
Document Retrieval
on Repetitive Collections

Jouni Sirén, University of Chile
with

Gonzalo Navarro, University of Chile
Simon J. Puglisi, University of Helsinki

Document retrieval
• We have a collection of d documents (strings) of

total length n.

• We want to list those documents that contain pattern
P as a substring.

• We are interested on the actual performance and
space usage of the algorithms on real data.

• This work was inspired by observations that
dedicated methods are often worse than brute force.

Query Definition Ideal time
complexity

locate(P)
Find all occurrences

of pattern P in all
documents.

occ

list(P) Find all documents
that contain pattern P. docc

topk(P, k)
Find the k documents
that contain the most

occurrences of P.
k

list vs. topk
• In list, the performance of dedicated methods

depends on the occ/docc ratio. This depends on
the documents themselves, but not on the size of
the collection.

• In topk, the relevant ratio is docc/k, which depends
on the size of the collection. Large collections
demand different methods than small ones.

• I will concentrate on list in this talk.

A

Suffix Tree SA Sorted Suffixes BWT

10

2

6

3

7

9

1

4

5

8

$

$GTCATGCAG $

10

2

6

3

7

9

1

4

5

8

$GTCATGCA

$GTCATGC

$GTCATG

$GTCAT

$GTCA

$GTC

$GT

$G

GTCATGCA

A

C

C

G

G

G

T

T

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

C

C

C

C

C

C

G

G

G

G

G

T

T

T

T

A

A

A

C

C

T

AC

C

$

G

T

GTACTG$

TG$

GTACTG$

TG$

$

ACGTACTG$

TACTG$

ACTG$

G$

$GTCATGCAGGC

Solving locate
• The suffix tree and the suffix array are much larger than

the original text, limiting their usefulness. They solve
locate essentially in O(|P| + occ) time.

• The FM-index (Ferragina and Manzini, 2005) and the
compressed suffix array (Grossi and Vitter, 2005) are
based on the Burrows-Wheeler transform. Using O(n/s)
words of extra space in addition to the compressed
BWT, they solve locate in O(|P| + s⋅occ) time.

• Most solutions for list use a CSA or an FMI as the basic
structure.

Bitvectors
• Bitvectors are the main building block of succinct and

compressed data structures. They consist of a binary
sequence with extra structures to support rank and select.

• rank(B, i) = ∑ B[1,i], while select(B, i) is the inverse.

• The number of rank/select operations predicts actual
performance quite well.

• Many different encodings: plain, entropy-compressed,
gap encoded, run-length encoded, grammar-
compressed.

Brute-L and Brute-D
• We use gap encoded bitvector B marking

document boundaries to convert text positions into
document identifiers. This takes O(d log n) bits.

• Brute-L uses the bitvector to convert the results of
locate, and then filters out duplicates. Overall time
complexity is O(|P| + s⋅occ + sort(occ)).

• Brute-D converts the suffix array into the document
array DA. It solves list in O(|P| + sort(occ)) time
using n log d bits of extra space.

Muthukrishnan’s algorithm
• Muthukrishnan’s algorithm (2002) finds the first

occurrence of each document in the query range.

• C[i] points to the previous occurrence of DA[i]. If
C[i] is outside the query range, DA[i] is the first
occurrence of that document identifier.

• Uses range minimum queries over C to find the
smallest values recursively.

• Time complexity is O(|P| + docc).

Query list(”m”)
!
1. Find the query range:

[14, 20].

2. Find the minimum value
in C[14, 20]: C[14].

3. If C[14] ≥ 14 (original
sp), stop.

4. Report D[14].

5. Continue to [14, 13]
and [15, 20].

Row C D Suffix
1 0 1 $
2 0 2 $
3 0 3 $
4 2 2 al$
5 3 3 e$
6 4 2 imal$
7 5 3 imize$
8 1 1 imum$
9 6 2 inimal$
10 7 3 inimize$
11 8 1 inimum$
12 10 3 ize$
13 9 2 l$
14 11 1 m$
15 13 2 mal$
16 15 2 minimal$
17 12 3 minimize$
18 14 1 minimum$
19 17 3 mize$
20 18 1 mum$
21 16 2 nimal$
22 19 3 nimize$
23 20 1 nimum$
24 23 1 um$
25 22 3 ze$

Sadakane’s improvements
• Sadakane (2007) improved the space usage of

Muthukrishnan’s algorithm.

• Array C is not needed, if the recursion is done in
preorder from left to right. DA[i] is the first
occurrence, if it has not been encountered before.

• Document array can be replaced by bitvector B.

• RMQ needs just 2n + o(n) bits (Fischer, 2010).

