Pangenome Graphs
with Haplotype Paths

Jouni Sirén
UC Santa Cruz Genomics Institute

Data model

We have a representative set of haplotypes
from the relevant population.

We align the haplotypes and build a graph,

Where eaCh nOde represents aligned] e -

positions in the haplotypes.

: : a—
Any traversal of the graph is a potential
haplotype.

Traversals that are locally consistent with
the original haplotypes are more likely to be

biologically plausible. path ~ walk
path ~ stored traversal
For that reason, we store the original traversal ~ emergent path

haplotypes as paths.

The methods | am going to present are
general-purpose, but we always make

Human genom

assumptions.

| mostly work with human genomes, which

has implications on things like:

genome size;

number and size of chromosomes;
ploidy;

repetitiveness of sequences; and
similarity between haplotypes.

PANGENOME

Human Pangenome Reference
Consortium (HPRC)

Wang et al.: The Human Pangenome
Project: a global resource to map genomic
diversity. Nature, 2022.

https:.//humanpangenome.org/

~45 high-quality diploid de novo assemblies
today and hundreds in the future.

https://humanpangenome.org/

Outline

Today: Data structures Tomorrow: GBWT applications

e Bitvectors, rank, select * Bidirected sequence graphs
 Burrows—-Wheeler transform (BWT) « GBWTGraph

e FM-index, RLBWT * Giraffe aligner

« GBWT, construction algorithms « GBZ file format

We will revisit topics Veli already talked about Focus on algorithm engineering and a little
on Monday, but from a different perspective. bit of software development, not on

theoretical algorithms or biology.

Bitvectors

Notation

There are only two hard things in computer
science: cache invalidation, naming things,

and off-by-one errors. Substring Sli..)) starts with S[i] and ends just
(Phil Karlton, Leon Bambrick) before S[j].

Off-by-one errors are often caused by S.rank(i, c) is the number of occurrences of
incorrect translations between various array character c in the prefix S[0..i).
indexing conventions.

Let Ac be the sorted array of positions of

Many popular programming languages such character c in string S.

as C++ and Rust start array indexing from O

and use semi-open intervals for S.select(i, c) = A[i] is the position of the
representing substrings. occurrence of rank |.

| am going to use the same conventions here.

Bitvectors

A bitvector represents a binary sequence B B 0011000110001100110100
and supports efficient rank/select queries. A: 2 3 7 8 12 13 16 17 19
Bitvectors are often used for representing the

sorted integer array A = As. B.rank(10, 1) = 4

A common application is partitioning an B: 0011000110001100110100
interval [a..b) into subintervals A 2 3 7 8 12 13 16 17 19
[IB.select(i, 1)..B.select(i + 1, 1)).

Offset | can be mapped to the subinterval B.select(5, 1) = 13

containing it with a predecessor query

B.pred()) = (i, B.select(i, 1)), where B: 0011000110001100110100

| =B.rank(+ 1, 1) = 1. A 2 3 7 8 12 A3 16 17 19

Rank on plain bitvectors

Partition the bitvector into 512-bit blocks
and store the rank at the start of each block
using 64 bits.

A plain bitvector stores binary sequence B
as such. There are many structures that
support rank queries in O(1) time.

The following is from SDSL: Gog, Petri: / \
Optimized succinct data structures for

. . —mmnD—
massive data. Software — Practice and

Experience, 2014. Partition each block into 64-bit words and
store rank-within-block at the start of each
A CPU can execute multiple independent word (except the first) using 9 bits.

operations in parallel using a single core.
Compute rank-within-word using popcnt and
Chained queries (such as in iterated LF- return the sum of the three ranks. A query

mapping) are bound by memory latency. takes two memory accesses and the space
overhead is 25%.

select queries are also O(1) in theory, but
practical implementations tend to have rare
polylogarithmic worst cases.

The following is also from SDSL.
We partition the bitvector into superblocks
of 4096 values (positions of ones) and store

the first value in each superblock.

If a superblock is longer than log# |B| bits, we
store all values Iin it explicitly.

Select on plain bitvectors

Otherwise we partition the superblock into
blocks of 64 values and store the first value
In each block relative to the start of the
superblock.

Within each block, we iterate popcnt to find
the word containing the position we are
interested in. This means O(log? |B]|) iterations
in the worst case.

Select-within-word uses uses somewhat
complicated bit manipulation.

Space overhead is 18.75% in the worst case.

Ellas—-Fano encoding

Elias-Fano encoding is good for sparse
bitvectors, where [A| « [B]. It is a mix

between representations A and B.

For each value x, we store the lowest w bits
INn integer sequence low and assign the value
to bucket floor(x / 2w).

We encode the buckets in unary: a bucket
with k values becomes 1k0. Concatenated
buckets form binary sequence high.

By choosing w = log |B| - log |A|, the number
of buckets will be close to |A|, making the
density of high close to 0.5.

B: 0011000110001100110100
A 2 3 7 8 12 13 16 17 19

W =2

Value 2 3 (7 8 12 13 16 17 19
Low 2 3 3 0 0 1 0 1 3
Bucket 0 0 1 2 3 3 4 4 4

high: 11010101101110

Sparse bitvectors

Accessing the original values is simple:
All] = (high.select(i, 1) = 1) - 2v + low]i].

We can iterate over A by iterating over high and
low.

A B.rank(i, 1) query starts by finding the end of
the bucket with high.select(floor(i / 2w), 0). We
then iterate backward as long as the values are
too large.

B.pred(i) can be answered directly in a similar
way.

Okanohara, Sadakane: Practical Entropy-

Compressed Rank/Select Dictionary. ALENEX
2007.

ow: 2 3 3 0 0O 1 0 1 3
low 2 bits

B.select(2, 1)
A: 2 3 7 8 12 13 16 17 19

INn bucket 1

high: 11010101101110

Sparse bitvectors

Accessing the original values is simple:
All] = (high.select(i, 1) = 1) - 2v + low]i].

We can iterate over A by iterating over high and
low.

A B.rank(i, 1) query starts by finding the end of
the bucket with high.select(floor(i / 2w), 0). We
then iterate backward as long as the values are
too large.

B.pred(i) can be answered directly in a similar
way.

Okanohara, Sadakane: Practical Entropy-

Compressed Rank/Select Dictionary. ALENEX
2007.

small enough

IOW233001013

still In same
bucket

B.rank(18, 1)

too large

last value In
bucket 4 is at
13-1-4=8

A 2 3 7 8 12 13 16 17 19

high: 11010101101110

In bucket 4
that ends at 13

SDSL versions

Succinct Data Structures Library (SDSL)
Gog et al.: From Theory to Practice: Plug
and Play with Succinct Data Structures.
Proc. SEA 2014.

https://github.com/simongog/sdsl-lite

Wide range of efficient and scalable data
structures.

Unfortunately the original library (SDSL 2) has
been abandoned.

SDSL 3
e https://qgithub.com/xxsds/sdsl-lite

 Maintained (for now) by SegAn people.
 Requires C++17.

vgteam fork

* https://qgithub.com/vgteam/sdsl-lite
« Some improvements to SDSL 2.
e Limited support.

