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• Pangenomic short read aligner.


• Combines the speed of linear aligners with 
the accuracy of graph-based aligners.


• Designed for (paired-end 150 bp) Illumina 
reads, where most sequencing errors are 
substitutions.


• Restricts its attention to paths that are 
locally consistent with observed 
haplotypes.


• Part of the VG toolkit.
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Pangenomics enables genotyping of known structural
variants in 5202 diverse genomes
Jouni Sirén1†, Jean Monlong1†, Xian Chang1†, Adam M. Novak1†, Jordan M. Eizenga1†,
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Namrata Gupta3, Stacey Gabriel4, Thomas W. Blackwell5, Aakrosh Ratan6, Kent D. Taylor7,
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We introduce Giraffe, a pangenome short-read mapper that can efficiently map to a collection
of haplotypes threaded through a sequence graph. Giraffe maps sequencing reads to thousands
of human genomes at a speed comparable to that of standard methods mapping to a single
reference genome. The increased mapping accuracy enables downstream improvements in
genome-wide genotyping pipelines for both small variants and larger structural variants. We used
Giraffe to genotype 167,000 structural variants, discovered in long-read studies, in 5202 diverse
human genomes that were sequenced using short reads. We conclude that pangenomics
facilitates a more comprehensive characterization of variation and, as a result, has the potential
to improve many genomic analyses.

T
he field of genomics almost exclusively
uses a single reference genome assembly
as an archetype of a human genome. Re-
liance on comparing with the sequences
within the reference assemblyhas created

a pervasive bias toward the alleles it contains.
This reference allele bias occurs because
nonreference alleles are naturally harder to
identify when mapping DNA sequencing data
to the reference sequences. Reference allele
bias is particularly acute for structural var-
iations (SVs), which are complex alleles in-
volving 50 or more nucleotides of divergent
sequence. SVs affect millions of bases within
each human genome. Because of reference
allele bias, SVs are much more poorly char-
acterized than single-nucleotide variants
(SNVs) and short insertions and deletions
(collectively termed indels) (1, 2). Similarly,
characterizing genetic variation in highly poly-
morphic and repetitive sequences has proven
challenging (3).
Recent releases of the reference human

genome assembly attempted to address these
issues by adding additional sequences. These

alternate sequences represent diversity in
localized regions of the genome (4). However,
to date, these limited additions have not found
widespread use. By contrast, pangenomes en-
code information about many complete ge-
nome assemblies and their homologies (the
sequences that are shared between genomes
by virtue of descending from a common ances-
tral sequence). Pangenomes are emerging as a
replacement for linear reference assemblies to
help mitigate these problems (5–7). They can
particularly improve genotyping of structural
variants (8).
Pangenomes are frequently formulated as

sequence graphs (9)—mathematical graphs
that represent the homology relationships
between multiple sequences. Several algo-
rithms have been developed for mapping
sequences to sequence graphs. None has yet
made mapping the short sequencing reads
from widely used DNA sequencers, such as
those made by Illumina, to a structurally
complex pangenome a practical option for
large-scale applications. The original VG-MAP
algorithm (10)maps to complex sequence graphs
that contain cycles producedby duplications and
complex genomic rearrangements (10). How-
ever, VG-MAP is at least an order ofmagnitude
slower than popular linear genome mappers
that have comparable accuracy. Given that
mapping is frequently a bottleneck in genome
analysis, the cost of VG-MAP has proven
prohibitive. Other pangenome mappers have
different capabilities and limitations. Some
are faster but are limited to acyclic graphs that
contain variation at relatively low density (11),
and some canmap to arbitrary sequence graphs
but are designed for long reads (12). Other tools
are not open source and are thus unavailable

for general testing and customization (13, 14),
and someadditionally cannot runoncommodity
computing environments (14).

