Document Retrieval
on Repetitive Collections

Jouni Siréen, University of Chile
with
Gonzalo Navarro, University of Chile
Simon J. Puglisi, University of Helsinki

Document retrieval

We have a collection of d documents (strings) of
total length n.

We want to list those documents that contain pattern
P as a substring.

We are interested on the actual performance and
space usage of the algorithms on real data.

This work was inspired by observations that
dedicated methods are often worse than brute force.

Ideal time

Query Definition complexity

Find all occurrences
locate(P) ~ of patternPinall OCC
5 documents. 5

..

~ Find all documents
that contain pattern P. :

..

Find the k documents
topk(P, k) that contain the most K
~occurrences of P.

ISt vs. topkK

* |n list, the performance of dedicated methods
depends on the occ/docc ratio. This depends on
the documents themselves, but not on the size of

the collection.

* In topk, the relevant ratio is docc/k, which depends
on the size of the collection. Large collections
demand different methods than small ones.

| will concentrate on list In this talk.

$

Q)
—
O
<
—
Q)
O
<
O

v

-

Sorted Suffixes BWT

SA

Suffix Tree

GGTAAIG\C
\\
O 0o F < <+ & o do
= & O O = O A\CA
O 0 O e O <,/ O < -
ATAGCI\C\mwGG
TCGTAh\uA\G$C
GA$CG\\C_\|TGA
CTGAm@Aw\GCTG
AGTT\G\GCAC$
GCCG\T\$ATAG
$AACCVGGGTT
AV
m"S - < 1 ©
Clla||o]| | |~ < ||w|]|o

GTACTGS

TG$

AC

ACGTACTGS
> 1

GTACTGS
TG$
$

TACTG$

ACTG$

G$

Solving

e The suffix tree and the suffix
the original text, limiting their

locate

array are much larger than
usefulness. They solve

locate essentially in O(|P| + occ) time.

The FM-index (Ferragina and Manzini, 2005) and the

compressed suffix array (Grossi and Vitter, 2005) are

based on the Burrows-Whee
words of extra space in addi

er transform. Using O(n/s)
lon to the compressed

BWT, they solve locate in Of]

structure.

°| + s-occ) time.

Most solutions for list use a CSA or an FMI as the basic

Bitvectors

Bitvectors are the main building block of succinct and
compressed data structures. They consist of a binary
seguence with extra structures to support rank and select.

rank(B, 1) = > B[1,i], while select(B, i) is the inverse.

The number of rank/select operations predicts actual
performance quite well.

Many different encodings: plain, entropy-compressed,
gap encoded, run-length encoded, grammar-
compressed.

Brute-L and Brute-D

* We use gap encoded bitvector B marking
document boundaries to convert text positions into
document identifiers. This takes O(d log n) bits.

locate, and then f
complexity is O(|P

Brute-L. uses the bitvector to convert the results of

ters out duplicates. Overall time

+ S-0OCC + sort(occ)).

Brute-D converts the suffix array into the document

array DA. It solves list in O(|P| + sort(occ)) time
using n log d bits of extra space.

Muthukrishnan's algorithm

 Muthukrishnan’s algorithm (2002) finds the first
occurrence of each document in the query range.

e Cli] points to the previous occurrence of DA[I]. It
Cli] is outside the query range, DA][i] is the first
occurrence of that document identifier.

e Uses range minimum queries over C to find the
smallest values recursively.

* Time complexity is O(|P| + docc).

=y
=

© 0O N O o b WO N = O

Suffix
$

$

$

al$

e$

imal$

Query list("m”)

1. Find the query range:
14, 20].

imize$

imum$
inimal$

inimize$

2. FInd the minimum value 1w
IN 014, 20] C[14] 12

3. If C[14] = 14 (original
sp), stop.

4. Report D[14].
5. Continue to [14, 13] . 16

0o N O = 0o WM O O O 0

inimum$

—_
o

ize$

1$

N W = W N = WD WwMNDdDwDNdD = 0O

©

2 nimal$
o) 19 3 nimize$
aﬂd [1 5, 20] . 23 20 1 nimum$
24 23 1 um$
25 22 3 ze$

Sadakane’s improvements

e Sadakane (2007) improved the space usage of
Muthukrishnan’s algorithm.

o Array C is not needed, if the recursion is done in
preorder from left to right. DA[I] is the first
occurrence, if it has not been encountered before.

 Document array can be replaced by bitvector B.

« RMQ needs just 2n + o(n) bits (Fischer, 2010).

