessExtension next { ... };
 size_t offset = match_forward(next, sequence,
 graph.get_sequence_view(handle),
 mismatch_limit);
 if (offset == 0) { return; }
 next.path = append(curr.path, handle);
 if (next.range.second >= sequence.length()) {
 next.reached_end();
 } else if (offset < graph.get_length(handle)) {
 next.set_right_maximal();
 }
 next.set_score();
 extensions.push(next);
});

Node record caching
Accessing the outgoing edges or the BWT
requires finding the GBWT node record and
decompressing the edges.

This takes hundreds of nanoseconds
(~1000 CPU cycles) with large GBWTs.

Some algorithms (such as aligning a read to
a specific graph region) repeatedly access
the nodes in a small subgraph.

We can speed such algorithms up
significantly by caching the partially
decompressed records.

Cluster of seeds

Forward extensions 
of a seed

Backward extensions 
of an extension

Giraffe aligner

Giraffe aligner
Giraffe is a pangenomic short read aligner
that combines the speed of linear aligners
with the accuracy of vg map.

It maps reads to a graph but restricts its
attention to paths that are locally consistent
with the set of reference haplotypes.

The speed comes from ignoring unlikely
recombinations and assuming that most
sequencing errors are substitutions and
most real indels are already in the reference.

Giraffe tries aligning the read without gaps
before resorting to dynamic programming.

https://github.com/vgteam/vg

Sirén et al.: Pangenomics enables
genotyping of known structural variants in
5202 diverse genomes. Science, 2021.

I gave a talk on Giraffe in Pangenomics Bio
Hacking 2021. The recording and the slides
can be found online.

https://pgbh2021.pangenome.eu/

https://github.com/vgteam/vg
https://pgbh2021.pangenome.eu/

Read alignment
Mapping: Approximate location of the read in
the reference.

Alignment: The best base-to-base alignment
between the read and the reference near a
particular mapping.

Mapping quality: Estimated likelihood that
the mapping is correct.

Fast and accurate read alignment is the easy
part. The hard part is estimating mapping
quality accurately without sacrificing speed. 

Seed and extend approach:

1. Find seeds (partial alignments) using a
text index.

2. Cluster the seeds that correspond to the
same mapping (or chain them into rough
alignments with long reads).

3. Extend the seeds into full alignments.

We continue exploring promising mappings
until we are confident that we have found
the best alignment.

Giraffe algorithm
1. Find seeds using a minimizer index of

the haplotypes.

2. Cluster the seeds using a distance index
based on a hierarchical decomposition of
the graph.

3. Extend the seeds over the haplotypes,
allowing for a limited number of
mismatches.

4. If we did not get enough full-length
alignments, align the tails of best partial
extensions using dynamic programming
over the haplotypes.

Minimizer seeds
The cost of finding seeds for read P using an
FM-index is O(|P|) cache misses, and the
cost of listing occ seed hits is O(d · occ)
cache misses.

Building the FM-index for the graph or the
haplotypes is expensive.

We chose to use a minimizer index in
Giraffe.

A (w, k)-minimizer is the k-mer with the
smallest hash value among all k-mers and
their reverse complements in a k + w – 1 bp
window.

By using a hash table, we find minimizer
seeds in O(|P| / w) cache misses in the
expected case and list the hits sequentially.

For short reads, we use w = 11 and k = 29.

The index for a human graph typically takes
25–30 GiB.

If the index is on a network drive, rebuilding
it may be faster than loading it from disk.

Index construction

Minimizer index construction iterates over
all nodes using multiple threads.

At each node, the algorithm finds all
traversals that start from the node and
extend at least k + w – 2 bp beyond it.

The algorithm finds all minimizers in the
traversal and stores them in a buffer.

Once the buffer is full, the thread acquires
the lock and inserts the minimizers into the
hash table.

// Start from both orientations of the initial
// node.
std::stack<GBWTTraversal> windows;
windows.push(GBWTTraversal(node, false));
windows.push(GBWTTraversal(node, true));

// Extend the windows until they are long enough.
while (!windows.empty()) {
 auto window = windows.top(); windows.pop();
 if (window.length >= target_length) {
 report(window); continue;
 }

 // Find all one-node extensions of the window.
 bool found = false;
 graph.follow_paths(window.state, false,
 [&](SearchState next_state) {
 handle_t handle =
 node_to_handle(next_state.node);
 auto next = window;
 next.append(handle);
 windows.push(next);
 found = true;
 });

 // Report maximal windows anyway.
 if (!found && window.length >= min_length) {
 report(window);
 }
}

Seed clustering
We use minimizer hits as seeds but avoid
minimizers with too many hits.

