
Burrows-Wheeler
Transform for Graphs

Jouni Sirén, University of Chile

Jouni Sirén, Niko Välimäki, Veli Mäkinen:
Indexing Graphs for Path Queries
with Applications in Genome
Research. Manuscript in review, 2013. Early
version in WABI 2011.

Burrows-Wheeler transform for a class of
graphs that includes DAGs and de Bruijn
graphs. In principle a black-box replacement for
BWT for sequences, but the practice is always
more complicated.

Burrows-Wheeler transform

• Sort the suffixes in lexicographic order and
take the previous character for each of the
suffixes.

• Easy to compress, can be used to simulate
the suffix tree and the suffix array.

• Key property: Suffixes starting with c are in
same order as suffixes preceded by c.

BWT for DAGs

1. Build an automaton representing the
reference sequence and variation.

2. Determinize the automaton.

3. Use prefix-doubling to build an equivalent
automaton that can be indexed.

G G GA AC C CT

T

T $

G G G

A

A

A

A

A

A

C

C C C

T

T T $
GA GT

ACTA CTA

ACG CG

AT TGT

TA

AG

ACC

ACTG

CC CTG TG$ G$ $

HELSINGIN YLIOPISTO
HELSINGFORS UNIVERSITET

UNIVERSITY OF HELSINKI
MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA

MATEMATISK-NATURVETENSKAPLIGA FAKULTETEN
FACULTY OF SCIENCE

Indexing Finite Language Representation
of Population Genotypes Jouni Sirén, Niko Välimäki, Veli Mäkinen

ABSTRACT
Compressed full-text indexes [6] based on the Bur-
rows-Wheeler transform (BWT) are widely used in
bioinformatics. Their most succesful application so
far has been mapping short reads to a reference
sequence (e.g. Bowtie [3], BWA [4], SOAP2 [5]).
These indexes use the BWT to simulate the suffix
tree or the suffix array (SA), while using much less
space than either of them. A simple generalization
allows indexing a set of sequences.

We propose a biologically motivated generalization
of the BWT to finite languages. Given a multiple
alignment of sequences (e.g. individual genomes),
we build a compressed index capable of simulating
the suffix array over plausible recombinations of the
sequences. Alternatively, we start from a reference
sequence and a set of mutations, and build the in-
dex over sequences containing any subset of the
mutations.

Our approach is based on finite automata. We start
with an automaton recognizing the input language.
This automaton is transformed into an equivalent
automaton, where each state corresponds to a lexi-
cographic range of suffixes of the language. A gen-
eralization of the XBW transform for labeled trees
[2] is used to index the transformed automaton.

FULL-TEXT INDEXES FOR PATTERN MATCHING AND SEQUENCE ANALYSIS

A

Suffix Tree SA Sorted Suffixes BWT

10

2

6

3

7

9

1

4

5

8

$

$GTCATGCAG $

10

2

6

3

7

9

1

4

5

8

$GTCATGCA

$GTCATGC

$GTCATG

$GTCAT

$GTCA

$GTC

$GT

$G

GTCATGCA

A

C

C

G

G

G

T

T

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

C

C

C

C

C

C

G

G

G

G

G

T

T

T

T

A

A

A

C

C

T

AC

C

$

G

T

GTACTG$

TG$

GTACTG$

TG$

$

ACGTACTG$

TACTG$

ACTG$

G$

$GTCATGCAGGC

A MATCH IN MULTIPLE ALIGNMENT

GTCATGCAG –

GATGCAG –

GTCATGAG –

GTCATCAG

– –

T

– CT TG GA

INITIAL AUTOMATON AND SORTED AUTOMATON

G G GA AC C CT

T

T $

G G G

A

A

A

A

A

A

C

C C C

T

T T $
GA GT

ACTA CTA

ACG CG

AT TGT

TA

AG

ACC

ACTG

CC CTG TG$ G$ $

GENERALIZED COMPRESSED SUFFIX ARRAY

$ ACC ACG ACTA ACTG AG AT CC CG CTA CTG G$ GA GT TA TG$ TGT #

BWT G T G G T T G A A A AC AT # CT CG C A $
Edges 1 1 1 1 1 1 1 1 1 1 1 1 100 1 100 1 1 1

Basic operations are about 2 times slower than in regular BWT-based indexes. For reasonable mutation
frequencies f , the expected size of the sorted automaton is n(1 + f)O(log n), where n is the length of the
reference sequence. For 1/f = W(log n), this becomes O(n). In our experiments, an index built for the
human reference genome and the genetic variation found in the Finnish population sample of the 1000
Genomes Project took approximately 2.8 gigabytes.

