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Data model
We have a representative set of haplotypes 
from the relevant population.


We align the haplotypes and build a graph, 
where each node represents aligned 
positions in the haplotypes.


Any traversal of the graph is a potential 
haplotype.


Traversals that are locally consistent with 
the original haplotypes are more likely to be 
biologically plausible.


For that reason, we store the original 
haplotypes as paths.

path ~ walk 
path ~ stored traversal 

traversal ~ emergent path



Human genomes

The methods I am going to present are 
general-purpose, but we always make 
assumptions.


I mostly work with human genomes, which 
has implications on things like:

• genome size;

• number and size of chromosomes;

• ploidy;

• repetitiveness of sequences; and

• similarity between haplotypes.

Human Pangenome Reference 
Consortium (HPRC)


Wang et al.: The Human Pangenome 
Project: a global resource to map genomic 
diversity. Nature, 2022.


https://humanpangenome.org/


~45 high-quality diploid de novo assemblies 
today and hundreds in the future.

https://humanpangenome.org/


Outline
Today: Data structures 

• Bitvectors, rank, select


• Burrows–Wheeler transform (BWT)


• FM-index, RLBWT


• GBWT, construction algorithms


We will revisit topics Veli already talked about 
on Monday, but from a different perspective. 

Tomorrow: GBWT applications 

• Bidirected sequence graphs


• GBWTGraph


• Giraffe aligner


• GBZ file format


Focus on algorithm engineering and a little 
bit of software development, not on 
theoretical algorithms or biology.



Bitvectors



Notation
There are only two hard things in computer 
science: cache invalidation, naming things, 
and off-by-one errors. 

(Phil Karlton, Leon Bambrick)


Off-by-one errors are often caused by 
incorrect translations between various array 
indexing conventions.


Many popular programming languages such 
as C++ and Rust start array indexing from 0 
and use semi-open intervals for 
representing substrings.


I am going to use the same conventions here.


Substring S[i..j) starts with S[i] and ends just 
before S[j].


S.rank(i, c) is the number of occurrences of 
character c in the prefix S[0..i).


Let Ac be the sorted array of positions of 
character c in string S.


S.select(i, c) = Ac[i] is the position of the 
occurrence of rank i.



Bitvectors
A bitvector represents a binary sequence B 
and supports efficient rank/select queries.


Bitvectors are often used for representing the 
sorted integer array A = A1.


A common application is partitioning an 
interval [a..b) into subintervals 
[B.select(i, 1)..B.select(i + 1, 1)).


Offset j can be mapped to the subinterval 
containing it with a predecessor query 
B.pred(j) = (i, B.select(i, 1)), where 
i = B.rank(j + 1, 1) – 1.

B:   0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A:   2   3   7   8   12   13   16   17   19

B.rank(10, 1) = 4


B:   0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A:   2   3   7   8   12   13   16   17   19

B.select(5, 1) = 13


B:   0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A:   2   3   7   8   12   13   16   17   19



Rank on plain bitvectors
A plain bitvector stores binary sequence B 
as such. There are many structures that 
support rank queries in O(1) time.


The following is from SDSL: Gog, Petri: 
Optimized succinct data structures for 
massive data. Software – Practice and 
Experience, 2014.


A CPU can execute multiple independent 
operations in parallel using a single core.


Chained queries (such as in iterated LF-
mapping) are bound by memory latency.

Partition the bitvector into 512-bit blocks 
and store the rank at the start of each block 
using 64 bits.

Partition each block into 64-bit words and 
store rank-within-block at the start of each 
word (except the first) using 9 bits.


Compute rank-within-word using popcnt and 
return the sum of the three ranks. A query 
takes two memory accesses and the space 
overhead is 25%.



Select on plain bitvectors

select queries are also O(1) in theory, but 
practical implementations tend to have rare 
polylogarithmic worst cases.


The following is also from SDSL.


We partition the bitvector into superblocks 
of 4096 values (positions of ones) and store 
the first value in each superblock.


If a superblock is longer than log4 |B| bits, we 
store all values in it explicitly.


Otherwise we partition the superblock into 
blocks of 64 values and store the first value 
in each block relative to the start of the 
superblock.


Within each block, we iterate popcnt to find 
the word containing the position we are 
interested in. This means O(log3 |B|) iterations 
in the worst case.


Select-within-word uses uses somewhat 
complicated bit manipulation.


Space overhead is 18.75% in the worst case.



Elias–Fano encoding
Elias–Fano encoding is good for sparse 
bitvectors, where |A| ≪ |B|. It is a mix 
between representations A and B.


For each value x, we store the lowest w bits 
in integer sequence low and assign the value 
to bucket floor(x / 2w).


We encode the buckets in unary: a bucket 
with k values becomes 1k0. Concatenated 
buckets form binary sequence high.


By choosing w ≈ log |B| – log |A|, the number 
of buckets will be close to |A|, making the 
density of high close to 0.5.

B:   0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 1 0 0 
A:   2   3   7   8   12   13   16   17   19


w = 2 

high:  1 1 0 1 0 1 0 1 1 0 1 1 1 0

Value 2 3 7 8 12 13 16 17 19
Low 2 3 3 0 0 1 0 1 3
Bucket 0 0 1 2 3 3 4 4 4



low:  2   3   3   0   0   1   0   1   3


A:   2   3   7   8   12   13   16   17   19


high:  1 1 0 1 0 1 0 1 1 0 1 1 1 0

Sparse bitvectors
Accessing the original values is simple: 
A[i] = (high.select(i, 1) – i) · 2w + low[i].


We can iterate over A by iterating over high and 
low.


A B.rank(i, 1) query starts by finding the end of 
the bucket with high.select(floor(i / 2w), 0). We 
then iterate backward as long as the values are 
too large.


B.pred(i) can be answered directly in a similar 
way.


Okanohara, Sadakane: Practical Entropy-
Compressed Rank/Select Dictionary. ALENEX 
2007.

low 2 bits

in bucket 1

B.select(2, 1)



low:  2   3   3   0   0   1   0   1   3


A:   2   3   7   8   12   13   16   17   19


high:  1 1 0 1 0 1 0 1 1 0 1 1 1 0

Sparse bitvectors

in bucket 4 
that ends at 13

last value in 
bucket 4 is at 
13 – 1 – 4 = 8

too largesmall enough

B.rank(18, 1)

still in same 
bucket

Accessing the original values is simple: 
A[i] = (high.select(i, 1) – i) · 2w + low[i].


We can iterate over A by iterating over high and 
low.


A B.rank(i, 1) query starts by finding the end of 
the bucket with high.select(floor(i / 2w), 0). We 
then iterate backward as long as the values are 
too large.


B.pred(i) can be answered directly in a similar 
way.


Okanohara, Sadakane: Practical Entropy-
Compressed Rank/Select Dictionary. ALENEX 
2007.



SDSL versions
Succinct Data Structures Library (SDSL) 

Gog et al.: From Theory to Practice: Plug 
and Play with Succinct Data Structures. 
Proc. SEA 2014.


https://github.com/simongog/sdsl-lite


Wide range of efficient and scalable data 
structures.


Unfortunately the original library (SDSL 2) has 
been abandoned.


SDSL 3 
• https://github.com/xxsds/sdsl-lite

• Maintained (for now) by SeqAn people.

• Requires C++17.


vgteam fork

• https://github.com/vgteam/sdsl-lite

• Some improvements to SDSL 2.

• Limited support.


Simple-SDS 
• https://github.com/jltsiren/simple-sds

• Limited scope, written in Rust.

https://github.com/simongog/sdsl-lite
https://github.com/xxsds/sdsl-lite
https://github.com/vgteam/sdsl-lite
https://github.com/jltsiren/simple-sds


Burrows–Wheeler transform



Empirical entropy
Entropy and information are based on the 
equation , where  

is an alphabet (a finite set of symbols).


We can interpret this as the expected 
number of bits required for encoding one 
symbol .