Seeds close to each other form a cluster
that likely corresponds to a single alignment.

Clustering uses a distance index that
reduces computing distances in the graph to
computing them in a tree.

Chang et al.: Distance indexing and seed
clustering in sequence graphs. 
Bioinformatics, 2020.

Seed extension
Giraffe extends most promising clusters into
gapless alignments.

We merge redundant seeds that correspond
to the same alignment between the read and
a node.

Each seed is extended over all maximal
paths consisting of a left flank, the initial
node, and the right flank.

There can be any number of mismatches in
the initial node, up to 4 mismatches in total,
and up to 2 mismatches in each flank
regardless of the total.

Cluster of seeds

Forward extensions 
of a seed

Backward extensions 
of an extension

Alignment selection
The extensions are in a priority queue by
alignment score: +1 per match, –4 per
mismatch, and +5 for reaching the end.

For each seed, we find the highest-scoring
maximal alignment.

If an alignment reaches both ends of the
read, we return all full-length alignments that
do not overlap too much.

Otherwise we trim the alignments to
maximize the score and return all distinct
alignments.

+1 –4 +1 +1 +1 +1 +1 +1 +1 –4 +1 +1 +1 +1 +1 +1
M X M M M M M M M X M M M M M M

+1 –4 +1 +1 +1 +1 +1 +1 +1 –4 +1 +1 +1 +1 +1 +1
M X M M M M M M M X M M M M M M

Non-overlapping alignments

Alignment score 6

Trimmed to alignment score 9

Final stages
If we did not find enough full-length
alignments without gaps, we use dynamic
programming for aligning the tails of most
promising gapless alignments.

If we found a good alignment for a read but
not for its pair, we may try rescuing the pair.

Rescue uses a simplified version of the
Giraffe algorithm:

1. Find seeds in the relevant subgraph.

2. Extend them as a single cluster.

3. Align the tails of the best extension with

gaps if necessary.

Mapped

read

Estimated

pair location-4σ +4σ

Seeds

Best extension

+

tail alignment

It was also faster at aligning to human graphs
than Bowtie2 or BWA-MEM were at aligning
to the corresponding linear reference. For the
1000GP graph, using the 64-haplotype sampled
GBWT for mapping instead of the full ∼5000-
haplotype GBWT was much faster in every
case. HISAT2 and fast Giraffe were both about
equally fast andwere both faster than all other
mappers.
Because of the in-memory indexes it uses,

Giraffe’s memory consumption is higher than
the other mappers, except for GraphAligner.
However, it canmap to the 1000GP graphwith
the fullGBWT in∼80gigabytes (GB)ofmemory—

an amount readily available on compute cluster
nodes (Fig. 3, C and D).

Giraffe reduces allele mapping bias

We assessed Giraffe’s reference bias (17). We
expected Giraffe to be able to use the extra
variation information contained in the graph
reference to achieve a lower level of bias than a
linear mapper. For variants that were hetero-
zygous in NA19239, we found the fraction of
reads supporting alternate versus reference
alleles at each indel length (F4Fig. 4A). Giraffe
and VG-MAP both show less bias toward the
reference allele than a linear mapper, and this

difference becomes more pronounced as
indel length increases, particularly for larger
insertions.

Giraffe genotyping outperforms best practices

We used Illumina’s Dragen platform (14) to
genotype SNVs and short indels using Giraffe
mappings to the 1000GP graph, projected onto
the linear reference assembly. We compared
these results with results using competing graph
and linear reference mappers (17). No training
or optimization was performed for any of the
mappingsother than thoseperformedbydefault
by Dragen itself. We evaluated the calls using

Sirén et al., Science 374, eabg8871 (2021) 17 December 2021 4 of 11

Fig. 3. Runtime and memory
usage. (A to D) Total runtime
[(A) and (B)] and peak memory
use [(C) and (D)] for mapping
~600 million NovaSeq 6000 reads
using 16 threads. Reads were
mapped [(A) and (C)] to
the 1000GP derived graph or
(for linear mappers) the GRCH38
assembly and [(B) and (D)] to
the HGSVC graph or GRCh38
reference, respectively. For
HISAT2*, results are shown for
the subset 1000GP graph
(22). “Giraffe full” refers to
mapping using the full GBWT of
all haplotypes. “Giraffe sampled”
refers to mapping using the
64-haplotype sampled GBWT.