FUTURE DIRECTIONS
• With our current algorithm, the construction of

a genome-scale index requires 12 hours and
192 gigabytes of memory. We are currently in-
vestigating other algorithms, such as external
memory construction and distributed construc-
tion in the MapReduce framework [1].

• In principle, our index can be used in any algo-
rithm using a regular BWT-based index. What
can be done efficiently in practice?

• We are currently investigating several ways to
use the generalized index in read alignment.
Are there other applications, where our index
could be superior to the existing approaches?

REFERENCES
[1] J. Dean, S. Ghemawat: Simplified Data Pro-

cessing on Large Clusters. OSDI 2004.

[2] P. Ferragina et al.: Compressing and indexing
labeled trees, with applications. Journal of the
ACM, 2009.

[3] B. Langmead et al.: Ultrafast and memory-effi-
cient alignment of short DNA sequences to the
human genome. Genome Biology, 2009.

[4] H. Li, R. Durbin: Fast and accurate short read
alignment with Burrows-Wheeler Transform.
Bioinformatics, 2009.

[5] R. Li et al.: SOAP2: an improved ultrafast tool
for short read alignment. Bioinformatics, 2009.

[6] G. Navarro, V. Mäkinen: Compressed full-text
indexes. ACM Computing Surveys, 2007.

We consider paths of length 1, 2, 4, 8, 16, ...,
until no two paths starting from different nodes
have the same label.

Each doubling step starts with a relational join:
(u, v, k) ⊕ (v, w, k’) ↦ (u, w, (k, k’))

The records are then sorted by key values, and
the key pairs are replaced by integer keys.

Exponential in the worst case, linear in the
expected case under reasonable assumptions.

Index construction

1. Build an automaton representing the
reference sequence and variation.

2. Determinize the automaton.

3. Use prefix-doubling to build an equivalent
automaton that can be indexed.

4. Run out of memory.

Human chromosomes 3, 6, 8, 11, 16, 17, and 18
are hard. In doubling step 8 (path length 128 →
256), the number of paths increases e.g. from
100 million to 100 billion.

This is probably caused by variation in
repetitive regions.

Various heuristics can be used to handle these
chromosomes.

Index construction
Index Time Space Size

GCSA 14 h 215 GB 2.8 GB

BWA 1.5 h 4.2 GB 4.2 GB

RLCSA (fast construction) 0.2 h 47 GB 2.5 GB

Human reference genome and the Finnish subset of
frequent variation from dbSNP. Construction
parallelized on 24 CPU cores.

Pattern matching
Index 0 errors 1 error 2 errors 3 errors

GCSA 86.47 %
80.20 %

91.94 %
84.21 %

94.04 %
85.33 %

95.54 %
86.02 %

RLCSA 82.70 %
76.67 %

91.40 %
83.67 %

93.87 %
85.12 %

95.44 %
85.86 %

Total number of matches and unique matches with
10 million reads of length 56.

Read mapping
Index TP FP TN FN

GCSA 9,956,085 31,573 9,999,776 12,556

BWA 9,951,808 41,000 9,984,877 22,315

Variathon 2013 frequent variations: 10 million
simulated read pairs and 10 million decoy pairs of
length 70.

Highly polymorphic regions

Simulated reads from highly polymorphic regions in
Finnish genotypes (1000 Genomes Project).

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 13

TABLE 5
Read mapping accuracies on Variathon 2013 [24] data. GCSA indexing parameters were chosen to match the memory usage

of BWA. Times are reported per one million single-end reads. GCSA seed+extend uses the first 32 bases as a seed.