If we use observed frequencies (in a specific 
text) as probabilities, we get the order-0 
empirical entropy , which is useful in data 
compression.


If we have an order-0 encoder (such as 
Huffman), we can compress a text of length 

 using  bits, plus overhead from the 
encoder and the model (probability 
distribution).


In (one version of) GRCh38, :

H = − ∑
c∈Σ

P(c)log2 P(c) Σ

c ∈ Σ

H0

n nH0

H0 ≈ 2.17

Symbol Count Probability

A 866420001 0.279497

C 598683433 0.193129

G 600854940 0.193829

N 165045996 0.053242

T 868918077 0.280303



High-order entropy
If we know the context a symbol appears in, 
we can often predict it more accurately.


Given a set of possible contexts , we can 
redefine entropy as the weighted sum

 of 

entropies over contexts .


By using the  preceding characters as the 
context, we get the order-  empirical 
entropy .


This does not help much with DNA, but the 
usual estimate for the entropy of English text 
is approximately 1 bit/character.


By using a separate order-0 encoder for 
each context, we can compress a text of 
length  using  bits, plus overhead.


At , model overhead becomes 
the dominant term in space usage.


We need a better encoding for the model.

S

H = − ∑
s∈S

P(s)∑
c∈Σ

P(c ∣ s)log2 P(c ∣ s)

s ∈ S

k
k

Hk

n nHk

k ≈ log|Σ| n



Burrows–Wheeler transform

The Burrows–Wheeler transform (BWT) is  
a permutation of the text that is useful for 
encoding both the text and the model.


If we sort each character occurrence by the 
text following it, we group them by the 
order-  context for all  simultaneously.


Burrows, Wheeler: A Block-sorting 
Lossless Data Compression Algorithm. 
Technical report, 1994.

k k

C  A T T A $
C  A T T A A T T A G A T T A C A T T A
G  A T T A C A C A T T A C A G A T T A
G  A T T A C A G A C C T T A G A C A G
T  A T T A C A G A T T A G A T T A C G
C  A T T A C A G A T T A T A T T A C A
G  A T T A C A T T A $
G  A T T A C A T T A A T T A G A T T A
G  A T T A C A T T A G A C A T T A G A
G  A T T A C G T T A T A T A G A T T A
C  A T T A G A C A T T A G A G A T T A
C  A T T A G A G A T T A C A C A T T A
G  A T T A G A G A T T A C A T T A G A
A  A T T A G A T T A C A T T A $
G  A T T A G A T T A C G T T A T A T A
G  A T T A T A T T A C A G A T T A G A



Compression boosting

We can partition the BWT into optimal 
contexts (according to a cost function) using 
a greedy algorithm and compress each of 
them separately with an order-0 encoder.


This theoretical approach to BWT-based 
compression is called compression 
boosting.


Ferragina et al.: Boosting Textual 
Compression in Optimal Linear Time. 
Journal of the ACM, 2005. 

We get similar results with a specific order-0 
encoder (wavelet tree with RRR bitvectors) 
without any partitioning.


Mäkinen, Navarro: Implicit compression 
boosting with applications to self-
indexing. SPIRE 2007.


Or we can just partition the BWT into fixed-
length blocks and use any order-0 encoder.


Gog et al.: Fixed Block Compression 
Boosting in FM-indexes: Theory and 
Practice. Algorithmica, 2019.



From suffix array to BWT
Let T be a text string of length n over 
alphabet Σ = [0..|Σ|) such that T[n – 1] = $ = 0 
and $ does not occur anywhere else.


The suffix array of T is an array SA[0..n) of 
pointers to the suffixes of T in lexicographic 
order.


The BWT of T is a permutation of the 
character occurrences BWT[0..n) that lists 
the character preceding each suffix:


• BWT[i] = T[SA[i] – 1] if SA[i] > 0; and


• BWT[i] = $ if SA[i] = 0.

BWT SA Suffix

A 7 $

C 6 A$

T 4 ACA$

G 1 ATTACA$

A 5 CA$

$ 0 GATTACA$

T 3 TACA$

A 2 TTACA$



LF-mapping
The lexicographic rank of string X among 
the suffixes of text T is the number of suffixes 
Y such that Y < X in lexicographic order.


We define LF-mapping as a function such 
that if the lexicographic rank of string X is i, 
the lexicographic rank of string cX is LF(i, c).


We compute LF(i, c) = C[c] + BWT.rank(i, c):


• C[c] is the number of suffixes starting with 
a character c' < c; and


• BWT.rank(i, c) is the number of suffixes 
Y < X preceded by character c.

BWT SA Suffix

A 7 $

C 6 A$

T 4 ACA$

G 1 ATTACA$

A 5 CA$

$ 0 GATTACA$

T 3 TACA$

A 2 TTACA$

ACAT

TACAT

LF(3, T)

BWT.rank(3, T)

C[T]



Inverting the BWT
Because $ is the smallest character, we 
know that SA[0] = n – 1 and BWT[0] is the 
character preceding the endmarker.


We use LF(i) = LF(i, BWT[i]) for finding the 
previous suffix.


If BWT[i] ≠ $, it is the previous character in 
the text, and we continue iterating.


This way, we recover the text from the BWT 
backwards.


Jumping around in the BWT causes cache 
misses.

BWT SA Suffix

A 7 $

C 6 A$

T 4 ACA$

G 1 ATTACA$

A 5 CA$

$ 0 GATTACA$

T 3 TACA$

A 2 TTACA$



Multi-string BWT
Let T0, ..., Tm – 1 be an ordered collection of 
m texts.


To make each suffix unique, we assume that 
the endmarker of Ti is smaller than that of Tj, 
for all i < j.


The BWT generalizes to this model easily, 
except that we cannot use LF-mapping with 
character $.


SA[x] = (i, j) refers to suffix Ti[j..) and points to 
the endmarker of Tx for x < m.


If SA[x] refers to a suffix of text Ti, we have 
DA[x] = i in the document array.

BWT DA SA Suffix
A 0 (0, 7) $
A 1 (1, 5) $
C 0 (0, 6) A$
T 1 (1, 4) A$
T 0 (0, 4) ACA$
C 1 (1, 1) ATTA$
G 0 (0, 1) ATTACA$
A 0 (0, 5) CA$
$ 1 (1, 0) CATTA$
$ 0 (0, 0) GATTACA$
T 1 (1, 3) TA$
T 0 (0, 3) TACA$
A 1 (1, 2) TTA$
A 0 (0, 2) TTACA$



FM-index



Backward searching
If SA[i..j) is the range of suffixes starting with 
string X, the range of suffixes starting with 
string cX is SA[LF(i, c)..LF(j, c)).


Given a pattern P, we can find the range of 
suffixes starting with it with backward 
searching:


• Start with [i..j) = [0..|SA|) matching an 
empty pattern.


• For k from |P| – 1 down to 0, update with 
[i..j) ← [LF(i, P[k])..LF(j, P[k])) to get the 
range matching pattern P[k..).

BWT Suffix
A $
A $
C A$
T A$
T ACA$
C ATTA$
G ATTACA$
A CA$
$ CATTA$
$ GATTACA$
T TA$
T TACA$
A TTA$
A TTACA$

Range [10..14) 
matches pattern T

Range [5..7) = 
[LF(10, A)..LF(14, A)) 
matches pattern AT



FM-index
If we have the C array and the BWT with 
efficient rank queries, we can support the 
following:


• find(P) that returns the lexicographic 
range [i..j) starting with pattern P with 
O(|P|) rank queries.


• extract(i) that returns the text Ti with O(|Ti|) 
rank queries.


This is the core functionality of the FM-index.


Ferragina, Manzini: Indexing Compressed 
Text. Journal of the ACM, 2005. 

If we have non-compressible text over a 
small alphabet (such as DNA), we can 
simply partition the BWT into fixed-length 
blocks and store rank(i, c) at the start of each 
block for each character c.