Sada-X-Y

« Sada-C-L solves list in O(|P| + s-docc) time using
2n + o(n) + O(d log n) bits of extra space.

» Sada-C-D solves list in O(|P| + docc) time using 2n
+ 0(n) + n log d bits of extra space.

e Sada-l-L and Sada-I-D replace C with another array
(Gagie et al., 2013) that is more compressible when
the documents are similar to each other.

Wavelet trees

e Wavelet trees (Grossi et al., 2003) are a versatile
data structure for sequences. They can, for

example, list the distinct characters in a substring
quickly:.

 \When built over DA, a wavelet tree can solve list(P)
in O(|P| + docc log d) time with n log d + o(n log d)
bits of extra space (Gagie et al., 2009).

 WT uses different encodings for the bitvectors in
the wavelet tree (Navarro and Valenzuela, 2012).

GGTAATS$CGOC

O 010O01O0

1

GGT TG

1

0

AAS CC

0 0 0 f

1

NAN

.

s

Precomputed
document listing

PDL (Gagie et al., 2013) covers the SA by subtrees of the
suffix tree having at most b (e.g. 256) leaves.

We store the answers for list for the roots of the selected
subtrees, as well as for some higher-level nodes.

Queries below the selected nodes use Brute-L, while the
answers for higher-level nodes are computed as unions of
stored answers.

PDL-BC uses a web graph compressor (Hernandez and
Navarro, 2012) to store the answers, while PDL-RP uses
Re-Pair (Larsson and Moffat, 2000).

Grammar-compressed index

 Grammar (Claude and Munro, 2013) is based on a
grammar-compressed text index (Claude and
Navarro, 2012).

* |t uses Re-Pair to parse the text. For each nonterminal,
it stores the set of documents where the nonterminal is
used. The sets are also compressed with Re-Pair.

e (Grammar is conceptually similar to PDL.

e Does not need a CSA/FMI.

L empel-Ziv Index

e |/ (Ferrada and Navarro, 2013) is based on the
Lempel-Ziv 78 parsing of DA.

DA Is parsed into phrases (x, ¢), where x IS an
earlier substring, and c is the following identitier.
Sada-C-D is used over the sequence of identifiers
c In different ways to solve list.

e Does not need a CSA/FMI.

Dataset Description

Pages from a snapshot of the English
language Wikipedia.

5 Pages from the Finnish language
Page ~ Wikipedia. All revisions of a page are

..

As Page, but each revision is a separate
| document.

...

Short synthetic DNA seguences

Gna_to100 generated from 100 base sequences.

Time ()

1000 10000

100

10

0.1

CNWIKI

O Brute-L
® Brute-D
A O Sada-C-L
g A e Sada-C-D
\Doi\QA\EE A Sada-I-L
T A Sada-I-D
ODOD i _
2N a0 aba—sa & PQRL-BC
4 X X PDL-RP
ToXax | we-e o \¥T
ﬁ|_\
Il E -1 .@ LZ
B Grammar
| | | | | |
8 12 16 20 24 28

Size (bpc)

Time ()

1000 10000

100

10

0.1

Page

Brute-L
Brute-D
Sada-C-L
Sada-C-D
Sada-Il-L
Sada-I-D
PDL-BC
PDL-RP
WT

® LZ

B Grammar

S X+ »p D> e o mO

I
16

Size (bpc)

20

24 28

32

Time ()

1000 10000

100

10

0.1

Revision

Brute-L
Brute-D
Sada-C-L
Sada-C-D
Sada-Il-L
Sada-I-D
PDL-BC
PDL-RP
WT

® LZ

B Grammar

S X+ »p D> e o mO

8 12

16

Size (bpc)

20

24 28

32

Mutation rate

0.003 0.01 0.03 0.1

0.001

dna 00100

None ! Lz
Brute-L
Brute-D
PDL-BC

Grammar ,

I I I I I I I I
0 4 8 12 16 20 24 28

Size (bpc)

32

Simplified observations

Brute-L is quite fast, especially with repetitive data.
When more space is available, PDL is much taster.
PDL-BC works better with non-repetitive
collections, while PDL-RP i1s easier to build.

Brute-D is usually even faster, while using more
space.

There Is no clear winner.

Opportunistic
data structures

A term from the original paper on the FM-index
(Ferragina and Manzini, 2000).

Standard algorithm design concentrates on the worst
case. We dig into the hard core of the problem,
ignoring all properties that could make that particular
iInstance easy.

Compressed data structures are opportunistic: they are
designed for the easy cases.

Different inputs are easy for ditfferent methods.

Thanks!

