
Giraffe: A Pangenomic
Short Read Aligner

Jouni Sirén

UCSC Genomics Institute

Giraffe aligner

https://github.com/vgteam/vg

To appear in Science, 2021. 
 
Preprint on bioRxiv: 
https://doi.org/10.1101/2020.12.04.412486

• Pangenomic short read aligner.

• Combines the speed of linear aligners with
the accuracy of graph-based aligners.

• Designed for (paired-end 150 bp) Illumina
reads, where most sequencing errors are
substitutions.

• Restricts its attention to paths that are
locally consistent with observed
haplotypes.

• Part of the VG toolkit.

RESEARCH ARTICLE
◥

GENOMICS

Pangenomics enables genotyping of known structural
variants in 5202 diverse genomes
Jouni Sirén1†, Jean Monlong1†, Xian Chang1†, Adam M. Novak1†, Jordan M. Eizenga1†,
Charles Markello1, Jonas A. Sibbesen1, Glenn Hickey1, Pi-Chuan Chang2, Andrew Carroll2,
Namrata Gupta3, Stacey Gabriel4, Thomas W. Blackwell5, Aakrosh Ratan6, Kent D. Taylor7,
Stephen S. Rich6, Jerome I. Rotter7, David Haussler1,8, Erik Garrison9, Benedict Paten1*

We introduce Giraffe, a pangenome short-read mapper that can efficiently map to a collection
of haplotypes threaded through a sequence graph. Giraffe maps sequencing reads to thousands
of human genomes at a speed comparable to that of standard methods mapping to a single
reference genome. The increased mapping accuracy enables downstream improvements in
genome-wide genotyping pipelines for both small variants and larger structural variants. We used
Giraffe to genotype 167,000 structural variants, discovered in long-read studies, in 5202 diverse
human genomes that were sequenced using short reads. We conclude that pangenomics
facilitates a more comprehensive characterization of variation and, as a result, has the potential
to improve many genomic analyses.

T
he field of genomics almost exclusively
uses a single reference genome assembly
as an archetype of a human genome. Re-
liance on comparing with the sequences
within the reference assemblyhas created

a pervasive bias toward the alleles it contains.
This reference allele bias occurs because
nonreference alleles are naturally harder to
identify when mapping DNA sequencing data
to the reference sequences. Reference allele
bias is particularly acute for structural var-
iations (SVs), which are complex alleles in-
volving 50 or more nucleotides of divergent
sequence. SVs affect millions of bases within
each human genome. Because of reference
allele bias, SVs are much more poorly char-
acterized than single-nucleotide variants
(SNVs) and short insertions and deletions
(collectively termed indels) (1, 2). Similarly,
characterizing genetic variation in highly poly-
morphic and repetitive sequences has proven
challenging (3).
Recent releases of the reference human

genome assembly attempted to address these
issues by adding additional sequences. These

alternate sequences represent diversity in
localized regions of the genome (4). However,
to date, these limited additions have not found
widespread use. By contrast, pangenomes en-
code information about many complete ge-
nome assemblies and their homologies (the
sequences that are shared between genomes
by virtue of descending from a common ances-
tral sequence). Pangenomes are emerging as a
replacement for linear reference assemblies to
help mitigate these problems (5–7). They can
particularly improve genotyping of structural
variants (8).
Pangenomes are frequently formulated as

sequence graphs (9)—mathematical graphs
that represent the homology relationships
between multiple sequences. Several algo-
rithms have been developed for mapping
sequences to sequence graphs. None has yet
made mapping the short sequencing reads
from widely used DNA sequencers, such as
those made by Illumina, to a structurally
complex pangenome a practical option for
large-scale applications. The original VG-MAP
algorithm (10)maps to complex sequence graphs
that contain cycles producedby duplications and
complex genomic rearrangements (10). How-
ever, VG-MAP is at least an order ofmagnitude
slower than popular linear genome mappers
that have comparable accuracy. Given that
mapping is frequently a bottleneck in genome
analysis, the cost of VG-MAP has proven
prohibitive. Other pangenome mappers have
different capabilities and limitations. Some
are faster but are limited to acyclic graphs that
contain variation at relatively low density (11),
and some canmap to arbitrary sequence graphs
but are designed for long reads (12). Other tools
are not open source and are thus unavailable

for general testing and customization (13, 14),
and someadditionally cannot runoncommodity
computing environments (14).