Other common rank structures include:


• Bitvectors Bc that mark the positions 
where BWT[i] = c.


• Wavelet trees that reduce rank on the 
BWT to rank on log |Σ| bitvectors.



Locating the matches
We sample some suffix array values in order 
to determine the text positions matching the 
pattern.


In text order sampling, we sample SA[i] if it 
is a multiple of d. Sampled positions are 
marked in a bitvector.


If SA[i] is not sampled, we iterate i ←LF(i) 
until we find a sampled position. If we need k 
iterations, the value we wanted is SA[i] + k.


Now we can support:


• locate(i) that returns SA[i] with O(d) rank 
queries and O(n / d) words of extra space.

SA Suffix
(0, 7) $
(1, 5) $
(0, 6) A$
(1, 4) A$
(0, 4) ACA$
(1, 1) ATTA$
(0, 1) ATTACA$
(0, 5) CA$
(1, 0) CATTA$
(0, 0) GATTACA$
(1, 3) TA$
(0, 3) TACA$
(1, 2) TTA$
(0, 2) TTACA$

SA[12]: not sampled

SA[5]: not sampled

SA[8]: sampled



Bidirectional FM-index
A bidirectional FM-index has an index F for 
the texts and an index R for the reverse 
texts.


For any character c, we have F.find(c) = 
R.find(c).


Because rev(cX) = rev(X) · c, range 
R.find(rev(cX)) is a subrange of R.find(rev(X)).


Because the occurrences of P in forward 
texts are occurrences of rev(P) in reverse 
texts, |R.find(rev(cX))| = |F.find(cX)|.


For any c' < c, we have find(Xc') < find(Xc).


Let o be the number of occurrences of 
characters c' < c in the BWT range F.find(X) 
and l = |F.find(cX)|. If R.find(rev(X)) = [i..j), we 
know that R.find(rev(cX)) = [i+o..i+o+l).


By extending the pattern backward in F, we 
also extend it forward in R, and the other 
way around.


Lam et al.: High Throughput Short Read 
Alignment via Bi-directional BWT. BIBM 
2009.



Forward and backward

An FMD-index stores DNA sequences and 
their reverse complements in the same 
index and effectively matches both 
orientations of the pattern against both 
orientations of the texts.


It works in a similar way to bidirectional FM-
indexes.


Li: Exploring single-sample SNP and 
INDEL calling with whole-genome de novo 
assembly. Bioinformatics, 2012. 

If we use the forward index F, we sort 
suffixes of the texts and match the pattern 
backward.


We can also use the reverse index R as an 
index of the original texts. Then we sort the 
reverse prefixes of the texts and match the 
pattern forward.


Sometimes using the reverse index is more 
natural.



FM-index in practice
Key features of FM-indexes:


• Reasonably fast find, slow locate.


• Very space-efficient.


• Cache misses for each character.


• Arbitrary pattern length.


• No need for word boundaries or other 
structure.


Short read alignment is the primary 
application of FM-indexes.


Space-efficiency is no longer that important if 
text size is only a few gigabytes.


Long reads (especially with high error rates) 
favor k-mer indexes with fast locate, because 
the alignment must be chained from many 
seed hits.


Information retrieval applications prefer 
using words or other tokens instead of 
characters, and they often have loose 
requirements for the relative order and 
spacing of query terms.



Run-length encoded BWT



Back to compression
Traditional BWT-based compressor:


1. BWT rearranges the symbols by context.


2. Move-to-front uses a list of symbols. 
Each symbol is encoded by its current 
position in the list, and the symbol is then 
moved to the front of the list.


3. Run-length encoding (RLE) replaces 
each run of symbols cl with a pair (c, l).


4. Order-0 encoder such as Huffman 
encodes the pairs. 

bzip2 adds some additional stages but uses 
the same basic idea.


Move-to-front is similar to implicit 
compression boosting, turning the global 
order-0 encoder into a local one.


Run-length encoding becomes useful with 
highly repetitive data.



BWT of identical texts
If there are R equal letter runs in the BWT of 
text T of length n, there are also R runs in the 
BWT of m copies of text T, for any m > 0.


If we run-length encode the BWT and use 
any reasonable encoding (such as a sparse 
bitvector) for run lengths, the RLBWT takes 
R log |Σ| + O(R log (mn / R)) bits.


Adding duplicate texts to the collection is 
almost free.


Entropy-based compression would require 
mnH bits, plus overhead.

BWT Suffix
A $
A $
A $
T A$
T A$
T A$
C ATTA$
C ATTA$
C ATTA$
$ CATTA$
$ CATTA$
$ CATTA$
T TA$
T TA$
T TA$
A TTA$
A TTA$
A TTA$



Edits in RLBWT
We changed a single character in the blue 
text.


The edit may break an existing run and 
create a new run where it appears in the 
BWT.


Some suffixes preceding the edit may move 
around and do the same.


Suffixes far before the edit remain in the 
same runs (but possibly in new positions).


In some models, an edit adds O(log|Σ| (mn)) 
runs in the expected case.

BWT Suffix
A $
A $
A $
T A$
T A$
T A$
C ACTA$
C ATTA$
C ATTA$
$ CACTA$
$ CATTA$
$ CATTA$
A CTA$
T TA$
C TA$
T TA$
A TTA$
A TTA$

The edit broke 
a run of Ts

This suffix moved and 
became a new run

These suffixes are 
in their original runs



The "RLCSA model"
We start with m identical aligned texts.


Each edit affects some suffixes, but most 
remain unaffected.


If there are R runs in the BWT of the original 
text and s affected suffixes in total, there are 
at most R + O(s) runs in the BWT of the 
collection.


This implies a graph where unaffected 
columns can (usually) be merged into nodes.


Generalizations of the BWT for graphs, such 
as GCSA and Wheeler graphs, started from 
this model.


As the generalizations can grow 
exponentially in size, they were ultimately 
more useful in formal languages and 
automata than in bioinformatics.


Mäkinen et al.: Storage and Retrieval of 
Highly Repetitive Sequence Collections. 
Journal of Computational Biology, 2010.



FM-indexes based on RLBWT
With highly repetitive text collections, 
RLBWT can be orders of magnitude smaller 
than entropy-compressed BWT.


RLCSA and other early indexes showed that 
this also applies to FM-indexes, as long as 
the rank/select overhead scales 
proportionally to the compressed size.


While find queries were fast, locate queries 
still used SA samples, with the product of 
query time and space overhead scaling 
proportionally to mn rather than R.


The r-index finally solved the issue with a 
structure that can compute SA[i + 1] from 
SA[i] in O(log log (mn)) time and O(R) words 
of space overhead.


(Veli and/or Christina should talk more about 
the r-index on Thursday.)


Gagie et al.: Fully Functional Suffix Trees 
and Optimal Text Searching in BWT-Runs 
Bounded Space. Journal of the ACM, 2020.



GBWT



Data model
We have a representative set of haplotypes 
from the relevant population.


We align the haplotypes and build a graph, 
where each node represents aligned 
positions in the haplotypes.


Any traversal of the graph is a potential 
haplotype.


Traversals that are locally consistent with 
the original haplotypes are more likely to be 
biologically plausible.


For that reason, we store the original 
haplotypes as paths.

path ~ walk 
path ~ stored traversal 

traversal ~ emergent path



What do we need?
We want to store a collection of haplotypes 
as paths in a graph G = (V, E).


A path can be represented as a sequence of 
nodes, which can be interpreted as a string 
over alphabet V.


Because we expect the haplotypes to be 
highly similar, the collection is highly 
repetitive.


Therefore the data structure we choose is 
RLBWT tailored for strings over a large 
alphabet but where the local alphabet 
(adjacency list) is usually small.

path ~ walk 
path ~ stored traversal 

traversal ~ emergent path



GBWT
The GBWT is a reverse RLBWT of paths in a 
directed graph.