Simple-SDS
e https://qgithub.com/jltsiren/simple-sds

* Limited scope, written in Rust.

https://github.com/simongog/sdsl-lite
https://github.com/xxsds/sdsl-lite
https://github.com/vgteam/sdsl-lite
https://github.com/jltsiren/simple-sds

Burrows—-\Wheeler transform

Empirical entropy

Entropy and information are based on the
equation H = — Z P(c)log, P(c), where X

CEX
is an alphabet (a finite set of symbols).

We can interpret this as the expected
number of bits required for encoding one

symbol ¢ € 2.

If we use observed frequencies (in a specific
text) as probabilities, we get the order-0

empirical entropy H,, which is useful in data
compression.

If we have an order-0 encoder (such as
Huffman), we can compress a text of length

n using nH, bits, plus overhead from the
encoder and the model (probability

distribution).

In (one version of) GRCh38, H, ~ 2.17:

Symbol

A

— 2 O O

Count
866420001
598683433
600854940
165045996
868918077

Probability

0.279497
0.193129
0.193829
0.053242
0.280303

High-order entropy

If we know the context a symbol appears in, This does not help much with DNA, but the

we can often predict it more accurately. usual estimate for the entropy of English text
is approximately 1 bit/character.

Given a set of possible contexts S, we can

redefine entropy as the weighted sum By using a separate order-0 encoder for
H = — Z P(s) Z P(c | s)log, P(c | s) of each context, we can compress a text of
s€S ceES length n using nH,, bits, plus overhead.

entropies over contexts s € 3.
At k ~ logm n, model overhead becomes

By using the k preceding characters as the the dominant term in space usage.
context, we get the order-k empirical

entropy H,. We need a better encoding for the model.

<<
—
—
<
O
<<
—
—
<<
O
<
—
—
<<
<
—
—
<]
(&

A
<
—
—
<
(&

Burrows—-Wheeler transform

AICATTACAGATTA

O U< < <
< O O = O
U << < - <
< I <
Ok U
< << < <
— O — U
—[<< < - <
Ol v << U
Ul Hl < <
<|<< <|— — -
OO0 Ol - -
<< << < gl
CECCC
<l << < <
= | = -
== | = =
<< | < <

K%

W/

an

(

a permutation of the text that is useful for

The Burrows-Wheeler transform
encoding both the text and the model.

If we sort each character occurrence by the
text following it, we group them by the

O, 0O 0O0O OO 0O0O0OLOU0LVDOUOCO O

TTATATAGATTA

ATTATATTACAGATTAGA

Lossless Data Compression Algorithm.

order-k context for all k simultaneously.
Technical report, 1994.

Burrows, Wheeler: A Block-sorting

Compression boosting

We can partition the BWT into optimal
contexts (according to a cost function) using
a greedy algorithm and compress each of
them separately with an order-0 encoder.

This theoretical approach to BWT-based
compression is called compression
boosting.

Ferragina et al.: Boosting Textual

Compression in Optimal Linear Time.
Journal of the ACM, 2005.

We get similar results with a specific order-0
encoder (wavelet tree with RRR bitvectors)
without any partitioning.

Makinen, Navarro: Implicit compression
boosting with applications to self-
indexing. SPIRE 2007.

Or we can just partition the BWT into fixed-
length blocks and use any order-0 encoder.

Gog et al.: Fixed Block Compression
Boosting in FM-indexes: Theory and
Practice. Algorithmica, 2019.

From suffix array to BWT

Let T be a text string of length n over BWT SA Suffix
alphabet > = [0..|2|) such that T[n-1]=$=0 A -
and $ does not occur anywhere else.

: . C 6 A$
The suffix array of T is an array SA[0..n) of
pointers to the suffixes of T in lexicographic T 4 ACAS
order.

G 1 ATTACA$

The BWT of T Is a permutation of the
character occurrences BWT[0..n) that lists A 5 CAS
the character preceding each suffix: N 0 GATTACAS
« BWTIi] = T[SA[i] — 1] if SA[i] > 0; and T 3 TACAS

« BWTJi] = $ if SA[i] = 0. A > TTACAS

LF-mapping

The lexicographic rank of string X among BWT SA Suffix
the suffixes of text T is the number of suffixes A . N
Y such that Y < X in lexicographic order.
. : . BWT.rank(3, T) C 6 A$
We define LF-mapping as a function such
that if the lexicographic rank of string X is |, T 4 ACAS
the lexicographic rank of string cX is LF(i, c). ACAT
G 1 ATTACAS
We compute LF(i, c) = C|c] + BWT.rank(i, c):
A 5 CA$
e CJc]is the number of suffixes starting with s " GATTACAS LS, T)
a character ¢' < ¢; and .
-
N , T 3 TACA$
« BWT.rank(i, c) is the number of suffixes TACAT

Y < X preceded by character c. A 2 TTACA$

Inverting the BWT

Because $ is the smallest character, we
know that SA[0] = n — 1 and BWT]0] is the
character preceding the endmarker.

We use LF(i)) = LF(i, BWT]i]) for finding the
previous suffix.

If BWTI[i] # 3, it is the previous character in
the text, and we continue iterating.

This way, we recover the text from the BWT
backwards.

Jumping around in the BWT causes cache
misses.

BWT

SA

I4

Suffix

ACAS
ATTACAS
CA$
GATTACA$
TACA$

TTACA$

Multi-string BWT

Let To, ..., Tm-1 be an ordered collection of BWT DA SA Suffix
m texts. A 0 0,7) %

A 1 1,5 9
To make each suffix unique, we assume that C 0 (0,6) A$
the endmarker of T; is smaller than that of Tj, T 1 (1,4) A$
for all | <. T 0 0,4) ACA$

, , , C 1 (1,1) ATTAS

The BWT generalizes to this model e.asny,. G 5 0.1) ATTACAS
except that we cannot use LF-mapping with
character $. A 0 0.5 CAS

$ 1 (1,0) CATTAS$
SA[X] = (i, j) refers to suffix Ti[j..) and points to i 0 (0,0) GATTACAS
the endmarker of Tx for x < m. T 1 (1,3) TA$

T 0 (0,3) TACA$
If SA[X] refers to a suffix of text Ti, we have A 1 (1,2) TTAS$
DA[X] = i in the document array. A 0 (0,2) TTACA$

FM-index

Backward searching

BWT Suffix

If SA[i..]) is the range of suffixes starting with
string X, the range of suffixes starting with
string cX is SA[LF(i, c)..LF(j, c)).

Given a pattern P, we can find the range of
suffixes starting with it with backward Range [5..7) =
searching: [LF(10, A)..LF(14, A))
matches pattern AT
« Start with [i..j) = [0..|SA|) matching an
empty pattern.

* For k from |P| - 1 down to 0, update with
[I..]) < [LF(, P[K])..LF(j, P[K])) to get the Range [10..14)
range matching pattern P[k..). matches pattern T

FM-index

If we have the C array and the BWT with
efficient rank queries, we can support the
following:

* find(P) that returns the lexicographic
range [i..J) starting with pattern P with
O(|P]|) rank queries.

o extract() that returns the text T; with O(|Ti|)
rank queries.