Results
Giraffe: Fast, haplotype-aware pangenome
mapping

When a sequence graph reference (5) (fig. S1)
is substituted for the traditional linear reference
(F1Fig. 1A), it can reduce reference allele bias
by including more alleles (10). However, it
also expands the size of the alignment search
space from a few linear chromosome strings
to a combinatorially large number of paths
in the graph. This has made our previous
graph mappers slower than linear mappers
(10). Giraffe solves this problem by consid-
ering the paths that are observed in individuals’
genomes: the reference haplotypes. We use
the two haplotypes (one from each parent)
that each individual has in their genome and
trace them as paths through the sequence
graph. The graph describes which positions in
the haplotypes are equivalent, whereas the
haplotypes describe the subset of the possible
paths in the graph to consider. Giraffe uses a
graphburrowswheeler transform (GBWT) index
(15) to store and query a graph’s haplotypes
efficiently.
Giraffe’s strategy of aligning to haplotype

paths has two key benefits. First, it prioritizes
alignments that are consistent with known
sequences, thereby avoiding combinations of
alleles that are biologically unlikely. Second,
it reduces the size of the problem by limiting
the sequence space to which the reads could
be aligned. This deals effectively with complex
graph regions where most paths represent rare
or nonexistent sequences.
We designedGiraffe tominimize the amount

of gapped alignment that is performed. Com-
puting gapped alignments, in which sequences
are allowed to gain or lose bases relative to each
other, is much more expensive than gapless
alignment because it requires pairwise dynamic
programming algorithms. Most Illumina se-
quencing errors are substitutions (16), and
common true indels relative to the traditional
linear reference should already be present in
the haplotypes; therefore, almost all reads
will have a gapless alignment to some stored
haplotype. Hence, we try to align each read
without gaps before resorting to dynamic
programming.
Giraffe follows the common seed-and-extend

approach used by most existing mappers [see
algorithm in (17)]. In this framework, short
seed matches between a sequencing read and
a genomic reference are found with minimal
work, and then only good seeds are extended
into mappings of the entire read (18–20). A
visual overview of Giraffe’s operation is given
in (Fig. 1, B to F). The Giraffe algorithm uses
several heuristics for prioritizing alignments.

RESEARCH

Sirén et al., Science 374, eabg8871 (2021) 17 December 2021 1 of 11

1UC Santa Cruz Genomics Institute, Santa Cruz, CA, USA.
2Google Inc., Mountain View, CA, USA. 3Genomics Platform,
Broad Institute, Cambridge, MA, USA. 4Program in Medical
and Population Genetics, Broad Institute, Cambridge,
MA, USA. 5Center for Statistical Genetics, University of
Michigan, Ann Arbor, MI, USA. 6Center for Public Health
Genomics, University of Virginia, Charlottesville, VA, USA.
7The Institute for Translational Genomics and Population
Sciences, Department of Pediatrics, The Lundquist Institute
for Biomedical Innovation at Harbor–UCLA Medical Center,
Torrance, CA, USA. 8Howard Hughes Medical Institute,
University of California, Santa Cruz, CA, USA. 9Department of
Genetics, Genomics, and Informatics, University of
Tennessee Health Science Center, Memphis, TN, USA.
*Corresponding author. Email: bpaten@ucsc.edu
†These authors contributed equally to this work.

MS no: RAabg8871/AB/GENETICS

https://github.com/vgteam/vg
https://doi.org/10.1101/2020.12.04.412486

Read alignment: the easy part
Mapping: Approximate location of the read in
the reference.