We sort reverse prefixes of the paths and 
match patterns forward, following the 
direction of the edges.


To improve memory locality, we partition the 
BWT between the nodes and use the 
adjacency lists as rank structures.


A find query determines how many indexed 
paths contain the corresponding traversal as 
a subpath.

Sirén et al.: Haplotype-aware graph 
indexes. Bioinformatics, 2020.


https://github.com/jltsiren/gbwt

https://github.com/jltsiren/gbwt


Let BWTv = BWT[C[v]..C[v + 1]).


That substring corresponds to prefixes where 
the most significant character in the sorting 
order (the last character) is v.


BWTv tells where the path corresponding to 
each prefix continues after visiting node v.

BWT partitioning
Prefix BWT

$ 1
$ 1
$ 1

$ 1 2
$ 1 2
$ 1 3

$ 1 2 4
$ 1 2 5
$ 1 3 4

$ 1 2 4 6
$ 1 3 4 5
$ 1 2 5 7

$ 1 3 4 5 7
$ 1 2 4 6 7
$ 1 2 5 7 $

$ 1 3 4 5 7 $
$ 1 2 4 6 7 $

BWT4



LF-mapping
BWT offsets: (v, i) vs. C[v] + i vs. BWTv[i].


When we follow an edge (v, w), we use 
LF(C[v] + i, w) = C[w] + BWT.rank(C[v] + i, w).


C[w] is just a reference to node w.


We can partition BWT.rank(C[v] + i, w) into 
the sum of BWT.rank(C[v], w) and 
BWTv.rank(i, w).


If we store BWTv in node v and 
BWT.rank(C[v], w) in edge (v, w), we can 
compute LF-mapping using local 
information stored in the node.

Prefix BWT
$ 1
$ 1
$ 1

$ 1 2
$ 1 2
$ 1 3

$ 1 2 4
$ 1 2 5
$ 1 3 4

$ 1 2 4 6
$ 1 3 4 5
$ 1 2 5 7

$ 1 3 4 5 7
$ 1 2 4 6 7
$ 1 2 5 7 $

$ 1 3 4 5 7 $
$ 1 2 4 6 7 $

BWT4

BWT5

LF(C[4] + 1, 5)

BWT.rank(C[4], 5) = 1

BWT4.rank(1, 5) = 0



Node records
The record for node v contains a list of 
outgoing edges (v, w) and the BWT substring 
BWTv.


For each edge (v, w), the adjacency list 
stores the destination node w as well as 
BWT.rank(C[v], w).


In BWTv, nodes are replaced by their ranks in 
the adjacency list and and the substring is 
then run-length encoded.


The record is encoded as a byte sequence.

Node 1

• Outdegree 2 encoded as 2

• Edge to 2, offset 0 encoded as (2, 0)

• Edge to 3, offset 0 encoded as (1, 0)

• Run 02 encoded as 0 + 2 * (2 – 1) = 2

• Run 11 encoded as 1 + 2 * (1 – 1) = 1



Using the GBWT
We concatenate the records and use a 
sparse bitvector B for finding the substring 
[B.select(v, 1)..B.select(v + 1, 1)) 
corresponding to node v.


When we compute LF-mapping from node v, 
we decompress the adjacency list and scan 
BWTv sequentially.


This assumes that node degrees are not too 
high and paths do not visit the same nodes 
too many times.


Memory locality of iterated LF-mapping 
depends on the memory layout of the graph.

1102 2201021 2401001 1410 2511010 1701 1720 1002  
1000 1000000 1000000 1000 1000000 1000 1000 1000

Encoding of the records and bitvector B 
(each byte is a single number).



More functionality
locate queries using DA samples for 
determining which haplotypes contain the 
given subpath.


r-index add-on as a larger and faster 
alternative for the same task.


Bidirectional GBWT implemented as a 
single index similar to the FMD-index.


Metadata mapping text identifiers to 
structured path names.


A path name consists of sample, contig, 
haplotype, and fragment identifiers.


Sample and contig identifiers map to string 
names.


Example path names

• (HG002, chr1, 1, 0)

• (HG002, chr1, 2, 0)

• (HG002, chr2, 1, 0)

• (HG002, chr2, 2, 0)

• (HG002, chr3, 1, 0)

• (HG002, chr3, 2, 0)

• (HG002, chr4, 1, 0)

• (HG002, chr4, 2, 0)



GBWT construction



Incremental BWT construction
BWT Suffix

A $
$ $
C A$

T ACA$
G ATTACA$
A CA$
$ GATTACA$

T TACA$
A TTACA$

BWT Suffix
A $
A $
C A$
$ A$
T ACA$
G ATTACA$
A CA$
$ GATTACA$

T TACA$
A TTACA$

BWT Suffix
A $
A $
C A$
T A$
T ACA$
G ATTACA$
A CA$
$ GATTACA$
$ TA$
T TACA$
A TTACA$

Add an empty text Prepend A Prepend T

LF( · , A)

LF( · , T)

Hon et al.: A space and time efficient 
algorithm for constructing compressed 
suffix arrays. Algorithmica, 2007.



Batch insertion
The BCR algorithm builds the BWT for a 
collection of short reads incrementally.


It starts from the BWT of m empty texts and 
extends each text backward by a single 
character in each step.


Bauer et al.: Lightweight algorithms for 
constructing and inverting the BWT of 
string collections. Theoretical Computer 
Science, 2013.


RopeBWT2 inserts a batch of texts into an 
existing BWT using the same algorithm.


Li: Fast construction of FM-index for long 
sequence reads. Bioinformatics, 2014.


This is also the main GBWT construction 
algorithm.


During construction, we use a naive dynamic 
representation for the GBWT, where each 
node has an std::vector of edges and 
std::vector of runs.


In each step, we rebuild the node records for 
all nodes we touch.



Disjoint subgraphs
Paths are strings over the set of nodes V.


If we have two collections of paths in disjoint 
subgraphs, the strings in the collections are 
over disjoint alphabets.


We can build GBWTs for the collections 
independently and then merge them by 
simply reusing the node records.


More generally, we can partition the graph 
into weakly connected components and 
parallelize GBWT construction over the 
components.


We can easily build the GBWT for the 1000 
Genomes Project (1000GP) data consisting 
of 5000 human haplotypes.


A few years ago, the construction took 17 
hours on a system with 16 physical / 32 
logical CPU cores and 244 GiB of memory.

Total length:     2194349057386 
Sequences:        240232 
Alphabet size:    612023760 
Effective:        612023759 
Runs:             2767709379 
DA samples:       2143033346 
BWT:              8636.28 MB 
DA samples:       8368.48 MB 
Total:            17006.6 MB



BWT merging
BWT Suffix

A $

C A$

T ACA$

G ATTACA$
A CA$

$ GATTACA$

T TACA$

A TTACA$

BWT Suffix

A $

T A$

C ATTA$

$ CATTA$

T TA$

A TTA$

BWT Suffix
A $
A $
C A$
T A$
T ACA$
C ATTA$
G ATTACA$
A CA$
$ CATTA$
$ GATTACA$
T TA$
T TACA$
A TTA$
A TTACA$

BWT of one text BWT of another text Interleaved BWTs



GBWT merging
In order to merge the BWTs texts S and T, we 
must find the interleaving of their suffixes in 
lexicographic order.


By iterating LF-mapping in the BWT of S, we 
can determine the lexicographic rank of 
each suffix of T among the suffixes of S.


This produces the lexicographic ranks in an 
arbitrary order. We get the interleaving by 
sorting the ranks.


Sirén: Compressed Suffix Arrays for 
Massive Data. SPIRE 2009.


We can make BWT merging fast and space-
efficient with a careful use of multiple search 
threads, buffering, compression, temporary 
files, and multithreaded sorting.


Sirén: Burrows-Wheeler transform for 
terabases. DCC 2016.


This allows us to build GBWTs for datasets 
larger than 1000GP.