Results
Giraffe: Fast, haplotype-aware pangenome
mapping

When a sequence graph reference (5) (fig. S1)
is substituted for the traditional linear reference
( F1Fig. 1A), it can reduce reference allele bias
by including more alleles (10). However, it
also expands the size of the alignment search
space from a few linear chromosome strings
to a combinatorially large number of paths
in the graph. This has made our previous
graph mappers slower than linear mappers
(10). Giraffe solves this problem by consid-
ering the paths that are observed in individuals’
genomes: the reference haplotypes. We use
the two haplotypes (one from each parent)
that each individual has in their genome and
trace them as paths through the sequence
graph. The graph describes which positions in
the haplotypes are equivalent, whereas the
haplotypes describe the subset of the possible
paths in the graph to consider. Giraffe uses a
graphburrowswheeler transform (GBWT) index
(15) to store and query a graph’s haplotypes
efficiently.
Giraffe’s strategy of aligning to haplotype

paths has two key benefits. First, it prioritizes
alignments that are consistent with known
sequences, thereby avoiding combinations of
alleles that are biologically unlikely. Second,
it reduces the size of the problem by limiting
the sequence space to which the reads could
be aligned. This deals effectively with complex
graph regions where most paths represent rare
or nonexistent sequences.
We designedGiraffe tominimize the amount

of gapped alignment that is performed. Com-
puting gapped alignments, in which sequences
are allowed to gain or lose bases relative to each
other, is much more expensive than gapless
alignment because it requires pairwise dynamic
programming algorithms. Most Illumina se-
quencing errors are substitutions (16), and
common true indels relative to the traditional
linear reference should already be present in
the haplotypes; therefore, almost all reads
will have a gapless alignment to some stored
haplotype. Hence, we try to align each read
without gaps before resorting to dynamic
programming.
Giraffe follows the common seed-and-extend

approach used by most existing mappers [see
algorithm in (17)]. In this framework, short
seed matches between a sequencing read and
a genomic reference are found with minimal
work, and then only good seeds are extended
into mappings of the entire read (18–20). A
visual overview of Giraffe’s operation is given
in (Fig. 1, B to F). The Giraffe algorithm uses
several heuristics for prioritizing alignments.
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Read alignment: the easy part
Mapping: Approximate location of the read in 
the reference.


Alignment: The best base-to-base alignment 
between the read and the reference near a 
particular mapping.


Typical considerations: mapping speed, 
fraction of mapped reads, fraction of correct 
mappings.


With these goals, read aligner design has equal 
parts of science, engineering, and art to it.


Mostly a principled process with some 
heuristics and computational parameters.


Seed and extend approach:


1. Find seeds (partial alignments) using a text 
index.


2. Cluster the seeds that correspond to the 
same mapping (or chain them into rough 
alignments with long reads).


3. Extend the seeds into full alignments.


We continue exploring promising mappings 
until we are confident that we have found the 
best alignment.



The ugly part
Mapping quality: Our confidence that we 
have chosen the correct mapping.


mapq = -10 log10 p, where p is (the 
estimated) error probability.


Usually capped at 60 (one-in-million) and 
rarely calibrated that well in practice.


We model the probability to get the read from 
a particular alignment due to sequencing 
errors and unknown variants.


In principle, we can compute the mapping 
quality from the probabilities over all possible 
alignments (or mappings).


In practice, we use heuristics to determine 
when unexplored mappings should no longer 
have a significant effect on mapq.


We also estimate the probability that the 
heuristics went wrong and there was a good 
alignment we did not find.


It seems unavoidable that we spend months 
investigating why we map a handful of reads 
incorrectly with mapq 60 and how to deal 
with them without making the aligner too 
slow.



From VG map to Giraffe
Garrison et al.: Variation graph toolkit 
improves read mapping by representing 
genetic variation in the reference. 
Nature Biotechnology, 2018. 
DOI: 10.1038/nbt.4227


The original VG aligner can be understood as 
an adaptation of BWA-MEM for graphs.


It is more accurate than aligners mapping 
short reads to linear reference sequences but 
also ~10x slower than them.


Index construction requires graph pruning 
and takes 1–2 days for a human graph.


Complex graph regions are computationally 
expensive, because the number of possible 
paths grows exponentially with the number of 
variants.


Giraffe started as an attempt to deal with the 
weaknesses of VG map by:


• relying less on sophisticated text indexes;


• using haplotype information to deal with 
complex regions; and


• avoiding expensive dynamic programming.

https://doi.org/10.1038/nbt.4227


Giraffe data model
The graph represents a collection of aligned 
haplotypes.