0 20 40 60 80 100

Memory (GB)

C 1000GP/GRCh38 NovaSeq 6000 Memory

0 20 40 60 80 100

Memory (GB)

D HGSVC/GRCh38 NovaSeq 6000 Memory

A 1000GP/GRCh38 NovaSeq 6000 Runtime

Runtime (hours)
0 10 20 30 40 50

B HGSVC/GRCh38 NovaSeq 6000 Runtime

Runtime (hours)
0 10 20 30 40 50

VG-MAP paired

VG-MAP single

Bowtie2 paired

Bowtie2 single

BWA-MEM paired

BWA-MEM single

Minimap2 paired

Minimap2 single

HISAT2 paired

HISAT2 single

GraphAligner

Minimap2 single

Minimap2 paired

BWA-MEM paired

HISAT2 paired

HISAT2 single

BWA-MEM single

Bowtie2 paired

GraphAligner

VG-MAP paired

VG-MAP single

Bowtie2 single

VG-MAP paired

VG-MAP single

Bowtie2 paired

Bowtie2 single

BWA-MEM paired

BWA -MEM single

Minimap2 paired

Minimap2 single

HISAT2* paired

HISAT2* single

VG-MAP single

VG-MAP paired

Minimap2 single

Minimap2 paired

BWA-MEM paired

HISAT2* paired

HISAT2* single

BWA-MEM single

Bowtie2 paired

Bowtie2 single

Out of memoryGraphAligner

RESEARCH | RESEARCH ARTICLE

MS no: RAabg8871/AB/GENETICS

GBZ file format

GFA compression
GFA is the most common interchange
format for pangenome graphs.

It does not scale well when the number of
haplotypes increases.

While the haplotype paths are highly similar,
they are too long for standard compressors
to compress them together.

The graph itself is reasonably small for
today's computers, but it also grows with the
number of haplotypes, if we include rare
variants.

The overall effect is superlinear growth with
the number of haplotypes.

There is a need for a compressed file
format for pangenome graphs with many
haplotype paths.

The GBWT and the GBWTGraph already
store the necessary information!

Goals and challenges

• Stable and fully specified file format.

• Good compression.

• Fast loading into in-memory data
structures.

• Should not make too specific
requirements for the in-memory data
structures.

• Easy to handle as a memory-mapped file. 

• Designing a portable file format based on
highly specialized data structures?

• Simple enough for independent
implementations vs. compatibility with
existing files?

• Different priorities in the initial version
and future versions?

File format basics
Element: Unsigned little-endian 64-bit
integer.

File: Sequence of elements. Most objects are
properly aligned in a memory-mapped file.

Limited number of building blocks to make
implementation easier.

Serializable: Anything with size a multiple of
64 bits that can be serialized by copying the
bits.

Vector: Length as an element, followed by
concatenated items. Padded with 0-bits if
necessary.

Optional structure: Size in elements as an
element, followed by the structure. Can be
passed through as a vector of elements. For
implementation-dependent or application-
dependent structures.

Simple-SDS 
https://github.com/jltsiren/simple-sds

vgteam fork of SDSL 
https://github.com/vgteam/sdsl-lite

https://github.com/jltsiren/simple-sds
https://github.com/vgteam/sdsl-lite

Building blocks
Bitvector: Plain bitvector with optional rank/
select structures.

Integer vector: Bit-packed integer array.

Sparse bitvector: Elias–Fano encoded
bitvector with a bitvector as high and an
integer vector as low.

String array: Concatenated alphabet-
compacted ({ A, C, G, N, T } → [0..5)) strings
as an integer vector and starting positions as
a sparse bitvector. Usually decompressed as
an in-memory structure.

Dictionary: Mapping between strings and
their identifiers. Stored as a string array, with
a permutation of the identifiers in
lexicographic order as an integer vector.
Usually decompressed in memory.

Tags: Key–value structure with case-
insensitive keys. Stored as a string array. Key
source identifies the library that wrote the file.
The reader can use that information for
determining if it can understand the optional
structures.

GBZ file format

Full implementation in C++, partial
implementation in Rust.

https://github.com/jltsiren/gbwt 
https://github.com/jltsiren/gbwtgraph 
https://github.com/jltsiren/gbwt-rs

The manuscript describing the file format is
not available yet, as the benchmarks use
HPRC graphs and the HPRC papers have
not been submitted yet.