Single-end Paired-end

Method Errors Time TP FP TN FN TP FP TN FN

GCSA 0 1 min 2,402,679 21,641 9,998,964 7,576,716 4,122,080 11,402 10,000,000 5,866,518

GCSA 1 5 min 5,844,214 54,704 9,996,310 4,104,772 8,119,514 23,363 9,999,990 1,857,133

GCSA 2 12 min 8,271,468 81,110 9,992,215 1,655,207 9,594,486 29,005 9,999,963 376,546

GCSA 3 42 min 9,394,715 97,335 9,986,618 521,332 9,904,071 30,868 9,999,894 65,167

GCSA 4 210 min 9,779,248 108,091 9,979,526 133,135 9,956,085 31,573 9,999,776 12,566

GCSA seed+extend 2 27 min 9,577,410 163,478 9,967,103 292,009 9,916,508 53,819 9,998,309 31,364

BWA default 2 min 9,522,906 101,828 9,984,898 390,368 9,951,808 41,000 9,984,877 22,315

BWBBLE 3 51 min 9,294,203 95,167 9,987,943 622,687 n/a n/a n/a n/a

●●

●●

● ●

85 90 95 100
Mapped reads (%)

BWA (w/ non−unique)

BWA (w/o non−unique)

GCSA (w/ non−unique)

GCSA (w/o non−unique)

Best (w/ non−unique)

Best (w/o non−unique)

Fig. 6. Mapping reads simulated from highly-polymorphic regions in Finnish genotypes (1000 Genomes Project phase 1
data). BWA used the standard GRCh37 reference, GCSA used the known variation from the 1KGP data, and“Best”used the
reference which the reads were simulated from (n=186 Finnish genotypes).

TABLE 6
Experiments for splicing-graph construction using either the known transcripts (here the gold standard) or the predicted

transcripts over di↵erent window-sizes. We also report the number of uniquely mapped reads at their correct (true
positives, TP) and incorrect positions (false positives, FP).

Splicing Construction Alignment

graph Window Junctions Space Time Size TP FP Time

Known – 12,192 8.0 GB 39 min 144 MB 755,661 0 3.8 min

Predicted 100 186 8.0 GB 38 min 144 MB 623,496 3,895 3.3 min

Predicted 1, 000 3,939 8.0 GB 43 min 144 MB 656,957 3,549 3.6 min

Predicted 10, 000 37,298 8.1 GB 45 min 145 MB 731,147 8,071 3.8 min

Predicted 100, 000 218,409 33 GB 119 min 427 MB 740,845 17,326 4.3 min

Predicted 250, 000 441,581 failed – – – –

requirement is O(pn log n) bits for a reference sequence of
length n and mutation rate p. During the construction
of the index, it is also easy to discard paths with small
probabilities, given a threshold. This approach can be
used e.g. to index recombinants only in the recombination
hotspot areas [27].

The experiments conducted here aimed at demonstrat-
ing the feasibility and potential of the approach. As can be
observed, our index can not be applied as black-box, but
it gives powerful machinery to be tailored for each genome
analysis application at hand. The current implementation

has an interface compatible with variation calling work-
flows. The implementation also supports aligning reads to
phylogenetic tree of partial-order graphs, and this is also
part of ongoing research with our collaborators. We also
plan to incorporate the split-read alignment to transcript
expression prediction workflows and design a workflow for
cancer genetics research with our collaborators. In fact,
the experiment on highly-polymorphic regions strongly
suggest that our index should be valuable in studying
disease-causing mutations [9].

100x slower than BWA

2x Fundamental differences

5x Implementation choices

2x Reverse complements

5x Backtracking heuristics

Alexander Bowe, Taku Onodera, Kunihiko
Sadakane, Tetsuo Shibuya: Succinct de Bruijn
Graphs. WABI 2012.

Different terminology and different design choices,
but the core combinatorial structure is essentially
the same generalization of BWT for graphs.

Conclusions

• We can build BWT for DAGs and de Bruijn
graphs.

• This is not always a black-box replacement
for BWT for sequences.

• Construction is expensive, but can be
improved.