Positions in the haplotypes that map to the 
same node are considered equivalent.


Each traversal of the graph is a potential 
haplotype.


Traversals that are locally consistent with the 
original haplotypes are more likely to be 
biologically plausible.


The original haplotypes are stored as paths.

path ~ walk 
path ~ stored traversal 

traversal ~ emergent path



GBWT

Sirén et al.: Haplotype-aware graph 
indexes. Bioinformatics, 2020. 
DOI: 10.1093/bioinformatics/btz575


https://github.com/jltsiren/gbwt 
https://github.com/jltsiren/gbwtgraph 
https://github.com/jltsiren/gbwt-rs

GBWT is effectively RLBWT for integer 
sequences. (There should be a talk on 
RLBWT on Friday.)


We choose to interpret the integers as nodes 
and the sequences as haplotype paths.


If the paths are similar enough, the GBWT 
can store them space-efficiently.


We partition the BWT and the rank structure 
into nodes, which improves memory locality.


For any graph traversal, we can easily 
determine how many indexed paths contain 
the traversal as a subpath.

https://doi.org/10.1093/bioinformatics/btz575
https://github.com/jltsiren/gbwt
https://github.com/jltsiren/gbwtgraph
https://github.com/jltsiren/gbwt-rs


Giraffe algorithm
1. Find seeds using a minimizer index of the 

haplotypes.


2. Cluster the seeds using a distance index 
based on a hierarchical decomposition of 
the graph.


3. Extend the seeds over the haplotypes, 
allowing for a limited number of 
mismatches.


4. If we did not get enough full-length 
alignments, align the tails of best partial 
extensions using dynamic programming 
over the haplotypes.



1. Minimizer seeds
Due to my background, I used to think that 
text indexes are a big deal in read aligners.


For Giraffe, we chose to use a minimizer 
index: a simple hash table that maps k-mers 
to graph positions.


A (w, k)-minimizer is the k-mer with the 
smallest hash value among all k-mers and 
their reverse complements in a w + k – 1 bp 
window.


We index all minimizers in the haplotypes. 
Index construction takes 5–10 minutes for a 
human genome graph, which may be faster 
than loading the index from a network drive.


Most minimizers are unique (in the graph), 
while minimizers occurring in repetitive 
regions may have too many hits to be useful.


For each read, we choose all minimizers 
below the soft hit cap (10 hits) and some 
minimizers below the hard hit cap (500 hits), 
using a scoring heuristic.


We try to avoid using minimizers with multiple 
occurrences in the read, because each (read 
position, graph position) pair is a separate 
seed.



2. Seed clustering
Clustering requires measuring distances 
between graph positions, which can be slow.


We use a distance index based on the snarl 
decomposition of the graph, which reduces 
distances in the graph to distances in a 
shallow tree.


Each graph component is a chain of snarls, 
and each snarl is primitive or consists of 
parallel chains.


Chang et al.: Distance indexing and seed 
clustering in sequence graphs. 
Bioinformatics, 2020. 
DOI: 10.1093/bioinformatics/btaa446

https://doi.org/10.1093/bioinformatics/btaa446


3. Seed extension
We extend the seeds in most promising 
clusters, chosen primarily by the fraction of 
the read covered by the minimizers.


Before extending, we merge seeds 
corresponding to the same alignment 
between the read and a node.


For each seed, we find the extension with the 
highest alignment score among all 
extensions over local haplotypes.


Seed extension is based on traversing a 
bidirectional GBWT (starting from the seed 
node) and counting the number of 
mismatches between read/node substrings.


We allow any number of mismatches in the 
seed node, 4 mismatches in total, and 2 
mismatches in each flank (even if that would 
exceed the overall mismatch bound).


If there are full-length extensions, we return 
those that do not overlap too much.


Otherwise we trim the partial extensions to 
maximize the alignment scores and return all 
distinct extensions.



4. Gapped alignment
If we did not find enough full-length 
alignments, the read may contain indels that 
are not present in the haplotypes.