This is the core functionality of the FM-index.

Ferragina, Manzini: Indexing Compressed
Text. Journal of the ACM, 2005.

If we have non-compressible text over a
small alphabet (such as DNA), we can
simply partition the BWT into fixed-length
blocks and store rank(i, c) at the start of each
block for each character c.

Other common rank structures include:

* Bitvectors Bc that mark the positions
where BWT]i] = c.

* Wavelet trees that reduce rank on the
BWT to rank on log |Z| bitvectors.

Locating the matches

We sample some suffix array values in order
to determine the text positions matching the
pattern.

In text order sampling, we sample SA[i] if it
Is a multiple of d. Sampled positions are
marked in a bitvector.

If SA[i] Is not sampled, we iterate i < LF(i)
until we find a sampled position. If we need k
iterations, the value we wanted is SA]i] + k.

Now we can support:

* |ocate(i) that returns SA[i] with O(d) rank
queries and O(n / d) words of extra space.

SA[5]: not sampled

SA[8]: sampled

SA[12]: not sampled

Suffix

Bidirectional FM-index

A bidirectional FM-index has an index F for

the texts and an index R for the reverse Let o be the number of occurrences of

texts. characters c¢' < ¢ in the BWT range F.find(X)
| and | = [F.find(cX)|. If R.find(rev(X)) = [i..]), we

For any character c, we have F.find(c) = know that R fi(ndz‘rev(CX)) =([i o(,)) o+[l))

R.find(c). | o

By extending the pattern backward in F, we
also extend it forward in R, and the other
way around.

Because rev(cX) = rev(X) - ¢, range
R.find(rev(cX)) is a subrange of R.find(rev(X)).

Because the occurrences of P in forward Lam et al.: High Throughput Short Read

texts are occurrences of rev(P) in reverse : . .
texts, |R.find(rev(cX))| = |F.find(cX)|. g(l)lggment via Bi-directional BWT. BIBM

For any c' < c, we have find(Xc') < find(Xc).

Forward and backward

An FMD-index stores DNA sequences and
their reverse complements in the same
index and effectively matches both
orientations of the pattern against both
orientations of the texts.

It works in a similar way to bidirectional FM-
indexes.

Li: Exploring single-sample SNP and
INDEL calling with whole-genome de novo
assembly. Bioinformatics, 2012.

If we use the forward index F, we sort
suffixes of the texts and match the pattern
backward.

We can also use the reverse index R as an
index of the original texts. Then we sort the
reverse prefixes of the texts and match the
pattern forward.

Sometimes using the reverse index is more
natural.

FM-index In practice

Key features of FM-indexes:
 Reasonably fast find, slow locate.
* Very space-efficient.

* Cache misses for each character.
* Arbitrary pattern length.

* No need for word boundaries or other
structure.

Short read alignment is the primary
application of FM-indexes.

Space-efficiency is no longer that important if
text size is only a few gigabytes.

Long reads (especially with high error rates)
favor k-mer indexes with fast locate, because
the alignment must be chained from many
seed hits.

Information retrieval applications prefer
using words or other tokens instead of
characters, and they often have loose
requirements for the relative order and
spacing of query terms.

Run-length encoded BWT

Back to compression

Traditional BWT-based compressor:

1. BWT rearranges the symbols by context. bzip2 adds some additional stages but uses

2. Move-to-front uses a list of symbols. the same basic Idea.

Each symbol is encoded by its current
position in the list, and the symbol is then
moved to the front of the list.

Move-to-front is similar to implicit
compression boosting, turning the global
order-0 encoder into a local one.

3. Run-length encoding (RLE) replaces

each run of symbols ¢! with a pair (c, |). Run-length encoding becomes useful with

highly repetitive data.

4. Order-0 encoder such as Huffman
encodes the pairs.

BW1 of identical texts

BWT Suffix

A
If there are R equal letter runs in the BWT of A i
text T of length n, there are also R runs in the A S
BWT of m copies of text T, for any m > 0. T AS$

T A$
If we run-length encode the BWT and use T A$
any reasonable encoding (such as a sparse C ATTA$
bitvector) for run lengths, the RLBWT takes C ATTAS
R log |Z| + O(R log (mn / R)) bits. C ATTAS

$ CATTAS
Adding duplicate texts to the collection is i gﬁgﬁi
almost free. T TAS
Entropy-based compression would require : :ﬁi
mnH bits, plus overhead. A TTAS

A TTAS

A TTAS

Edits iIn RLBWT

BWT
We changed a single character in the blue A
text. A
A
The edit may break an existing run and T
create a new run where it appears in the :
BWT. o
| _ | These suffixes are /C
Some suffixes preceding the edit may move ;4 . original runs C
around and do the same. T~y
. . $
Suffixes far before the edit remain in the This suffix moved and ¢
same runs (but possibly in new positions). became a new run — A
T
In so.methmodels, a:ndedlt adds O(logjz| (mn)) The edit broke/$
runs in the expected case. 2 run of Ts \
A

The "RLCSA model"

We start with m identical aligned texts.

Each edit affects some suffixes, but most
remain unaffected.

If there are R runs in the BWT of the original
text and s affected suffixes in total, there are
at most R + O(s) runs in the BWT of the
collection.

This implies a graph where unaffected
columns can (usually) be merged into nodes.

Generalizations of the BWT for graphs, such
as GCSA and Wheeler graphs, started from
this model.

As the generalizations can grow
exponentially in size, they were ultimately
more useful in formal languages and
automata than in bioinformatics.

Makinen et al.: Storage and Retrieval of
Highly Repetitive Sequence Collections.
Journal of Computational Biology, 2010.

FM-indexes based on RLBW'T

With highly repetitive text collections,

RLBWT can be orders of magnitude smaller The r-index finally solved the issue with a

than entropy-compressed BWHT. structure that can compute SA[i + 1] from
SAJi] in O(log log (mn)) time and O(R) words

RLCSA and other early indexes showed that of space overhead.

this also applies to FM-indexes, as long as

the rank/select overhead scales (Veli and/or Christina should talk more about

proportionally to the compressed size. the r-index on Thursday:.)

While find queries were fast, locate queries Gagie et al.: Fully Functional Suffix Trees

still used SA samples, with the product of and Optimal Text Searching in BWT-Runs

query time and space overhead scaling Bounded Space. Journal of the ACM, 2020.

proportionally to mn rather than R.

GBWT

Data model

We have a representative set of haplotypes
from the relevant population.

We align the haplotypes and build a graph,

Where eaCh nOde represents aligned] e -

positions in the haplotypes.

: : a—
Any traversal of the graph is a potential
haplotype.

Traversals that are locally consistent with
the original haplotypes are more likely to be

biologically plausible. path ~ walk
path ~ stored traversal
For that reason, we store the original traversal ~ emergent path

haplotypes as paths.

What do we need?

We want to store a collection of haplotypes
as paths in a graph G = (V, E).