Alignment: The best base-to-base alignment
between the read and the reference near a
particular mapping.

Typical considerations: mapping speed,
fraction of mapped reads, fraction of correct
mappings.

With these goals, read aligner design has equal
parts of science, engineering, and art to it.

Mostly a principled process with some
heuristics and computational parameters.

Seed and extend approach:

1. Find seeds (partial alignments) using a text
index.

2. Cluster the seeds that correspond to the
same mapping (or chain them into rough
alignments with long reads).

3. Extend the seeds into full alignments.

We continue exploring promising mappings
until we are confident that we have found the
best alignment.

The ugly part
Mapping quality: Our confidence that we
have chosen the correct mapping.

mapq = -10 log10 p, where p is (the
estimated) error probability.

Usually capped at 60 (one-in-million) and
rarely calibrated that well in practice.

We model the probability to get the read from
a particular alignment due to sequencing
errors and unknown variants.

In principle, we can compute the mapping
quality from the probabilities over all possible
alignments (or mappings).

In practice, we use heuristics to determine
when unexplored mappings should no longer
have a significant effect on mapq.

We also estimate the probability that the
heuristics went wrong and there was a good
alignment we did not find.

It seems unavoidable that we spend months
investigating why we map a handful of reads
incorrectly with mapq 60 and how to deal
with them without making the aligner too
slow.

From VG map to Giraffe
Garrison et al.: Variation graph toolkit
improves read mapping by representing
genetic variation in the reference. 
Nature Biotechnology, 2018. 
DOI: 10.1038/nbt.4227

The original VG aligner can be understood as
an adaptation of BWA-MEM for graphs.

It is more accurate than aligners mapping
short reads to linear reference sequences but
also ~10x slower than them.

Index construction requires graph pruning
and takes 1–2 days for a human graph.

Complex graph regions are computationally
expensive, because the number of possible
paths grows exponentially with the number of
variants.

Giraffe started as an attempt to deal with the
weaknesses of VG map by:

• relying less on sophisticated text indexes;

• using haplotype information to deal with
complex regions; and

• avoiding expensive dynamic programming.

https://doi.org/10.1038/nbt.4227

Giraffe data model
The graph represents a collection of aligned
haplotypes.

Positions in the haplotypes that map to the
same node are considered equivalent.

Each traversal of the graph is a potential
haplotype.

Traversals that are locally consistent with the
original haplotypes are more likely to be
biologically plausible.

The original haplotypes are stored as paths.

path ~ walk 
path ~ stored traversal 

traversal ~ emergent path

GBWT

Sirén et al.: Haplotype-aware graph
indexes. Bioinformatics, 2020. 
DOI: 10.1093/bioinformatics/btz575

https://github.com/jltsiren/gbwt 
https://github.com/jltsiren/gbwtgraph 
https://github.com/jltsiren/gbwt-rs

GBWT is effectively RLBWT for integer
sequences. (There should be a talk on
RLBWT on Friday.)

We choose to interpret the integers as nodes
and the sequences as haplotype paths.

If the paths are similar enough, the GBWT
can store them space-efficiently.

We partition the BWT and the rank structure
into nodes, which improves memory locality.

For any graph traversal, we can easily
determine how many indexed paths contain
the traversal as a subpath.

https://doi.org/10.1093/bioinformatics/btz575
https://github.com/jltsiren/gbwt
https://github.com/jltsiren/gbwtgraph
https://github.com/jltsiren/gbwt-rs

Giraffe algorithm
1. Find seeds using a minimizer index of the

haplotypes.

2. Cluster the seeds using a distance index
based on a hierarchical decomposition of
the graph.

3. Extend the seeds over the haplotypes,
allowing for a limited number of
mismatches.

4. If we did not get enough full-length
alignments, align the tails of best partial
extensions using dynamic programming
over the haplotypes.