Header: 16 bytes 
Tags

GBZ

Header: 48 bytes 
Tags 
BWT: sparse bitvector, byte vector 
DA samples: optional, unspecified 

GBWT

Header: 40 bytes 
Path names: vector of 16-byte items 
Sample names: dictionary 
Contig names: dictionary

Optional metadata

Header: 24 bytes 
Sequences: string array 
Translation: string array, sparse bitvector

GBWTGraph

https://github.com/jltsiren/gbwt
https://github.com/jltsiren/gbwtgraph
https://github.com/jltsiren/gbwt-rs

Compression algorithm
The input file is memory-mapped and the
algorithm assumes that the order of the lines
is reasonable.

1. Record the starting position and type of
each line, determine if a translation is
necessary, and determine GBWT
construction buffer size.

2. Process segments and build the
translation if necessary.

3. Process links, create a temporary graph,
find weakly connected components, and
determine GBWT construction jobs.

4. Process path and walk headers, build
GBWT metadata.

5. Process paths and walks, running
multiple GBWT construction jobs in
parallel.

6. Merge partial GBWTs and build
GBWTGraph.

6 Sirén et al.

Table 1. Datasets and their properties. We list the size of the file in uncompressed and gzip-compressed GFA

format as well as in the GBZ format. We also list the total length (in nodes) of the forward and reverse paths stored

in the GBWT index and the number of lines of each type in the file.

Dataset .gfa .gfa.gz .gbz Total length S-lines L-lines P-lines W-lines

Cactus 44.9 GiB 11.1 GiB 3.11 GiB 8.8 billion 81.4 million 113.0 million 2580 24456

PGGB 88.6 GiB 14.6 GiB 5.73 GiB 16.3 billion 110.9 million 154.8 million 34796 0

1000GP 9534.9 GiB — 16.84 GiB 2125.1 billion 293.2 million 372.9 million 0 115184

Table 2. Systems used for the experiments. Jobs indicates the number of parallel compression/decompression jobs.

System Processor CPU Cores Jobs RAM OS C++ Compiler

Desktop Intel Core i9-10910 10 physical (20 logical) 10 / 10 128 GiB macOS 12.2.1 GCC 11.2.0

Laptop Apple M1 4 performance + 4 efficiency – / 4 16 GiB macOS 12.2.1 Apple Clang 13.0.0

Intel Server Intel Xeon E5-2686 v4 16 physical (32 logical) 16 / 16 244 GiB Ubuntu 20.04 GCC 9.3.0

ARM Server AWS Graviton2 32 16 / 32 256 GiB Ubuntu 20.04 GCC 9.3.0

Table 3. Wall clock time and peak memory usage for various tasks with the Cactus dataset.

System Compression gzip Loading (C++) Loading (Rust) Decompression (C++) Decompression (Rust) gunzip

Desktop 40 min / 96.5 GiB 25 min 23 s / 11.8 GiB 19 s / 5.9 GiB 116 s / 15.5 GiB 239 s / 7.1 GiB 80 s

Laptop — — 23 s / 9.4 GiB 16 s / 5.9 GiB 186 s / 9.7 GiB 304 s / 6.5 GiB 80 s

Intel Server 19 min / 111.5 GiB 39 min 37 s / 11.7 GiB 35 s / 5.9 GiB 125 s / 14.5 GiB 193 s / 6.5 GiB 361 s

ARM Server 16 min / 111.0 GiB 48 min 33 s / 11.7 GiB 33 s / 5.9 GiB 86 s / 14.5 GiB 138 s / 7.1 GiB 350 s

Table 4. Wall clock time and peak memory usage for various tasks with the PGGB dataset.

System Compression gzip Loading (C++) Loading (Rust) Decompression (C++) Decompression (Rust) gunzip

Desktop 890 min / 114.7 GiB 34 min 43 s / 27.2 GiB 39 s / 13.1 GiB 309 s / 32.7 GiB 7226 s / 14.2 GiB 121 s

Laptop — — 70 s / 8.0 GiB 40 s / 7.6 GiB 638 s / 7.2 GiB 18451 s / 12.5 GiB 116 s

Intel Server 1365 min / 194.6 GiB 54 min 73 s / 27.1 GiB 73 s / 13.0 GiB 335 s / 32.2 GiB 9194 s / 13.5 GiB 603 s

ARM Server 1232 min / 194.3 GiB 66 min 65 s / 27.1 GiB 68 s / 13.0 GiB 187 s / 33.5 GiB 3499 s / 14.7 GiB 551 s

size. When memory usage approaches memory capacity, the operating

system starts swapping out inactive memory regions to compressed

memory and ultimately to disk.

3.4 Decompression

We decompressed the Cactus and PGGB datasets from GBZ format to

GFA format on all four system using the C++ and Rust decompressors.