It is unclear if indexing such large haplotype 
collections is useful, as recent projects such 
as HPRC are focusing on quality over 
quantity.



Bidirected sequence graphs



Data model
We have a representative set of haplotypes 
from the relevant population.


We align the haplotypes and build a graph, 
where each node represents aligned 
positions in the haplotypes.


Any traversal of the graph is a potential 
haplotype.


Traversals that are locally consistent with 
the original haplotypes are more likely to be 
biologically plausible.


For that reason, we store the original 
haplotypes as paths.

path ~ walk 
path ~ stored traversal 

traversal ~ emergent path



GBWT
The GBWT is a reverse RLBWT of paths in a 
directed graph.


We sort reverse prefixes of the paths and 
match patterns forward, following the 
direction of the edges.


To improve memory locality, we partition the 
BWT between the nodes and use the 
adjacency lists as rank structures.


A find query determines how many indexed 
paths contain the corresponding traversal as 
a subpath.

Sirén et al.: Haplotype-aware graph 
indexes. Bioinformatics, 2020.


https://github.com/jltsiren/gbwt

https://github.com/jltsiren/gbwt


Three models
GBWT libhandlegraph / vg GFA

Nodes Simple Bidirected Bidirected

Node ids Integers Integers Strings 
(but often integers)

Node labels N/A Any length but 
preferably short Any length

Edges Directed Undirected Undirected

Path ids Integers 
(with optional metadata) Strings or structured Strings or structured

Path navigation Forward only Both directions N/A



Bidirected sequence graphs

Each node has two sides and can be visited 
in two orientations.


A forward visit enters from the left, reads the 
label, and exits from the right.


A reverse visits enters from the right, reads 
the reverse complement of the label, and 
exits from the left.


Edges are undirected and connect two 
node sides.

1: GATTACA

2: TAT

3: CAG

Traversal >1 >2 <3 <1 reads GATTACA, TAT, 
CTG, and TGTAATC.


Traversal >1 >3 <2 <1 reads GATTACA, CAG, 
ATA, and TGTAATC.



libhandlegraph

Some graph implementations are mutable, 
others are immutable, and they make 
different time/space trade-offs.


A common interface reduces the need for 
rewriting code for each implementation.


In the vg ecosystem, that interface is 
provided by the libhandlegraph library.


Objects such as node visits, paths, and path 
steps have handles (opaque identifiers).


The interface uses functions that iterate over 
the relevant set of handles and call a user-
provided function with each handle:

• for_each_handle(function, parallel)

• follow_edges(handle, backward, function)

• for_each_path_handle(function)

• for_each_step_in_path(path, function)

• for_each_step_on_handle(handle, function)


Eizenga et al.: Efficient dynamic variation 
graphs. Bioinformatics, 2020.


https://github.com/vgteam/libhandlegraph

https://github.com/vgteam/libhandlegraph


GFA file format
GFA is a TSV-based interchange format for 
bidirected sequence graphs.


Originally intended for assembly graphs, 
recent extensions have made a subset of 
GFA suitable for pangenome graphs:

• Segment: name, sequence

• Link: from, orientation, to, orientation

• Path: name, node visits

• Walk: sample, haplotype, contig, interval, 

node visits


https://github.com/GFA-spec/GFA-spec/
blob/master/GFA1.md

H       VN:Z:1.1 
S       11      G 
S       12      A 
S       13      T 
S       14      T 
S       15      A 
S       16      C 
S       17      A 
S       21      G 
S       22      A 
S       23      T 
S       24      T 
S       25      A 
L       11      +       12      +       * 
L       11      +       13      +       * 
L       12      +       14      +       * 
L       13      +       14      +       * 
L       14      +       15      +       * 
L       14      +       16      +       * 
L       15      +       17      +       * 
L       16      +       17      +       * 
L       21      +       22      +       * 
L       21      +       23      +       * 
L       22      +       24      +       * 
L       23      +       24      -       * 
L       24      +       25      +       * 
P       A       11+,12+,14+,15+,17+     * 
P       B       21+,22+,24+,25+ * 
W       sample  1       A       0       5       >11>12>14>15>17 
W       sample  2       A       0       5       >11>13>14>16>17 
W       sample  1       B       0       5       >21>22>24<23<21 
W       sample  2       B       0       4       >21>22>24>25

https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md
https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md


Simulating bidirected graphs

We can simulate bidirected graphs with 
directed graphs by turning node visits into 
nodes.


Edges adjacent to the right side become 
outgoing edges from the forward node.


Edges adjacent to the left side become 
outgoing edges from the reverse node.

1: GATTACA

2: TAT

3: CAG

>1: GATTACA
>2: TAT

>3: CAG

<1: TGTAATC
<2: ATA

<3: CTG



Path names
A GBWT path name is a unique 
combination of four numerical identifiers:

• Samples are top-level items and may 

correspond to string names.

• Contigs are non-overlapping parts of a 

sample and may correspond to string 
names.


• Haplotypes are overlapping sequences for 
the same (sample, contig).


• Fragments are non-overlapping parts of 
(sample, contig, haplotype).


External string names can be parsed or 
stored as (_gbwt_ref, name, 0, 0).

Sample Contig Haplotype Fragment
_gbwt_ref chr1 0 0

HG001 chr1 1 0
HG001 chr1 2 0
HG002 chr1 1 0
HG002 chr1 2 0
HG003 chr1 1 0
HG003 chr1 2 0

_gbwt_ref chr2 0 0
HG001 chr2 1 0
HG001 chr2 2 0
HG002 chr2 1 0
HG002 chr2 2 0
HG003 chr2 1 0
HG003 chr2 2 0



Path navigation
The GBWT does not support inverse LF-
mapping, because the nodes do not know 
their predecessors.


In order to navigate backward on a path, we 
store each path in both orientations in a 
bidirectional index similar to the FMD-index.


We then find the predecessors by flipping 
node orientation, finding the successors, and 
flipping the results.


The reverse path visits the same nodes in 
reverse order and the other orientation.

reverse(>1 >2 > 4 >6 >7) = <7 <6 <4 <2 <1



Node labels
Because the GBWT does not store node 
labels, we need a separate structure for 
them.


As the graph is immutable, we can reduce 
memory and I/O overhead by 
concatenating the labels.


The starting positions can be an integer 
array or a sparse bitvector.


Storing vs. deriving the reverse complements 
is a relevant time/space trade-off.

>1: GATTACA
>2: TAT

>3: CAG

<1: TGTAATC
<2: ATA

<3: CTG

GATTACATGTAATCTATATACAGCTG

0    7    14    17    20    23



Node-to-segment translation
GFA segments can be long in regions with 
no variation.


Long node labels are inconvenient in many 
applications:


• Indexes may want to store graph positions 
(node id, orientation, offset) in 64 bits.


• Long labels do not work in some graph 
visualizations.


• Interfaces may create temporary copies 
of node labels.


The usual solution is chopping long 
segments into at most 1024 bp nodes, so 
that each segment corresponds to an 
interval of node identifiers.


If segment names cannot be interpreted as 
integer identifiers, we also need a translation 
between the names and ranks of node id 
intervals.



GBWTGraph



GBWTGraph
We simulate a bidirected sequence graph 
using a directed graph and store the paths in 
a bidirectional GBWT index.


The GBWT represents the topology of the 
subgraph induced by the paths. Nodes and 
edges exist only if they are used on a path.


We store the node labels in a string array 
(concatenated strings + array of starting 
positions).


Another string array stores a mapping 
between nodes and GFA segments.


Paths corresponding to sample _gbwt_ref are 
exposed as named libhandlegraph paths.


Samples can be designated as reference 
samples, making the corresponding paths 
reference sequences.


Sirén et al.: Pangenomics enables 
genotyping of known structural variants in 
5202 diverse genomes. Science, 2021.


https://github.com/jltsiren/gbwtgraph

https://github.com/jltsiren/gbwtgraph


Path operations
GBWT search states are pairs (v, [i..j)) 
representing intervals BWTv[i..j).