A path can be represented as a sequence of
nodes, which can be interpreted as a string
over alphabet V.

L] I I e
N —
Because we expect the haplotypes to be W}
highly similar, the collection is highly

repetitive.

Therefore the data structure we choose is
RLBWT tailored for strings over a large
alphabet but where the local alphabet
(adjacency list) is usually small.

path ~ walk
path ~ stored traversal
traversal ~ emergent path

GBWT

The GBWT is a reverse RLBWT of paths in a
directed graph.

We sort reverse prefixes of the paths and
match patterns forward, following the
direction of the edges.

To improve memory locality, we partition the
BWT between the nodes and use the
adjacency lists as rank structures.

A find query determines how many indexed
paths contain the corresponding traversal as
a subpath.

Node $

Node 2

[22| = 2
0:(4,0)
1:(5,0)

2g| =1
0:(1,0)

OO O

Node 5

35| =1
0:(7,0)

Node 3

Node 7

23] =1
0:(4,1)

X7 =1
0:($,0)

Node 6

6] =1
0:(7,2)

OO

~—

Sirén et al.: Haplotype-aware graph
iIndexes. Bioinformatics, 2020.

https://qgithub.com/jltsiren/gbwt

https://github.com/jltsiren/gbwt

Node $

Node 2

2g| =1
0:(1,0)

22| = 2
0:(4,0)
1:(5,0)

OO O

Node 5

1Xs5| =1
0:(7,0)

Node 3

0
0

BW'T partitioning

Node 7

23] =1
0:(4,1)

27| =1
0:($,0)

Node 6

16| =1
0:(7,2)

SO O

\
/

Let BWT, = BWT[C|[v]..C[v + 1]).

That substring corresponds to prefixes where

the most significant character in the sorting
order (the last character) is v.

BWT, tells where the path corresponding to
each prefix continues after visiting node v.

Prefix

BWT

$125

$1246
$1257

$12467

/

/

$

LF-mapping

Prefix BWT
BWT offsets: (v, i) vs. C[v] + i vs. BWT\][i]. $ 1
$ 1
When we follow an edge (v, w), we use $ 1
LF(C[v] + i, w) = C[w] + BWT.rank(C[v] + i, w). $ 1 2
$ 1 2
Clw] is just a reference to node w. LF(CL4] + 1, 9) $ 1 3
4
We can partition BWT.rank(C[v] + i, w) into 5
the sum of BWT.rank(C[v], w) and 4
BWT..rank(i, w). 6
S

If we store BWT, in node v and
BWT.rank(C[v], w) in edge (v, w), we can
compute LF-mapping using local
Information stored in the node.

Node records

The record for node v contains a list of

outgoing edges (v, w) and the BWT substring
BWT..

For each edge (v, w), the adjacency list

stores the destination node w as well as
BWT.rank(C[v], w).

In BWT,, nodes are replaced by their ranks in
the adjacency list and and the substring is

then run-length encoded.

The record Is encoded as a byte sequence.

Node $

Node 2

2g| =1
0:(1,0)

Node 1

12| = 2
0:(4,0)
1:(5,0)

OO O

21| = 2
0:(2,0)
1:(3,0)

Node 5

35| =1
0:(7,0)

Node 1

—_0 O

Node 3

Node 7

X3 =1
0:(4,1)

Node 4

X7 =1
0:($,0)

34| = 2
0:(5,1)
1:(6,0)

Node 6

Z6| =1
0:(7,2)

OO

 QOutdegree 2 encoded as 2
 Edge to 2, offset 0 encoded as (2, 0)

 Edge to 3, offset 0 encoded as (1
e Run02encodedas 0+ 2 *(2-1)
* Runi1'encodedas1+2*(1-1)

~—

0)

2
:

Using the GBWT

Node 2 Node 5
We concatenate the records and use a [S2| = 5] =1
_ _ _ _ 0 : (4,0) 0 : (7,0)
sparse bitvector B for finding the substring 1:(5,0)
Node $ Node 1 0 0 Node 7
[B.select(v, 1)..B.select(v + 1, 1)) el =1 [o1] = 1 }— 0 o) =1
corresponding to node v. 00 ng;g;/ B0
8 L 8 Node 3 Node 4 Node 6 8
- 0 1 X[=1 | (|Za] =2 | [IX6] =1 0
When we compute LF-mapping from node v, 0:(4,1) ||o:(51)] /| |0 (7,2)/
we decompress the adjacency list and scan SR Y |ERACL | -
BWT, sequentially. 0
This assumes that node degrees are not too 1102 2201021 2401001 1410 2511010 1701 1720 1002
high and paths do not visit the same nodes 1000 1000000 1000000 1000 1000000 1000 1000 1000

too many times. | |
Encoding of the records and bitvector B

Memory locality of iterated LF-mapping (each byte is a single number).

depends on the memory layout of the graph.

More functionality

locate queries using DA samples for Sample and contig identifiers map to string
determining which haplotypes contain the names.

given subpath.
Example path names

r-index add-on as a larger and faster . (HG002, chri, 1, 0)

alternative for the same task.

« (HGOO2, chrl, 2, 0)
Bidirectional GBWT implemented as a « (HG002, chr2, 1, 0)
single index similar to the FMD-index.

« (HGOO2, chr2, 2, 0)
Metadata mapping text identifiers to * (HGOO0Z2, chr3, 1, 0)
structured path names. « (HG002, chr3, 2, 0)
A path name consists of sample, contig, * (HGO02, chra, 1, 0)
haplotype, and fragment identifiers. * (HGOO2, chr4, 2, 0)

GBWT construction

Incremental BWT construction

Add an empty text Prepend A Prepend T
BWT Suffix BWT Suffix BWT Suffix
A $ A $ A $
$ S LF(-, A A $ A $
C A$\ C A$ C A$
$ A$ T A$
T ACA$ T ACA$ LF(-, T) T ACA$
G ATTACAS$ G ATTACAS$ G ATTACAS$
A CA$ A CA$ A CA$
$ GATTACA$ $ GATTACA$ $ GATTACA$
$ TAS
T ACAS$ T ACAS$ T ACAS$
A TACA$ A TACA$ A TACA$

Hon et al.: A space and time efficient
algorithm for constructing compressed
suffix arrays. Algorithmica, 2007

Batch insertion

The BCR algorithm builds the BWT for a
collection of short reads incrementally.

It starts from the BWT of m empty texts and
extends each text backward by a single
character in each step.

Bauer et al.: Lightweight algorithms for
constructing and inverting the BWT of

string collections. Theoretical Computer
Science, 2013.

RopeBWT2 inserts a batch of texts into an
existing BWT using the same algorithm.

Li: Fast construction of FM-index for long
sequence reads. Bioinformatics, 2014.

This is also the main GBWT construction
algorithm.

During construction, we use a naive dynamic
representation for the GBWT, where each
node has an std::vector of edges and
std::vector of runs.

In each step, we rebuild the node records for
all nodes we touch.