Time and memory usage of can be seen in Table 3 and Table 4. We also

measured the time used by gzip decompression for a comparison.

With the Cactus dataset, the multi-threaded C++ decompressor was

about as fast as the single-threaded gzip decompressor on macOS. The

Linux version of gzip was several times slower. The Rust decompressor

was also slower, because it uses the query interface directly without

caching. ARM Server was faster than Intel Server due to having more

CPU cores.

Chromosome 16 in the PGGB dataset caused issues again. The C++

decompressor managed to decompress it in a reasonable time, as it

caches large GBWT node records. Decompression time was reasonable

even on Laptop, which only had half the memory required for the in-

memory data structures. This is because the memory access patterns

during decompression are mostly sequential, and swapping does not slow

it down too much. The Rust implementation was more than an order of

magnitude slower than the C++ implementation. Gzip decompression was

again slower in Linux than in macOS.

3.5 Scalability

The 1000GP dataset contains 55.6 times more haplotypes than the Cactus

and PGGB datasets, and the total length of the paths is 240.7 times and

130.7 times higher, respectively. However, the GBZ file is only 5.41 times

and 2.94 times larger, respectively. The GFA file would be too large to

store explicitly on any of our systems, and even the gzip-compressed file

would likely be too large for all systems except Intel Server.

We decompressed the GBZ file using the C++ implementation and

piped the output to wc to determine the size of the GFA file. This took

12.8 hours / 45.6 GiB on Intel Server and 18.2 hours / 51.2 GiB on ARM

Server. The wc tool was the bottleneck in decompression. On the average,

only about 8 parallel decompression threads were active on Intel Server.

On ARM Server, the average number of threads was approximately 5.5.

4 Discussion

We have proposed the GBZ file format for pangenome graphs representing

aligned genomes. The file format is based on data structures used in the

Giraffe aligner, and it is the preferred graph format for the aligner. GBZ

graphs are widely supported in vg (Garrison et al., 2018), and we also

provide standalone libraries for using them in other software tools.

GBZ compresses GFA files with many similar paths well. The

compression speed is competitive as long as the graph does not contain

Desktop: iMac 2020 with 128 GiB memory,
10/20 CPU cores.

Laptop: MacBook Air 2020 with 16 GiB
memory, 4 + 4 CPU cores.

Intel Server: AWS i3.8xlarge with 244 GiB
memory, 16/32 CPU cores.

ARM Server: AWS r6gd.8xlarge with 
256 GiB memory, 32 CPU cores.

C++ implementation stores node labels in
both orientations and uses more memory for
faster decompression.

Rust implementation stores only forward
labels and uses the query interface directly.

Memory usage is peak resident set size,
which includes cached memory-mapped files
but does not include pages swapped out to
disk or to compressed memory.

.gfa: 44.9 GiB 

.gz: 11.1 GiB 

.gbz 3.11 GiB

Future ideas

Typical distances
We often use the shortest distance in the
graph as a proxy for the distance over the
genome.

When structures such as long deletions are
present, this may not reflect the typical
distance.

How to define the typical distance, how to
compute it efficiently, and how to use it?

Andrea Mariotti and Davide Piovani are
working on this. Contact us if you have ideas!

A B

A B

Adding a single haplotype with a long
deletion makes regions A and B close in the
graph.

WFA over GBWT

Wavefront algorithm (WFA) is a sequence-
to-sequence alignment algorithm generalizing
the Myers' O(ND) algorithm to the gap-affine
model (with mismatch, gap open, and gap
extend penalties).

Myers: An O(ND) Difference Algorithm and
Its Variations. Algorithmica, 1986.

Marco-Sola et al.: Fast gap-affine pairwise
alignment using the wavefront algorithm.
Bioinformatics, 2021. 

Challenges using WFA over the haplotypes in
a GBWT index:

• Is the end position even reachable?

• Is the first visit to the end position the
right one or should we hope for a cycle?

• How to avoid redundant work with
identical local haplotypes but branch when
they diverge?

• Can we meet in the middle if we start
from both directions?

Long read alignment
GraphAligner is the state of the art for
aligning long reads to a general graph (not a
DAG).

Rautiainen, Marschall: GraphAligner: rapid
and versatile sequence-to-graph
alignment. Genome Biology, 2020.

Error rates have recently gone down for both
PacBio and ONT reads.

We also have haplotype information to take
advantage of. 

Rough idea for a new aligner:

1. Get minimizer seeds.

2. Try to use only non-overlapping seeds
without too many hits.

3. Chain the seeds.

4. Connect the seeds using WFA.

Your ideas?