States are typically search results for a 
pattern; j – i is then the number of indexed 
paths containing the pattern as a subpath.


Bidirectional states contain search states for 
the pattern and its reverse. They can be used 
for extending the pattern in both directions.


The key operation follow_paths finds all non-
empty single-node extensions of a search 
state.

// Get the most promising alignment from the 
// priority queue. 
GaplessExtension curr = extensions.top(); 
extensions.pop(); 

// Extend the alignment over all successor nodes. 
graph.follow_paths(curr.state, false, 
    [&](BidirectionalState next_state) { 
    handle_t handle = 
        node_to_handle(next_state.forward.node); 
    GaplessExtension next { ... }; 
    size_t offset = match_forward(next, sequence, 
        graph.get_sequence_view(handle), 
        mismatch_limit); 
    if (offset == 0) { return; } 
    next.path = append(curr.path, handle); 
    if (next.range.second >= sequence.length()) { 
        next.reached_end(); 
    } else if (offset < graph.get_length(handle)) { 
        next.set_right_maximal(); 
    } 
    next.set_score(); 
    extensions.push(next); 
});



Node record caching
Accessing the outgoing edges or the BWT 
requires finding the GBWT node record and 
decompressing the edges.


This takes hundreds of nanoseconds 
(~1000 CPU cycles) with large GBWTs.


Some algorithms (such as aligning a read to 
a specific graph region) repeatedly access 
the nodes in a small subgraph.


We can speed such algorithms up 
significantly by caching the partially 
decompressed records.

Cluster of seeds

Forward extensions 
of a seed

Backward extensions 
of an extension



Giraffe aligner



Giraffe aligner
Giraffe is a pangenomic short read aligner 
that combines the speed of linear aligners 
with the accuracy of vg map.


It maps reads to a graph but restricts its 
attention to paths that are locally consistent 
with the set of reference haplotypes.


The speed comes from ignoring unlikely 
recombinations and assuming that most 
sequencing errors are substitutions and 
most real indels are already in the reference.


Giraffe tries aligning the read without gaps 
before resorting to dynamic programming.

https://github.com/vgteam/vg

Sirén et al.: Pangenomics enables 
genotyping of known structural variants in 
5202 diverse genomes. Science, 2021.


I gave a talk on Giraffe in Pangenomics Bio 
Hacking 2021. The recording and the slides 
can be found online.


https://pgbh2021.pangenome.eu/

https://github.com/vgteam/vg
https://pgbh2021.pangenome.eu/


Read alignment
Mapping: Approximate location of the read in 
the reference.


Alignment: The best base-to-base alignment 
between the read and the reference near a 
particular mapping.


Mapping quality: Estimated likelihood that 
the mapping is correct.


Fast and accurate read alignment is the easy 
part. The hard part is estimating mapping 
quality accurately without sacrificing speed. 

Seed and extend approach:


1. Find seeds (partial alignments) using a 
text index.


2. Cluster the seeds that correspond to the 
same mapping (or chain them into rough 
alignments with long reads).


3. Extend the seeds into full alignments.


We continue exploring promising mappings 
until we are confident that we have found 
the best alignment.



Giraffe algorithm
1. Find seeds using a minimizer index of 

the haplotypes.


2. Cluster the seeds using a distance index 
based on a hierarchical decomposition of 
the graph.


3. Extend the seeds over the haplotypes, 
allowing for a limited number of 
mismatches.


4. If we did not get enough full-length 
alignments, align the tails of best partial 
extensions using dynamic programming 
over the haplotypes.



Minimizer seeds
The cost of finding seeds for read P using an 
FM-index is O(|P|) cache misses, and the 
cost of listing occ seed hits is O(d · occ) 
cache misses.


Building the FM-index for the graph or the 
haplotypes is expensive.


We chose to use a minimizer index in 
Giraffe.


A (w, k)-minimizer is the k-mer with the 
smallest hash value among all k-mers and 
their reverse complements in a k + w – 1 bp 
window.


By using a hash table, we find minimizer 
seeds in O(|P| / w) cache misses in the 
expected case and list the hits sequentially.


For short reads, we use w = 11 and k = 29. 


The index for a human graph typically takes 
25–30 GiB.


If the index is on a network drive, rebuilding 
it may be faster than loading it from disk.



Index construction

Minimizer index construction iterates over 
all nodes using multiple threads.


At each node, the algorithm finds all 
traversals that start from the node and 
extend at least k + w – 2 bp beyond it.


The algorithm finds all minimizers in the 
traversal and stores them in a buffer.


Once the buffer is full, the thread acquires 
the lock and inserts the minimizers into the 
hash table.

// Start from both orientations of the initial 
// node. 
std::stack<GBWTTraversal> windows; 
windows.push(GBWTTraversal(node, false)); 
windows.push(GBWTTraversal(node, true)); 

// Extend the windows until they are long enough. 
while (!windows.empty()) { 
    auto window = windows.top(); windows.pop(); 
    if (window.length >= target_length) { 
        report(window); continue; 
    } 

    // Find all one-node extensions of the window. 
    bool found = false; 
    graph.follow_paths(window.state, false, 
        [&](SearchState next_state) { 
        handle_t handle = 
            node_to_handle(next_state.node); 
        auto next = window; 
        next.append(handle); 
        windows.push(next); 
        found = true; 
    }); 

    // Report maximal windows anyway. 
    if (!found && window.length >= min_length) { 
        report(window); 
    } 
}



Seed clustering
We use minimizer hits as seeds but avoid 
minimizers with too many hits.


Seeds close to each other form a cluster 
that likely corresponds to a single alignment.


Clustering uses a distance index that 
reduces computing distances in the graph to 
computing them in a tree.


Chang et al.: Distance indexing and seed 
clustering in sequence graphs. 
Bioinformatics, 2020.



Seed extension
Giraffe extends most promising clusters into 
gapless alignments.


We merge redundant seeds that correspond 
to the same alignment between the read and 
a node.


Each seed is extended over all maximal 
paths consisting of a left flank, the initial 
node, and the right flank.


There can be any number of mismatches in 
the initial node, up to 4 mismatches in total, 
and up to 2 mismatches in each flank 
regardless of the total.

Cluster of seeds

Forward extensions 
of a seed

Backward extensions 
of an extension



Alignment selection
The extensions are in a priority queue by 
alignment score: +1 per match, –4 per 
mismatch, and +5 for reaching the end.


For each seed, we find the highest-scoring 
maximal alignment.


If an alignment reaches both ends of the 
read, we return all full-length alignments that 
do not overlap too much.


Otherwise we trim the alignments to 
maximize the score and return all distinct 
alignments.

+1 –4 +1 +1 +1 +1 +1 +1 +1 –4 +1 +1 +1 +1 +1 +1
M X M M M M M M M X M M M M M M

+1 –4 +1 +1 +1 +1 +1 +1 +1 –4 +1 +1 +1 +1 +1 +1
M X M M M M M M M X M M M M M M

Non-overlapping alignments

Alignment score 6

Trimmed to alignment score 9



Final stages
If we did not find enough full-length 
alignments without gaps, we use dynamic 
programming for aligning the tails of most 
promising gapless alignments.


If we found a good alignment for a read but 
not for its pair, we may try rescuing the pair.


Rescue uses a simplified version of the 
Giraffe algorithm:

1. Find seeds in the relevant subgraph.

2. Extend them as a single cluster.

3. Align the tails of the best extension with 

gaps if necessary.