Disjoint subgraphs

Paths are strings over the set of nodes V. We can easily build the GBWT for the 1000
Genomes Project (1000GP) data consisting

If we have two collections of paths in disjoint of 5000 human haplotypes.

subgraphs, the strings in the collections are

over disjoint alphabets. A few years ago, the construction took 17
hours on a system with 16 physical / 32

We can build GBWTs for the collections logical CPU cores and 244 GiB of memory.

independently and then merge them by

simply reusing the node records. Total length: 2194349057386

Sequences: 240232

More generally, we can partition the graph /211?22?16‘5;1 ze: ggg%g;gg

into weakly connected components and RUNS - 2767709379

parallelize GBWT construction over the DA samples: 2143033346

components. BWT : 8636.28 MB

DA samples: 3363.48 MB
Total: 1/006.6 MB

BWT merging

BWT of one text BWT of another text Interleaved BWTs
BWT Suffix BWT Suffix BWT Suffix
A $ A $
A $ A $
C A$ C A$
T A$ T A$
T ACAS T ACAS
C ATTAS C ATTAS
G ATTACA$ G ATTACA$
A CA$ A CA$
$ CATTAS $ CATTAS
$ GATTACA$ $ GATTACA$
T TAS$ T TA$
T TACA$S T TACA$S
A TTA$ A TTA$
A TTACA$ A TTACA$

GBWT merging

We can make BWT merging fast and space-
efficient with a careful use of multiple search
threads, buffering, compression, temporary
files, and multithreaded sorting.

In order to merge the BWTs texts S and T, we
must find the interleaving of their suffixes in
lexicographic order.

By iterating LF-mapping in the BWT of S, we
can determine the lexicographic rank of
each suffix of T among the suffixes of S.

Siren: Burrows-Wheeler transform for
terabases. DCC 2016.

This allows us to build GBWTs for datasets

This produces the lexicographic ranks in an larger than 1000GP

arbitrary order. We get the interleaving by

sorting the ranks. It is unclear if indexing such large haplotype

collections is useful, as recent projects such
as HPRC are focusing on quality over
quantity.

Sirén: Compressed Suffix Arrays for
Massive Data. SPIRE 20009.

Bidirected sequence graphs

Data model

We have a representative set of haplotypes
from the relevant population.

We align the haplotypes and build a graph,

Where eaCh nOde represents aligned] e -

positions in the haplotypes.

: : a—
Any traversal of the graph is a potential
haplotype.

Traversals that are locally consistent with
the original haplotypes are more likely to be

biologically plausible. path ~ walk
path ~ stored traversal
For that reason, we store the original traversal ~ emergent path

haplotypes as paths.

GBWT

The GBWT is a reverse RLBWT of paths in a
directed graph.

We sort reverse prefixes of the paths and
match patterns forward, following the
direction of the edges.

To improve memory locality, we partition the
BWT between the nodes and use the
adjacency lists as rank structures.

A find query determines how many indexed
paths contain the corresponding traversal as
a subpath.

Node $

Node 2

[22| = 2
0:(4,0)
1:(5,0)

2g| =1
0:(1,0)

OO O

Node 5

35| =1
0:(7,0)

Node 3

Node 7

23] =1
0:(4,1)

X7 =1
0:($,0)

Node 6

6] =1
0:(7,2)

OO

~—

Sirén et al.: Haplotype-aware graph
iIndexes. Bioinformatics, 2020.

https://qgithub.com/jltsiren/gbwt

https://github.com/jltsiren/gbwt

Nodes

Node ids

Node labels

Edges

Path ids

Path navigation

Three models

GBWT

Simple

Integers

N/A

Directed

Integers

(with optional metadata)

Forward only

libhandlegraph / vg

Bidirected

Integers

Any length but
preferably short

Undirected

Strings or structured

Both directions

GFA

Bidirected

Strings
(but often integers)

Any length

Undirected

Strings or structured

N/A

Bidirected sequence graphs

Each node has two sides and can be visited
INn two orientations.

1. GATTACA

A forward visit enters from the left, reads the
label, and exits from the right.

A reverse visits enters from the right, reads

the reverse complement of the label, and Traversal >1 >2 <3 <1 reads GATTACA, TAT,
exits from the left. CTG, and TGTAATC.
Edges are undirected and connect two Traversal >1 >3 <2 <1 reads GATTACA, CAG,

node sides. ATA, and TGTAATC.

libhandlegraph

Some graph implementations are mutable,
others are immutable, and they make
different time/space trade-offs.

A common interface reduces the need for
rewriting code for each implementation.

In the vg ecosystem, that interface is
provided by the libhandlegraph library.

Objects such as node visits, paths, and path
steps have handles (opaque identifiers).

The interface uses functions that iterate over
the relevant set of handles and call a user-
provided function with each handle:

» for_each_handle(function, parallel)

» follow_edges(handle, backward, function)
e for_each_path_handle(function)

e for_each_step_in_path(path, function)

o for_each_step_on_handle(handle, function)

Eizenga et al.: Efficient dynamic variation
graphs. Bioinformatics, 2020.

https://github.com/vgteam/libhandlegraph

https://github.com/vgteam/libhandlegraph

GFA file format

GFA is a TSV-based interchange format for
bidirected sequence graphs.

Originally intended for assembly graphs,
recent extensions have made a subset of

GFA suitable for pangenome graphs:

12

13

14

14

15

16

17

17

22

23

24

24

25
11+,12+,14+,15+,
21+ ,22+,24+,25+
1

« Segment: name, sequence
 Link: from, orientation, to, orientation
e Path: name, node visits

+ + + 4+ + 4+ + + + + +

 Walk: sample, haplotype, contig, interval,
node visits

+++++++++++++F>SDAATOTO>A 4O

XX X X X K X X X X X X X X

~
+

>11>12>14>15>17
>11>13>14>16>17
>21>22>24<23<21
>21>22>24>25

https://qgithub.com/GFA-spec/GFA-spec/
blob/master/GFA1.md

H
S
S
S
S
S
S
S
S
S
S
S
S
L
L
L
L
L
L
L
L
L
L
L
L
L
P
P
W
W
W
W

OOO® ¥KF 4+ 1
S U1 U1 U

2
1
2

https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md
https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md

Simulating bidirected graphs

We can simulate bidirected graphs with

directed graphs by turning node visits into
nodes.

1: GATTACA
Edges adjacent to the right side become

outgoing edges from the forward node. >2: TAT
>1: GATTACA “
Edges adjacent to the left side become ‘ >3: CAG
<2. ATA
<1: TGTAATC

outgoing edges from the reverse node.

<3: CTG

Path names

A GBWT path name is a unigue
combination of four numerical identifiers:

« Samples are top-level items and may
correspond to string names.

 Contigs are non-overlapping parts of a
sample and may correspond to string
names.

 Haplotypes are overlapping sequences for
the same (sample, contig).

* Fragments are non-overlapping parts of
(sample, contig, haplotype).

External string names can be parsed or
stored as (_gbwt_ref, name, 0, 0).