1. Minimizer seeds
Due to my background, I used to think that
text indexes are a big deal in read aligners.

For Giraffe, we chose to use a minimizer
index: a simple hash table that maps k-mers
to graph positions.

A (w, k)-minimizer is the k-mer with the
smallest hash value among all k-mers and
their reverse complements in a w + k – 1 bp
window.

We index all minimizers in the haplotypes.
Index construction takes 5–10 minutes for a
human genome graph, which may be faster
than loading the index from a network drive.

Most minimizers are unique (in the graph),
while minimizers occurring in repetitive
regions may have too many hits to be useful.

For each read, we choose all minimizers
below the soft hit cap (10 hits) and some
minimizers below the hard hit cap (500 hits),
using a scoring heuristic.

We try to avoid using minimizers with multiple
occurrences in the read, because each (read
position, graph position) pair is a separate
seed.

2. Seed clustering
Clustering requires measuring distances
between graph positions, which can be slow.

We use a distance index based on the snarl
decomposition of the graph, which reduces
distances in the graph to distances in a
shallow tree.

Each graph component is a chain of snarls,
and each snarl is primitive or consists of
parallel chains.

Chang et al.: Distance indexing and seed
clustering in sequence graphs. 
Bioinformatics, 2020. 
DOI: 10.1093/bioinformatics/btaa446

https://doi.org/10.1093/bioinformatics/btaa446

3. Seed extension
We extend the seeds in most promising
clusters, chosen primarily by the fraction of
the read covered by the minimizers.

Before extending, we merge seeds
corresponding to the same alignment
between the read and a node.

For each seed, we find the extension with the
highest alignment score among all
extensions over local haplotypes.

Seed extension is based on traversing a
bidirectional GBWT (starting from the seed
node) and counting the number of
mismatches between read/node substrings.

We allow any number of mismatches in the
seed node, 4 mismatches in total, and 2
mismatches in each flank (even if that would
exceed the overall mismatch bound).

If there are full-length extensions, we return
those that do not overlap too much.

Otherwise we trim the partial extensions to
maximize the alignment scores and return all
distinct extensions.

4. Gapped alignment
If we did not find enough full-length
alignments, the read may contain indels that
are not present in the haplotypes.

We then resort to dynamic programming,
aligning the tails of most promising
extensions over all local haplotypes.

The decisions which extensions to align
involve some of the ugliest and most
complicated heuristics in Giraffe.

Because we handle the tails independently,
we may also find alignments corresponding
to recombinations of the haplotypes.

Extension
Left tail Right tail

Haplotypes

Alignment with a recombination

Paired-end mapping
If fragment length distribution is not
provided, Giraffe estimates it with single-end
mapping until there are enough confidently
mapped pairs.

We cluster the seeds for both reads at the
same time and pair clusters that are
approximately at the right distance from each
other.

If we have a confidently mapped read with an
unmapped pair, we extract a subgraph and
try to rescue the pair by aligning it using a
simplified version of the Giraffe algorithm.

Mapped

read

Estimated

pair location-4σ +4σ

Seeds

Best extension

+

tail alignment

Artificial haplotypes
1. The graph we use as a mapping target

may contain components (e.g. decoy
sequences, unlocalized contigs) without
haplotype information.

2. When we add a variant to the graph, it
increases mapping accuracy for samples
that contain the variant and reduces the
accuracy for samples that do not contain
it. For rare variants, the trade-off may not
be worth it.

3. Mapping speed depends on the
complexity of the graph and number of
distinct local haplotypes.

We can deal with these issues by generating
artificial haplotypes with a greedy algorithm
that samples k-node (default k = 4) local
haplotypes proportionally.

Inspired by: 
Ghaffaari, Marschall: Fully-sensitive seed
finding in sequence graphs using a hybrid
index. Bioinformatics, 2019.

If there are more than ~200 haplotypes in the
graph, the current best practice is
downsampling them to 64 artificial
haplotypes.