Mapped

read

Estimated

pair location-4σ +4σ

Seeds

Best extension

+


tail alignment





It was also faster at aligning to human graphs
than Bowtie2 or BWA-MEM were at aligning
to the corresponding linear reference. For the
1000GP graph, using the 64-haplotype sampled
GBWT for mapping instead of the full ∼5000-
haplotype GBWT was much faster in every
case. HISAT2 and fast Giraffe were both about
equally fast andwere both faster than all other
mappers.
Because of the in-memory indexes it uses,

Giraffe’s memory consumption is higher than
the other mappers, except for GraphAligner.
However, it canmap to the 1000GP graphwith
the fullGBWT in∼80gigabytes (GB)ofmemory—

an amount readily available on compute cluster
nodes (Fig. 3, C and D).

Giraffe reduces allele mapping bias

We assessed Giraffe’s reference bias (17). We
expected Giraffe to be able to use the extra
variation information contained in the graph
reference to achieve a lower level of bias than a
linear mapper. For variants that were hetero-
zygous in NA19239, we found the fraction of
reads supporting alternate versus reference
alleles at each indel length ( F4Fig. 4A). Giraffe
and VG-MAP both show less bias toward the
reference allele than a linear mapper, and this

difference becomes more pronounced as
indel length increases, particularly for larger
insertions.

Giraffe genotyping outperforms best practices

We used Illumina’s Dragen platform (14) to
genotype SNVs and short indels using Giraffe
mappings to the 1000GP graph, projected onto
the linear reference assembly. We compared
these results with results using competing graph
and linear reference mappers (17). No training
or optimization was performed for any of the
mappingsother than thoseperformedbydefault
by Dragen itself. We evaluated the calls using
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Fig. 3. Runtime and memory
usage. (A to D) Total runtime
[(A) and (B)] and peak memory
use [(C) and (D)] for mapping
~600 million NovaSeq 6000 reads
using 16 threads. Reads were
mapped [(A) and (C)] to
the 1000GP derived graph or
(for linear mappers) the GRCH38
assembly and [(B) and (D)] to
the HGSVC graph or GRCh38
reference, respectively. For
HISAT2*, results are shown for
the subset 1000GP graph
(22). “Giraffe full” refers to
mapping using the full GBWT of
all haplotypes. “Giraffe sampled”
refers to mapping using the
64-haplotype sampled GBWT.

0 20 40 60 80 100

Memory (GB)

C  1000GP/GRCh38 NovaSeq 6000 Memory

0 20 40 60 80 100

Memory (GB)

D  HGSVC/GRCh38 NovaSeq 6000 Memory

A  1000GP/GRCh38 NovaSeq 6000 Runtime

Runtime (hours)
0 10 20 30 40 50

B  HGSVC/GRCh38 NovaSeq 6000 Runtime

Runtime (hours)
0 10 20 30 40 50

VG-MAP paired

VG-MAP single

Bowtie2 paired

Bowtie2 single

BWA-MEM paired

BWA-MEM single

Minimap2 paired

Minimap2 single

HISAT2 paired

HISAT2 single

GraphAligner

Minimap2 single

Minimap2 paired

BWA-MEM paired

HISAT2 paired

HISAT2 single

BWA-MEM single

Bowtie2 paired

GraphAligner

VG-MAP paired

VG-MAP single

Bowtie2 single

VG-MAP paired

VG-MAP single

Bowtie2 paired

Bowtie2 single

BWA-MEM paired

BWA -MEM single

Minimap2 paired

Minimap2 single

HISAT2* paired

HISAT2* single

VG-MAP single

VG-MAP paired

Minimap2 single

Minimap2 paired

BWA-MEM paired

HISAT2* paired

HISAT2* single

BWA-MEM single

Bowtie2 paired

Bowtie2 single

Out of memoryGraphAligner

RESEARCH | RESEARCH ARTICLE

MS no: RAabg8871/AB/GENETICS



GBZ file format



GFA compression
GFA is the most common interchange 
format for pangenome graphs.


It does not scale well when the number of 
haplotypes increases.


While the haplotype paths are highly similar, 
they are too long for standard compressors 
to compress them together.


The graph itself is reasonably small for 
today's computers, but it also grows with the 
number of haplotypes, if we include rare 
variants.


The overall effect is superlinear growth with 
the number of haplotypes.


There is a need for a compressed file 
format for pangenome graphs with many 
haplotype paths.


The GBWT and the GBWTGraph already 
store the necessary information!



Goals and challenges

• Stable and fully specified file format.


• Good compression.


• Fast loading into in-memory data 
structures.


• Should not make too specific 
requirements for the in-memory data 
structures.


• Easy to handle as a memory-mapped file. 

• Designing a portable file format based on 
highly specialized data structures?


• Simple enough for independent 
implementations vs. compatibility with 
existing files?


• Different priorities in the initial version 
and future versions?



File format basics
Element: Unsigned little-endian 64-bit 
integer.


File: Sequence of elements. Most objects are 
properly aligned in a memory-mapped file.


Limited number of building blocks to make 
implementation easier.


Serializable: Anything with size a multiple of 
64 bits that can be serialized by copying the 
bits.


Vector: Length as an element, followed by 
concatenated items. Padded with 0-bits if 
necessary.


Optional structure: Size in elements as an 
element, followed by the structure. Can be 
passed through as a vector of elements. For 
implementation-dependent or application-
dependent structures.


Simple-SDS 
https://github.com/jltsiren/simple-sds


vgteam fork of SDSL 
https://github.com/vgteam/sdsl-lite

https://github.com/jltsiren/simple-sds
https://github.com/vgteam/sdsl-lite


Building blocks
Bitvector: Plain bitvector with optional rank/
select structures.


Integer vector: Bit-packed integer array.


Sparse bitvector: Elias–Fano encoded 
bitvector with a bitvector as high and an 
integer vector as low.


String array: Concatenated alphabet-
compacted ({ A, C, G, N, T } → [0..5)) strings 
as an integer vector and starting positions as 
a sparse bitvector. Usually decompressed as 
an in-memory structure.


Dictionary: Mapping between strings and 
their identifiers. Stored as a string array, with 
a permutation of the identifiers in 
lexicographic order as an integer vector. 
Usually decompressed in memory.


Tags: Key–value structure with case-
insensitive keys. Stored as a string array. Key 
source identifies the library that wrote the file. 
The reader can use that information for 
determining if it can understand the optional 
structures.



GBZ file format

Full implementation in C++, partial 
implementation in Rust.


https://github.com/jltsiren/gbwt 
https://github.com/jltsiren/gbwtgraph 
https://github.com/jltsiren/gbwt-rs


The manuscript describing the file format is 
not available yet, as the benchmarks use 
HPRC graphs and the HPRC papers have 
not been submitted yet.

Header: 16 bytes 
Tags


GBZ

Header: 48 bytes 
Tags 
BWT: sparse bitvector, byte vector 
DA samples: optional, unspecified 

GBWT

Header: 40 bytes 
Path names: vector of 16-byte items 
Sample names: dictionary 
Contig names: dictionary

Optional metadata

Header: 24 bytes 
Sequences: string array 
Translation: string array, sparse bitvector

GBWTGraph

https://github.com/jltsiren/gbwt
https://github.com/jltsiren/gbwtgraph
https://github.com/jltsiren/gbwt-rs


Compression algorithm
The input file is memory-mapped and the 
algorithm assumes that the order of the lines 
is reasonable.


1. Record the starting position and type of 
each line, determine if a translation is 
necessary, and determine GBWT 
construction buffer size.


2. Process segments and build the 
translation if necessary.


3. Process links, create a temporary graph, 
find weakly connected components, and 
determine GBWT construction jobs.


4. Process path and walk headers, build 
GBWT metadata.


5. Process paths and walks, running 
multiple GBWT construction jobs in 
parallel.


6. Merge partial GBWTs and build 
GBWTGraph.
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Table 1. Datasets and their properties. We list the size of the file in uncompressed and gzip-compressed GFA

format as well as in the GBZ format. We also list the total length (in nodes) of the forward and reverse paths stored

in the GBWT index and the number of lines of each type in the file.