Sample
_gbwt_ref
HGOO
HGOO
HGO002
HGO002
HGO0O03
HGO003
_gbwt_ref
HGOO
HGOO
HGO002
HGO002
HGO003
HGO003

Contig

chri
chri

chri
chr
chr
Nr
Nr
Nr2
Nr2
Nr2
Nr2
Nr2
Nr2
Nr2

O O O O O O O O O

Haplotype
0

N = NN =2 N =2 O DN =2 N =2 DN =

Fragment

O O O O O O O O O O O oo o O

Path navigation

The GBWT does not support inverse LF-
mapping, because the nodes do not know
their predecessors.

In order to navigate backward on a path, we
store each path in both orientations in a

bidirectional index similar to the FMD-index.

We then find the predecessors by flipping
node orientation, finding the successors, and
flipping the results.

The reverse path visits the same nodes In
reverse order and the other orientation.

Node 2

32| = 2
0:(4,0)
1:(5,0)

Node $

2g| =1
0:(1,0)

Node 5

35| =1
0:(7,0)

OO O

Node 3

Node 7

X7 =1
0:($,0)

X3 =1
0:(4,1)

Node 6

6] =1
0:(7,2)

OO

~—

reverse(>1 >2 >4 >6 >7) = <7 <6 <4 <2 <1

Node labels

>2: TAT
Because the GBWT does not store node >1: GATTACA “
‘ >3: CAG

labels, we need a separate structure for
them.

<2: ATA
As the graph is immutable, we can reduce <1: TGTAATC
memory and |I/O overhead by <3: CTG

concatenating the labels.

The starting positions can be an integer
array or a sparse bitvector. GATTACATGTAATCTATATACAGCTG

Storing vs. deriving the reverse complements
IS a relevant time/space trade-off.

17 20 23

GFA segments can be long in regions with
no variation.

Long node labels are inconvenient in many
applications:

* Indexes may want to store graph positions
(hode id, orientation, offset) in 64 bits.

* Long labels do not work in some graph
visualizations.

* Interfaces may create temporary copies
of node labels.

Node-to-segment translation

The usual solution is chopping long
segments into at most 1024 bp nodes, so
that each segment corresponds to an
interval of node identifiers.

If segment names cannot be interpreted as
integer identifiers, we also need a translation

between the names and ranks of node id
Intervals.

GBWTGraph

GBWTGraph

We simulate a bidirected sequence graph
using a directed graph and store the paths Iin
a bidirectional GBWT index.

The GBWT represents the topology of the
subgraph induced by the paths. Nodes and
edges exist only if they are used on a path.

We store the node labels in a string array
(concatenated strings + array of starting
positions).

Another string array stores a mapping
between nodes and GFA segments.

Paths corresponding to sample _gbwt_ref are
exposed as named libhandlegraph paths.

Samples can be designated as reference
samples, making the corresponding paths
reference sequences.

Sirén et al.: Pangenomics enables
genotyping of known structural variants in
5202 diverse genomes. Science, 2021.

https://qgithub.com/jltsiren/gbwtgraph

https://github.com/jltsiren/gbwtgraph

Path operations

// Get the most promising alignment from the

GBWT search states are pairs (v, [i..))) /7 briority queue.
representing intervals BWTV[I J) GaplessExtension curr = extensions.top();
ST extensions.pop();
: // Extend the alignment over all successor nodes.
States are typically search results for a sraph.follow paths(curr.state, false,
pattern; j — i is then the number of indexed [&] (Bidirectionalstate next_state)
’ o handle t handle =
paths containing the pattern as a subpath. node_to_handle(next_state.forward.node);
GaplessExtension next { ... };
size t offset = match_forward(next, sequence,
Bidirectional states contain search states for B e vienhandte).
the pattern and its reverse. They can be used if éoffiﬁt == 0) ({j(return:t% e
. . . . next.path = append(curr.path, handle);
fOF eXtenC“ng the pattem N bOth dlrQCtlons if (next.range.second >= sequence.length()) {
next.reached end();
. . } else if (offset < graph.get length(handle)) {
The key operation follow_paths finds all non- } next.set_right_maximal();
empty single-node extensions of a search next.set score();

extensions.push(next) ;

state.

Node record caching

Accessing the outgoing edges or the BWT
requires finding the GBWT node record and
decompressing the edges.

This takes hundreds of nanoseconds
(~1000 CPU cycles) with large GBWTs.

Some algorithms (such as aligning a read to
a specific graph region) repeatedly access
the nodes in a small subgraph.

We can speed such algorithms up
significantly by caching the partially
decompressed records.

Cluster of seeds

Forward extensions
of a seed

Backward extensions
of an extension

Giraffe aligner

Giraffe aligner

Giraffe is a pangenomic short read aligner
that combines the speed of linear aligners
with the accuracy of vg map.

It maps reads to a graph but restricts its
attention to paths that are locally consistent
with the set of reference haplotypes.

The speed comes from ignoring unlikely
recombinations and assuming that most
sequencing errors are substitutions and

most real indels are already in the reference.

Giraffe tries aligning the read without gaps
before resorting to dynamic programming.

https://qithub.com/vgteam/vg

Sirén et al.: Pangenomics enables
genotyping of known structural variants in
5202 diverse genomes. Science, 2021.

| gave a talk on Giraffe in Pangenomics Bio
Hacking 2021. The recording and the slides
can be found online.

https://pgbh2021.pangenome.eu/

https://github.com/vgteam/vg
https://pgbh2021.pangenome.eu/

Read alignment

Mapping: Approximate location of the read In
the reference.

Alignment: The best base-to-base alignment
between the read and the reference near a
particular mapping.

Mapping quality: Estimated likelihood that
the mapping is correct.

Fast and accurate read alignment is the easy
part. The hard part is estimating mapping
quality accurately without sacrificing speed.

Seed and extend approach:

1. Find seeds (partial alignments) using a
text index.

2. Cluster the seeds that correspond to the
same mapping (or chain them into rough
alignments with long reads).

3. Extend the seeds into full alignments.
We continue exploring promising mappings

until we are confident that we have found
the best alignment.

1.

Giraffe algorithm

Find seeds using a minimizer index of

the haplotypes.

Cluster the seeds using a distance index
based on a hierarchical decomposition of

the graph.

Extend the seeds over the haplotypes,

allowing for a limited number of
mismatches.

If we did not get enough full-length
alignments, align the tails of best partial
extensions using dynamic programming

over the haplotypes.

- — T] Read
Sequence
Graph
I | I | CITJ |] 1]
L TE l (I | [T T]I | GBWT
C I 1 1 | T I]]
(C) Haplotype minimizer seeding
I _,!I__, l - | — L] match between Read
o ":_,-—"' --'""::3321:;:::__-____rge_xgl.andGBWT
1 ‘iﬁ'i S —— |] —— - o Minimizer
C 1T | | N I | N I
. [e T | i Index
matching matching
. minimizer minimizer
(D) Seed clustering .
p <t . . >t - Distance
e - ' N ~ Index
l‘ >< : ":":
cluster of seeds cluster of seeds
(E) Seed extension along haplotypes
[[|| | Read
.t “_x" ungapped alignment
| [[]] —
1] [| I | | I 1 GBWT
- I[| -]]

(F) Haplotype-restricted gapped alignment
| I | | B Read

L
/ /N Sequence
CD/C)\(:) subgraph

ungapped alignment gapped alignment
region region

Minimizer seeds

The cost of finding seeds for read P using an

FM-index is O(|P|) cache misses, and the

cost of listing occ seed hits is O(d - occ) By using a hash table, we find minimizer

cache misses. seeds in O(|P| / w) cache misses in the
expected case and list the hits sequentially.