It was also faster at aligning to human graphs
than Bowtie2 or BWA-MEM were at aligning
to the corresponding linear reference. For the
1000GP graph, using the 64-haplotype sampled
GBWT for mapping instead of the full ∼5000-
haplotype GBWT was much faster in every
case. HISAT2 and fast Giraffe were both about
equally fast andwere both faster than all other
mappers.
Because of the in-memory indexes it uses,

Giraffe’s memory consumption is higher than
the other mappers, except for GraphAligner.
However, it canmap to the 1000GP graphwith
the fullGBWT in∼80gigabytes (GB)ofmemory—

an amount readily available on compute cluster
nodes (Fig. 3, C and D).

Giraffe reduces allele mapping bias

We assessed Giraffe’s reference bias (17). We
expected Giraffe to be able to use the extra
variation information contained in the graph
reference to achieve a lower level of bias than a
linear mapper. For variants that were hetero-
zygous in NA19239, we found the fraction of
reads supporting alternate versus reference
alleles at each indel length (F4Fig. 4A). Giraffe
and VG-MAP both show less bias toward the
reference allele than a linear mapper, and this

difference becomes more pronounced as
indel length increases, particularly for larger
insertions.

Giraffe genotyping outperforms best practices

We used Illumina’s Dragen platform (14) to
genotype SNVs and short indels using Giraffe
mappings to the 1000GP graph, projected onto
the linear reference assembly. We compared
these results with results using competing graph
and linear reference mappers (17). No training
or optimization was performed for any of the
mappingsother than thoseperformedbydefault
by Dragen itself. We evaluated the calls using

Sirén et al., Science 374, eabg8871 (2021) 17 December 2021 4 of 11

Fig. 3. Runtime and memory
usage. (A to D) Total runtime
[(A) and (B)] and peak memory
use [(C) and (D)] for mapping
~600 million NovaSeq 6000 reads
using 16 threads. Reads were
mapped [(A) and (C)] to
the 1000GP derived graph or
(for linear mappers) the GRCH38
assembly and [(B) and (D)] to
the HGSVC graph or GRCh38
reference, respectively. For
HISAT2*, results are shown for
the subset 1000GP graph
(22). “Giraffe full” refers to
mapping using the full GBWT of
all haplotypes. “Giraffe sampled”
refers to mapping using the
64-haplotype sampled GBWT.

0 20 40 60 80 100

Memory (GB)

C 1000GP/GRCh38 NovaSeq 6000 Memory

0 20 40 60 80 100

Memory (GB)

D HGSVC/GRCh38 NovaSeq 6000 Memory

A 1000GP/GRCh38 NovaSeq 6000 Runtime

Runtime (hours)
0 10 20 30 40 50

B HGSVC/GRCh38 NovaSeq 6000 Runtime

Runtime (hours)
0 10 20 30 40 50

VG-MAP paired

VG-MAP single

Bowtie2 paired

Bowtie2 single

BWA-MEM paired

BWA-MEM single

Minimap2 paired

Minimap2 single

HISAT2 paired

HISAT2 single

GraphAligner

Minimap2 single

Minimap2 paired

BWA-MEM paired

HISAT2 paired

HISAT2 single

BWA-MEM single

Bowtie2 paired

GraphAligner

VG-MAP paired

VG-MAP single

Bowtie2 single

VG-MAP paired

VG-MAP single

Bowtie2 paired

Bowtie2 single

BWA-MEM paired

BWA -MEM single

Minimap2 paired

Minimap2 single

HISAT2* paired

HISAT2* single

VG-MAP single

VG-MAP paired

Minimap2 single

Minimap2 paired

BWA-MEM paired

HISAT2* paired

HISAT2* single

BWA-MEM single

Bowtie2 paired

Bowtie2 single

Out of memoryGraphAligner

RESEARCH | RESEARCH ARTICLE

MS no: RAabg8871/AB/GENETICS

It was also faster at aligning to human graphs
than Bowtie2 or BWA-MEM were at aligning
to the corresponding linear reference. For the
1000GP graph, using the 64-haplotype sampled
GBWT for mapping instead of the full ∼5000-
haplotype GBWT was much faster in every
case. HISAT2 and fast Giraffe were both about
equally fast andwere both faster than all other
mappers.
Because of the in-memory indexes it uses,