Dataset .gfa .gfa.gz .gbz Total length S-lines L-lines P-lines W-lines

Cactus 44.9 GiB 11.1 GiB 3.11 GiB 8.8 billion 81.4 million 113.0 million 2580 24456

PGGB 88.6 GiB 14.6 GiB 5.73 GiB 16.3 billion 110.9 million 154.8 million 34796 0

1000GP 9534.9 GiB — 16.84 GiB 2125.1 billion 293.2 million 372.9 million 0 115184

Table 2. Systems used for the experiments. Jobs indicates the number of parallel compression/decompression jobs.

System Processor CPU Cores Jobs RAM OS C++ Compiler

Desktop Intel Core i9-10910 10 physical (20 logical) 10 / 10 128 GiB macOS 12.2.1 GCC 11.2.0

Laptop Apple M1 4 performance + 4 efficiency – / 4 16 GiB macOS 12.2.1 Apple Clang 13.0.0

Intel Server Intel Xeon E5-2686 v4 16 physical (32 logical) 16 / 16 244 GiB Ubuntu 20.04 GCC 9.3.0

ARM Server AWS Graviton2 32 16 / 32 256 GiB Ubuntu 20.04 GCC 9.3.0

Table 3. Wall clock time and peak memory usage for various tasks with the Cactus dataset.

System Compression gzip Loading (C++) Loading (Rust) Decompression (C++) Decompression (Rust) gunzip

Desktop 40 min / 96.5 GiB 25 min 23 s / 11.8 GiB 19 s / 5.9 GiB 116 s / 15.5 GiB 239 s / 7.1 GiB 80 s

Laptop — — 23 s / 9.4 GiB 16 s / 5.9 GiB 186 s / 9.7 GiB 304 s / 6.5 GiB 80 s

Intel Server 19 min / 111.5 GiB 39 min 37 s / 11.7 GiB 35 s / 5.9 GiB 125 s / 14.5 GiB 193 s / 6.5 GiB 361 s

ARM Server 16 min / 111.0 GiB 48 min 33 s / 11.7 GiB 33 s / 5.9 GiB 86 s / 14.5 GiB 138 s / 7.1 GiB 350 s

Table 4. Wall clock time and peak memory usage for various tasks with the PGGB dataset.

System Compression gzip Loading (C++) Loading (Rust) Decompression (C++) Decompression (Rust) gunzip

Desktop 890 min / 114.7 GiB 34 min 43 s / 27.2 GiB 39 s / 13.1 GiB 309 s / 32.7 GiB 7226 s / 14.2 GiB 121 s

Laptop — — 70 s / 8.0 GiB 40 s / 7.6 GiB 638 s / 7.2 GiB 18451 s / 12.5 GiB 116 s

Intel Server 1365 min / 194.6 GiB 54 min 73 s / 27.1 GiB 73 s / 13.0 GiB 335 s / 32.2 GiB 9194 s / 13.5 GiB 603 s

ARM Server 1232 min / 194.3 GiB 66 min 65 s / 27.1 GiB 68 s / 13.0 GiB 187 s / 33.5 GiB 3499 s / 14.7 GiB 551 s

size. When memory usage approaches memory capacity, the operating

system starts swapping out inactive memory regions to compressed

memory and ultimately to disk.

3.4 Decompression

We decompressed the Cactus and PGGB datasets from GBZ format to

GFA format on all four system using the C++ and Rust decompressors.

Time and memory usage of can be seen in Table 3 and Table 4. We also

measured the time used by gzip decompression for a comparison.

With the Cactus dataset, the multi-threaded C++ decompressor was

about as fast as the single-threaded gzip decompressor on macOS. The

Linux version of gzip was several times slower. The Rust decompressor

was also slower, because it uses the query interface directly without

caching. ARM Server was faster than Intel Server due to having more

CPU cores.

Chromosome 16 in the PGGB dataset caused issues again. The C++

decompressor managed to decompress it in a reasonable time, as it

caches large GBWT node records. Decompression time was reasonable

even on Laptop, which only had half the memory required for the in-

memory data structures. This is because the memory access patterns

during decompression are mostly sequential, and swapping does not slow

it down too much. The Rust implementation was more than an order of

magnitude slower than the C++ implementation. Gzip decompression was

again slower in Linux than in macOS.

3.5 Scalability

The 1000GP dataset contains 55.6 times more haplotypes than the Cactus

and PGGB datasets, and the total length of the paths is 240.7 times and

130.7 times higher, respectively. However, the GBZ file is only 5.41 times

and 2.94 times larger, respectively. The GFA file would be too large to

store explicitly on any of our systems, and even the gzip-compressed file

would likely be too large for all systems except Intel Server.

We decompressed the GBZ file using the C++ implementation and

piped the output to wc to determine the size of the GFA file. This took

12.8 hours / 45.6 GiB on Intel Server and 18.2 hours / 51.2 GiB on ARM

Server. The wc tool was the bottleneck in decompression. On the average,

only about 8 parallel decompression threads were active on Intel Server.

On ARM Server, the average number of threads was approximately 5.5.

4 Discussion

We have proposed the GBZ file format for pangenome graphs representing

aligned genomes. The file format is based on data structures used in the

Giraffe aligner, and it is the preferred graph format for the aligner. GBZ

graphs are widely supported in vg (Garrison et al., 2018), and we also

provide standalone libraries for using them in other software tools.

GBZ compresses GFA files with many similar paths well. The

compression speed is competitive as long as the graph does not contain

Desktop: iMac 2020 with 128 GiB memory, 
10/20 CPU cores.


Laptop: MacBook Air 2020 with 16 GiB 
memory, 4 + 4 CPU cores.


Intel Server: AWS i3.8xlarge with 244 GiB 
memory, 16/32 CPU cores.


ARM Server: AWS r6gd.8xlarge with 
256 GiB memory, 32 CPU cores.

C++ implementation stores node labels in 
both orientations and uses more memory for 
faster decompression.


Rust implementation stores only forward 
labels and uses the query interface directly.


Memory usage is peak resident set size, 
which includes cached memory-mapped files 
but does not include pages swapped out to 
disk or to compressed memory.

.gfa: 44.9 GiB 

.gz:  11.1 GiB 

.gbz 3.11 GiB



Future ideas



Typical distances
We often use the shortest distance in the 
graph as a proxy for the distance over the 
genome.


When structures such as long deletions are 
present, this may not reflect the typical 
distance.


How to define the typical distance, how to 
compute it efficiently, and how to use it?


Andrea Mariotti and Davide Piovani are 
working on this. Contact us if you have ideas!

A B

A B

Adding a single haplotype with a long 
deletion makes regions A and B close in the 
graph.



WFA over GBWT

Wavefront algorithm (WFA) is a sequence-
to-sequence alignment algorithm generalizing 
the Myers' O(ND) algorithm to the gap-affine 
model (with mismatch, gap open, and gap 
extend penalties).


Myers: An O(ND) Difference Algorithm and 
Its Variations. Algorithmica, 1986.


Marco-Sola et al.: Fast gap-affine pairwise 
alignment using the wavefront algorithm. 
Bioinformatics, 2021. 

Challenges using WFA over the haplotypes in 
a GBWT index:


• Is the end position even reachable?


• Is the first visit to the end position the 
right one or should we hope for a cycle?


• How to avoid redundant work with 
identical local haplotypes but branch when 
they diverge?


• Can we meet in the middle if we start 
from both directions?



Long read alignment
GraphAligner is the state of the art for 
aligning long reads to a general graph (not a 
DAG).


Rautiainen, Marschall: GraphAligner: rapid 
and versatile sequence-to-graph 
alignment. Genome Biology, 2020.


Error rates have recently gone down for both 
PacBio and ONT reads.


We also have haplotype information to take 
advantage of. 

Rough idea for a new aligner:


1. Get minimizer seeds.


2. Try to use only non-overlapping seeds 
without too many hits.


3. Chain the seeds.


4. Connect the seeds using WFA.



Your ideas?