We then resort to dynamic programming, 
aligning the tails of most promising 
extensions over all local haplotypes.


The decisions which extensions to align 
involve some of the ugliest and most 
complicated heuristics in Giraffe.


Because we handle the tails independently, 
we may also find alignments corresponding 
to recombinations of the haplotypes.

Extension
Left tail Right tail

Haplotypes

Alignment with a recombination



Paired-end mapping
If fragment length distribution is not 
provided, Giraffe estimates it with single-end 
mapping until there are enough confidently 
mapped pairs.


We cluster the seeds for both reads at the 
same time and pair clusters that are 
approximately at the right distance from each 
other.


If we have a confidently mapped read with an 
unmapped pair, we extract a subgraph and 
try to rescue the pair by aligning it using a 
simplified version of the Giraffe algorithm.

Mapped

read

Estimated

pair location-4σ +4σ

Seeds

Best extension

+


tail alignment



Artificial haplotypes
1. The graph we use as a mapping target 

may contain components (e.g. decoy 
sequences, unlocalized contigs) without 
haplotype information.


2. When we add a variant to the graph, it 
increases mapping accuracy for samples 
that contain the variant and reduces the 
accuracy for samples that do not contain 
it. For rare variants, the trade-off may not 
be worth it.


3. Mapping speed depends on the 
complexity of the graph and number of 
distinct local haplotypes.


We can deal with these issues by generating 
artificial haplotypes with a greedy algorithm 
that samples k-node (default k = 4) local 
haplotypes proportionally.


Inspired by: 
Ghaffaari, Marschall: Fully-sensitive seed 
finding in sequence graphs using a hybrid 
index. Bioinformatics, 2019.


If there are more than ~200 haplotypes in the 
graph, the current best practice is 
downsampling them to 64 artificial 
haplotypes.





It was also faster at aligning to human graphs
than Bowtie2 or BWA-MEM were at aligning
to the corresponding linear reference. For the
1000GP graph, using the 64-haplotype sampled
GBWT for mapping instead of the full ∼5000-
haplotype GBWT was much faster in every
case. HISAT2 and fast Giraffe were both about
equally fast andwere both faster than all other
mappers.
Because of the in-memory indexes it uses,

Giraffe’s memory consumption is higher than
the other mappers, except for GraphAligner.
However, it canmap to the 1000GP graphwith
the fullGBWT in∼80gigabytes (GB)ofmemory—

an amount readily available on compute cluster
nodes (Fig. 3, C and D).

Giraffe reduces allele mapping bias

We assessed Giraffe’s reference bias (17). We
expected Giraffe to be able to use the extra
variation information contained in the graph
reference to achieve a lower level of bias than a
linear mapper. For variants that were hetero-
zygous in NA19239, we found the fraction of
reads supporting alternate versus reference
alleles at each indel length ( F4Fig. 4A). Giraffe
and VG-MAP both show less bias toward the
reference allele than a linear mapper, and this

difference becomes more pronounced as
indel length increases, particularly for larger
insertions.

Giraffe genotyping outperforms best practices

We used Illumina’s Dragen platform (14) to
genotype SNVs and short indels using Giraffe
mappings to the 1000GP graph, projected onto
the linear reference assembly. We compared
these results with results using competing graph
and linear reference mappers (17). No training
or optimization was performed for any of the
mappingsother than thoseperformedbydefault
by Dragen itself. We evaluated the calls using
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Fig. 3. Runtime and memory
usage. (A to D) Total runtime
[(A) and (B)] and peak memory
use [(C) and (D)] for mapping
~600 million NovaSeq 6000 reads
using 16 threads. Reads were
mapped [(A) and (C)] to
the 1000GP derived graph or
(for linear mappers) the GRCH38
assembly and [(B) and (D)] to
the HGSVC graph or GRCh38
reference, respectively. For
HISAT2*, results are shown for
the subset 1000GP graph
(22). “Giraffe full” refers to
mapping using the full GBWT of
all haplotypes. “Giraffe sampled”
refers to mapping using the
64-haplotype sampled GBWT.
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Thank you!