Giraffe’s memory consumption is higher than
the other mappers, except for GraphAligner.
However, it canmap to the 1000GP graphwith
the fullGBWT in∼80gigabytes (GB)ofmemory—

an amount readily available on compute cluster
nodes (Fig. 3, C and D).

Giraffe reduces allele mapping bias

We assessed Giraffe’s reference bias (17). We
expected Giraffe to be able to use the extra
variation information contained in the graph
reference to achieve a lower level of bias than a
linear mapper. For variants that were hetero-
zygous in NA19239, we found the fraction of
reads supporting alternate versus reference
alleles at each indel length (F4Fig. 4A). Giraffe
and VG-MAP both show less bias toward the
reference allele than a linear mapper, and this

difference becomes more pronounced as
indel length increases, particularly for larger
insertions.

Giraffe genotyping outperforms best practices

We used Illumina’s Dragen platform (14) to
genotype SNVs and short indels using Giraffe
mappings to the 1000GP graph, projected onto
the linear reference assembly. We compared
these results with results using competing graph
and linear reference mappers (17). No training
or optimization was performed for any of the
mappingsother than thoseperformedbydefault
by Dragen itself. We evaluated the calls using

Sirén et al., Science 374, eabg8871 (2021) 17 December 2021 4 of 11

Fig. 3. Runtime and memory
usage. (A to D) Total runtime
[(A) and (B)] and peak memory
use [(C) and (D)] for mapping
~600 million NovaSeq 6000 reads
using 16 threads. Reads were
mapped [(A) and (C)] to
the 1000GP derived graph or
(for linear mappers) the GRCH38
assembly and [(B) and (D)] to
the HGSVC graph or GRCh38
reference, respectively. For
HISAT2*, results are shown for
the subset 1000GP graph
(22). “Giraffe full” refers to
mapping using the full GBWT of
all haplotypes. “Giraffe sampled”
refers to mapping using the
64-haplotype sampled GBWT.

0 20 40 60 80 100

Memory (GB)

C 1000GP/GRCh38 NovaSeq 6000 Memory

0 20 40 60 80 100

Memory (GB)

D HGSVC/GRCh38 NovaSeq 6000 Memory

A 1000GP/GRCh38 NovaSeq 6000 Runtime

Runtime (hours)
0 10 20 30 40 50

B HGSVC/GRCh38 NovaSeq 6000 Runtime

Runtime (hours)
0 10 20 30 40 50

VG-MAP paired

VG-MAP single

Bowtie2 paired

Bowtie2 single

BWA-MEM paired

BWA-MEM single

Minimap2 paired

Minimap2 single

HISAT2 paired

HISAT2 single

GraphAligner

Minimap2 single

Minimap2 paired

BWA-MEM paired

HISAT2 paired

HISAT2 single

BWA-MEM single

Bowtie2 paired

GraphAligner

VG-MAP paired

VG-MAP single

Bowtie2 single

VG-MAP paired

VG-MAP single

Bowtie2 paired

Bowtie2 single

BWA-MEM paired

BWA -MEM single

Minimap2 paired

Minimap2 single

HISAT2* paired

HISAT2* single

VG-MAP single

VG-MAP paired

Minimap2 single

Minimap2 paired

BWA-MEM paired

HISAT2* paired

HISAT2* single

BWA-MEM single

Bowtie2 paired

Bowtie2 single

Out of memoryGraphAligner

RESEARCH | RESEARCH ARTICLE

MS no: RAabg8871/AB/GENETICS

Thank you!