Sada-X-Y
• Sada-C-L solves list in O(|P| + s⋅docc) time using

2n + o(n) + O(d log n) bits of extra space.

• Sada-C-D solves list in O(|P| + docc) time using 2n
+ o(n) + n log d bits of extra space.

• Sada-I-L and Sada-I-D replace C with another array
(Gagie et al., 2013) that is more compressible when
the documents are similar to each other.

Wavelet trees
• Wavelet trees (Grossi et al., 2003) are a versatile

data structure for sequences. They can, for
example, list the distinct characters in a substring
quickly.

• When built over DA, a wavelet tree can solve list(P)
in O(|P| + docc log d) time with n log d + o(n log d)
bits of extra space (Gagie et al., 2009).

• WT uses different encodings for the bitvectors in
the wavelet tree (Navarro and Valenzuela, 2012).

A $A C CG G GT T
101111 0000

G G T
1

T
1

GA A
00

$ C
0

C
1 1 0 0 0

A A $

$ A C G T

11 0

Precomputed
document listing

• PDL (Gagie et al., 2013) covers the SA by subtrees of the
suffix tree having at most b (e.g. 256) leaves.

• We store the answers for list for the roots of the selected
subtrees, as well as for some higher-level nodes.

• Queries below the selected nodes use Brute-L, while the
answers for higher-level nodes are computed as unions of
stored answers.

• PDL-BC uses a web graph compressor (Hernandez and
Navarro, 2012) to store the answers, while PDL-RP uses
Re-Pair (Larsson and Moffat, 2000).

Grammar-compressed index
• Grammar (Claude and Munro, 2013) is based on a

grammar-compressed text index (Claude and
Navarro, 2012).

• It uses Re-Pair to parse the text. For each nonterminal,
it stores the set of documents where the nonterminal is
used. The sets are also compressed with Re-Pair.

• Grammar is conceptually similar to PDL.

• Does not need a CSA/FMI.

Lempel-Ziv index
• LZ (Ferrada and Navarro, 2013) is based on the

Lempel-Ziv 78 parsing of DA.

• DA is parsed into phrases (x, c), where x is an
earlier substring, and c is the following identifier.
Sada-C-D is used over the sequence of identifiers
c in different ways to solve list.

• Does not need a CSA/FMI.

Dataset Description

Enwiki Pages from a snapshot of the English
language Wikipedia.

Page
Pages from the Finnish language

Wikipedia. All revisions of a page are
concatenated into a single document.

Revision As Page, but each revision is a separate
document.

dna_00100 Short synthetic DNA sequences
generated from 100 base sequences.

Enwiki

Size (bpc)

Ti
m

e
(s

)

0 4 8 12 16 20 24 28 32

0.
1

1
10

10
0

10
00

10
00

0

●

●

●

●

●

●●●●●

●●●●●●●●●

●

●

●

Brute−L
Brute−D
Sada−C−L
Sada−C−D
Sada−I−L
Sada−I−D
PDL−BC
PDL−RP
WT
LZ
Grammar

Page

Size (bpc)

Ti
m

e
(s

)

0 4 8 12 16 20 24 28 32

0.
1

1
10

10
0

10
00

10
00

0

●

●

●

●
●

●●●●●

●●●●
●●●●

●

●

●

Brute−L
Brute−D
Sada−C−L
Sada−C−D
Sada−I−L
Sada−I−D
PDL−BC
PDL−RP
WT
LZ
Grammar

Revision

Size (bpc)

Ti
m

e
(s

)

0 4 8 12 16 20 24 28 32

0.
1

1
10

10
0

10
00

10
00

0

●

●

●

●

●

●●●●●

●●●●●●●●

●

●

●

Brute−L
Brute−D
Sada−C−L
Sada−C−D
Sada−I−L
Sada−I−D
PDL−BC
PDL−RP
WT
LZ
Grammar

dna_00100

Size (bpc)

M
ut

at
io

n
ra

te

0 4 8 12 16 20 24 28 32

0.
00

1
0.

00
3

0.
01

0.
03

0.
1

None
Brute−L

Grammar

LZ

PDL−BC

Sada−I−D

Brute−D

Simplified observations
• Brute-L is quite fast, especially with repetitive data.

• When more space is available, PDL is much faster.
PDL-BC works better with non-repetitive
collections, while PDL-RP is easier to build.

• Brute-D is usually even faster, while using more
space.

• There is no clear winner.

Opportunistic
data structures

• A term from the original paper on the FM-index
(Ferragina and Manzini, 2000).

• Standard algorithm design concentrates on the worst
case. We dig into the hard core of the problem,
ignoring all properties that could make that particular
instance easy.

• Compressed data structures are opportunistic: they are
designed for the easy cases.

• Different inputs are easy for different methods.

Thanks!