Building the FM-index for the graph or the

haplotypes is expensive. For short reads, we use w = 11 and k = 29.
We chose to use a minimizer index In The index for a human graph typically takes
Giraffe. 25-30 GiB.

A (w, K)-minimizer is the k-mer with the If the index is on a network drive, rebuilding
smallest hash value among all k-mers and it may be faster than loading it from disk.

their reverse complementsinak + w -1 bp
window.

Index COnStrUCtiOn // Start from both orientations of the initial

// node.

std: :stack<GBWTTraversal> windows;
windows.push(GBWTTraversal (node, false));
windows.push(GBWTTraversal (node, true));

// Extend the windows until they are long enough.

Minimizer index construction iterates over while (lwindows.empty()) {
: - auto window = windows.top(); windows.pop():
all nodes using multiple threads. if (window.length >= target length) {

report(window); continue;

At each node, the algorithm finds all }
// Find all one-node extensions of the window.

traversals that start from the node and hool found = false:

extend atleast k + w =2 bp beyond It. graph.follow paths(window.state, false,
[&] (SearchState next state) {

handle t handle =
node_to_handle(next_state.node);

The algorithm finds all minimizers in the Juto next = window:
traversal and stores them in a buffer. next.append(handle) ;

windows.push(next) ;
found = true;

Once the buffer is full, the thread acquires 2
the lock and inserts the minimizers into the // Report maximal windows anyway.

if (!found && window.length >= min_length)
hash table. report(window) ;

}

Seed clustering

We use minimizer hits as seeds but avoid
minimizers with too many hits.

Seeds close to each other form a cluster

that likely corresponds to a single alignment.

Clustering uses a distance index that
reduces computing distances in the graph to
computing them in a tree.

Chang et al.: Distance indexing and seed
clustering in sequence graphs.
Bioinformatics, 2020.

> @ ‘,
& ca» %/

Seed extension

Giraffe extends most promising clusters into
gapless alignments. Cluster of seeds
We merge redundant seeds that correspond
to the same alignment between the read and

a node.
Each seed is extended over all maximal Forward extensions
paths consisting of a left flank, the initial of a seed

node, and the right flank.

There can be any number of mismatches in
the initial node, up to 4 mismatches in total,
and up to 2 mismatches in each flank
regardless of the total.

Backward extensions
of an extension

The extensions are in a priority queue by
alignment score: +1 per match, -4 per
mismatch, and +5 for reaching the end.

For each seed, we find the highest-scoring
maximal alignment.

If an alignment reaches both ends of the
read, we return all full-length alignments that
do not overlap too much.

Otherwise we trim the alignments to
maximize the score and return all distinct
alignments.

Alignment selection

Non-overlapping alignments

+1 -4 +1 +1 +1 +1 +1 +1 +1 -4 +1 +1 +1 +1 +1 +1
MXMMMMMMMXMMMMMM

Alignment score 6

+1 +1 +1 +1 +1 +1 +1 -4 +1 +1 +1 +1 +1 +1
MMMMMMMXMMMMMM

Trimmed to alignment score 9

Final stages

....
L 2

If we did not find enough full-length

alignments without gaps, we use dynamic
programming for aligning the tails of most .
promising gapless alignments. Tt e

....
L 2

If we found a good alignment for a read but co coe -
not for its pair, we may try rescuing the pair.

Seeds ' .
Rescue uses a simplified version of the * .
Giraffe algorithrm: . TTTmmmeene
1. Find seeds in the relevant subgraph. eI T .
2. Extend them as a single cluster. Best e’:‘e"Si"“ /
3. Align the tails of the best extension with tail alignment *._ T

~ . -
~ -
- -

gaps If necessary.

True Positive Rate (Recall)

(A) 1T000GP/GRCh38 Single End

0.99 0.99
0.96 - Giraffe 0.96 -
_7/
(4 f)
VG-MAP j HISAT2
093 - \ / Giraffe primary 0.93 -
Minimapz
GraphAligner
0.90 4 0.90 -
fast Giraffe
BWA MEM Bowt|e2

(C) HGSVC/GRCh38 Single End

(E) Five-strain yeast/S.c. $288C Single End

0.99

0.96

1e-07 1e-06 1e-05 1e-04 1e-03 1e-02 1e-01 1e+00

(B) 1000GP/GRCh38 Paired End

1.00- 1.004

0.98 - s 0.98 -

0.96 - 0.96 -
Giraffe {

0.94 - ' 6 0.94 -

0.92- 0.92-

(D) HGSVC/GRCh38 Paired End

1e-07 1e-06 1e-05 1e-04 1e-03 1e-02 1e-01 1e+00

/

Giraffe

—~—

0.93 1

0.90 ~

Giraffe

4

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

(F) Five-strain yeast/S.c. S288C Paired End

1e-07 1e-06 1e-05

1e.04 1e.03 1e.02 1e.01 1e+00

1e-07 1e-06 1e-05 1e-04 1e-03 1e-02 1e-01

Log,, False Discovery Rate (log, (1 - Precision))

O Giraffe
VG-MAP

() Giraffe primary
fast Giraffe

BWA-MEM
() Bowtie2

Minimap2
() HISAT2

{ GraphAligner

@ 250000 @ 500000 @ 750000

1.00 -
. /
0.98 - Giraffe #
¢
0.96 - /
0.94 - y
0.92-
' 1e-06 1e-05 1e-04 1e-03 1e-02 1e-01 1e+00

A 1000GP/GRCh38 NovaSeq 6000 Runtime B HGSVC/GRCh38 NovaSeq 6000 Runtime

VG-MAP paired VG-MAP paired
VG-MAP single VG-MAP single
Bowtie2 paired GraphAligner

Bowtie2 single Bowtie2 paired

BWA-MEM paired Bowtie2 single

Giraffe full single BWA-MEM paired

Giraffe full paired

BWA-MEM single

BWA -MEM single
Minimap2 paired

Giraffe sampled paired

Giraffe primary paired
Giraffe sampled single

Giraffe full paired
Minimap2 paired

. Giraffe primary paired

fast Giraffe sampled paired

Giraffe full single
Giraffe primary single

Minimap?2 single

Giraffe primary single

Minimap2 single l HISAT2 paired
fast Giraffe sampled single HISAT2 single
HISAT2* paired fast Giraffe full paired
HISAT2* single fast Giraffe full single
0 10 20 30 40 50 0 10 20 30 40

Runtime (hours) Runtime (hours)

GBZ file format

GFA compression

GFA is the most common interchange
format for pangenome graphs.

It does not scale well when the number of
haplotypes increases.

While the haplotype paths are highly similar,
they are too long for standard compressors
to compress them together.

The graph itself is reasonably small for
today's computers, but it also grows with the
number of haplotypes, if we include rare
variants.

The overall effect is superlinear growth with
the number of haplotypes.

There Is a need for a compressed file
format for pangenome graphs with many
haplotype paths.

The GBWT and the GBWTGraph already
store the necessary information!

Goals and challenges

Stable and fully specified file format.

* Designing a portable file format based on

Good compression. highly specialized data structures?

Fast loading into in-memory data

structures. Simple enough for independent

implementations vs. compatibility with

SN
Should not make too specific existing files”

requirements for the in-memory data

* Different priorities in the initial version
structures.

and future versions?

Easy to handle as a memory-mapped file.

File format basics

Element: Unsigned little-endian 64-bit
integer.

File: Sequence of elements. Most objects are
properly aligned in a memory-mapped file.

Limited number of building blocks to make
implementation easier.

Serializable: Anything with size a multiple of
64 bits that can be serialized by copying the
bits.

Vector: Length as an element, followed by
concatenated items. Padded with O-bits if
necessary.

Optional structure: Size in elements as an
element, followed by the structure. Can be
passed through as a vector of elements. For
iImplementation-dependent or application-
dependent structures.

Simple-SDS
https://qithub.com/jltsiren/simple-sds

vgteam fork of SDSL
https://github.com/vgteam/sdsl-lite

https://github.com/jltsiren/simple-sds
https://github.com/vgteam/sdsl-lite

Building blocks

Bitvector: Plain bitvector with optional rank/
select structures.

Integer vector: Bit-packed integer array.

Sparse bitvector: Elias-Fano encoded
bitvector with a bitvector as high and an
integer vector as low.

String array: Concatenated alphabet-
compacted { A, C, G, N, T} — [0..5)) strings
as an integer vector and starting positions as
a sparse bitvector. Usually decompressed as
an in-memory structure.

Dictionary: Mapping between strings and
their identifiers. Stored as a string array, with
a permutation of the identifiers in
lexicographic order as an integer vector.
Usually decompressed in memory.

Tags: Key-value structure with case-
insensitive keys. Stored as a string array. Key
source identifies the library that wrote the file.
The reader can use that information for
determining if it can understand the optional
structures.

GB.Z file format

Full implementation in C++, partial
Implementation in Rust.

https://github.com/jltsiren/gbwt
https://github.com/jltsiren/gbwtgraph
https://qgithub.com/jltsiren/gbwt-rs

The manuscript describing the file format is
not available yet, as the benchmarks use
HPRC graphs and the HPRC papers have
not been submitted yet.

GBZ

Header: 16 bytes
Tags
GBWT

Header: 48 bytes

Tags

BWT: sparse bitvector, byte vector
DA samples: optional, unspecified

Optional metadata

Header: 40 bytes

Path names: vector of 16-byte items
Sample names: dictionary

Contig names: dictionary

GBWTGraph

Header: 24 bytes
Sequences: string array
Translation: string array, sparse bitvector

https://github.com/jltsiren/gbwt
https://github.com/jltsiren/gbwtgraph
https://github.com/jltsiren/gbwt-rs

Compression algorithm

The input file is memory-mapped and the
algorithm assumes that the order of the lines
IS reasonable.

1. Record the starting position and type of
each line, determine if a translation is
necessary, and determine GBWT
construction buffer size.

2. Process segments and build the
translation if necessary.

3. Process links, create a temporary graph,
find weakly connected components, and
determine GBWT construction jobs.

. Process path and walk headers, build

GBWT metadata.

. Process paths and walks, running

multiple GBWT construction jobs in
parallel.

. Merge partial GBWTs and build

GBWTGraph.

.gfa: 44.9 GiB

.0z: 11.1 GiB

Table 3. Wall clock time and peak memory usage for various tasks with the Cactus dataset. .gbZ 3.11 GIB

System Compression ozip Loading (C++) Loading (Rust) Decompression (C++) Decompression (Rust) gunzip

Desktop 40min/96.5GiB 25min 23s/11.8 GiB 19s/5.9 GiB 116 s/ 15.5 GiB 239s /7.1 GiB 80 s

Laptop - - 23s/9.4 GiB 16 s/5.9 GiB 186 s/9.7 GiB 304 s/6.5GiB 80 s
Intel Server 19min/111.5GiIB 39min 37s/11.7GiB 35s/5.9 GiB 125 s/ 14.5 GiB 193s/6.5 GiB 361 s
ARM Server 16 min/ 111.0GiB 48 min 33s/11.7GiB 33s/5.9GiB 86 s/14.5 GiB 138 s /7.1 GiB 350 s
Desktop: iMac 2020 with 128 GiB memory, C++ implementation stores node labels in
10/20 CPU cores. both orientations and uses more memory for

faster decompression.
Laptop: MacBook Air 2020 with 16 GiB
memory, 4 + 4 CPU cores. Rust implementation stores only forward
labels and uses the query interface directly.
Intel Server: AWS i3.8xlarge with 244 GiB

memory, 16/32 CPU cores. Memory usage is peak resident set size,
which includes cached memory-mapped files
ARM Server: AWS rogd.8xlarge with but does not include pages swapped out to

256 GiB memory, 32 CPU cores. disk or to compressed memory.

Future Ideas

Typical distances

........

We often use the shortest distance in the X A —_— B k
graph as a proxy for the distance over the IRDTSRPL ’ IR CTSRP ’
genome.

When structures such as long deletions are Adding a single haplotype with a long
present, this may not reflect the typical deletion makes regions A and B close in the
distance. graph.

How to define the typical distance, how to
compute it efficiently, and how touse it? _.------. ~ ey .

Andrea Mariotti and Davide Piovaniare ~ Treeia-000 0 et
working on this. Contact us if you have ideas! \/

Wavefront algorithm (WFA) is a sequence-
to-sequence alignment algorithm generalizing
the Myers' O(ND) algorithm to the gap-affine
model (with mismatch, gap open, and gap
extend penalties).

Myers: An O(ND) Difference Algorithm and
Its Variations. Algorithmica, 1986.

Marco-Sola et al.: Fast gap-affine pairwise

alignment using the wavefront algorithm.
Bioinformatics, 2021.

WFA over GBWT

Challenges using WFA over the haplotypes in
a GBWT index:

* |s the end position even reachable?

* |s the first visit to the end position the
right one or should we hope for a cycle?

e How to avoid redundant work with

identical local haplotypes but branch when
they diverge?

e Can we meet in the middle if we start
from both directions?

Long read alignment

GraphAligner is the state of the art for

aligning long reads to a general graph (not a
DAG).

Rautiainen, Marschall: GraphAligner: rapid
and versatile sequence-to-graph
alignment. Genome Biology, 2020.

Error rates have recently gone down for both
PacBio and ONT reads.

We also have haplotype information to take
advantage of.

Rough idea for a new aligner:

1.

2.

Get minimizer seeds.

Try to use only non-overlapping seeds
without too many hits.

Chain the seeds.

Connect the seeds using WFA.

Your ideas?

