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Document counting
• We have a collection of documents (strings, texts, 

sequences). 

• We want to count the number of documents a 
pattern (a string) occurs in. 

• Pattern occurrences are substrings of a document. 

• We are interested in time/space trade-offs for data 
structures that augment existing text indexes.



Background



Query Result Description

find(P) [sp, ep] 
v

Lexicographic range of suffixes starting 
with pattern P, or suffix tree node 
corresponding to P.

locate(P) 
locate(sp, ep) 

locate(v)
SA[sp, ep]

Starting positions of the occ = ep + 1 – sp 
occurrences of pattern P in the document 
collection.

count(P) 
count(sp, ep) 

count(v)
docc The number of documents where the 

pattern occurs at least once.

list(P) 
list(sp, ep) 

list(v)

{ DA[i] | 
sp ≤ i ≤ ep }

The identifiers of the documents where 
the pattern occurs at least once.
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Compressed text indexes
• The FM-index (Ferragina and Manzini, 2005) and the 

compressed suffix array (Grossi and Vitter, 2005) are 
based on the Burrows-Wheeler transform. Their size 
is close to a compressed representation of the BWT. 

• They solve find() essentially in O(|P|) time (0.1 to 1 
µs/character) by using backward searching. 

• By sampling one out of s suffix array cells, they also 
solve locate() in O(s⋅occ) time (typically 1 to 10 µs/
occurrence) with O(s log n) bits of extra space.



Document listing
• Document array stores the document identifier for each 

suffix. DA[i] = j, if character T[SA[i]] is in document j. The 
array takes n log d bits. 

• Brute-D solves list() by sorting DA[sp, ep] and reporting 
all unique document identifiers. 

• Muthukrishnan (2002) and Sadakane (2007) proposed 
algorithms for finding the first occurrences of each 
document identifier in DA[sp, ep]. The algorithms are 
usually not competitive in practice (Navarro et al., 2014).



Precomputed 
document listing

• PDL (Gagie et al., 2013) stores the answers for list() 
queries for a subset of suffix tree nodes. The 
answers are compressed with a grammar-based 
compressor. 

• The answer for a list() query is computed as the 
union of a small number of stored answers (for long 
ranges) or by using locate() for (short ranges). 

• PDL is usually as fast as Brute-D, but it may use 
much less space.



Our index

• We already have a CSA/FMI augmented with DA or 
PDL for the other queries, so we can use them for 
count() for free. 

• Any specialized counting structure must be faster 
than Brute-L and PDL to justify the additional space 
usage.



Sadakane’s Method 
(2007)



Binary suffix tree

Redundant suffixes: h(v) = | list(u) ⋂ list(w) | 

count(v) = count(u) + count(w) – h(v) = … = occ – ∑v’ h(v’) 

How to find the subtree of v from sp and ep?

v

u w

occsp ep



• We form array H[1, n – 1] by traversing the binary 
suffix tree in inorder and listing h(v) for each 
internal node v. This simplifies the counting queries 
to count(sp, ep) = occ – ∑ H[sp, ep – 1]. 

• Array H can be encoded in unary as a bitvector of 
length 2n – d – 1. With a select structure, we can 
solve count() in O(1) time and 2n + o(n) bits as 
count(sp, ep) = 2occ – 1 – (select(ep) – select(sp)). 

• There are several ways to compress the bitvector to 
use even less space.



Compression



1. Reordering
• We never use count(v) for nodes that do not exist in 

the original suffix tree. 

• Let V be the set of binary tree nodes created from 
original node v. The bitvector is easier to compress, 
if we set h(v) = ∑u∈V h(u), and h(u) = 0 for the 
remaining u∈V. 

• We will always do the reordering, as it has no 
significant drawbacks.



2. Run-length encoding
• If a pattern occurs in multiple documents, but only once in 

each document, the corresponding subtree has no 
redundant suffixes, and the bitvector is compressible with 
run-length encoding. 

• This happens, if the collection contains random sequences 
or multiple revisions of base documents. 

• There are Θ(n2 / d) pairs of substrings of a fixed length 
from the same document. Intra-document collisions 
become unlikely at substring probability Θ(√d / n), when 
the expected occ is Θ(√d). Hence the expected number of 
runs is Θ(n / √d).



3. Filtering
• If we concatenate all revisions of a base document 

into a single document, the suffix tree may have 
large subtrees with docc = 1. 

• We can filter these subtrees out by collapsing them 
into leaves and handling them separately. 

• Filters can also be based on the properties of the 
bitvector. An 1-filter handles nodes with h(v) = 1 
separately, while a sparse filter does the same for 
nodes with h(v) > 0.



Experiments



Structures
• Brute-D and PDL use the existing document listing 

structures. 

• Plain is the original Sadakane’s bitvector. 

• Subtree uses run-length encoding for the subtree filter and 
Sadakane’s bitvector. 

• Sparse uses sparse bitvectors for both the sparse filter 
and the stored h(v) values. 

• Ones uses run-length encoding for Sadakane’s bitvector 
and a sparse bitvector for the 1-filter.



Enwiki (CSA 5.82 bpc, PDL 11.53 bpc)
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Revision (CSA 0.60 bpc, PDL 0.63 bpc)
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Page (CSA 0.60 bpc, PDL 0.53 bpc)
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Swissprot (CSA 5.28 bpc, DA 18 bpc)
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Influenza (CSA 0.67 bpc, PDL 6.51 bpc)
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Conclusions



• Sadakane’s document counting structure can be 
compressed with run-length encoding and filters. 

• “Typical” document collections, where a pattern 
usually occurs multiple times in multiple 
documents, seem to be the worst case. 

• Construction algorithms are the current bottleneck. 
While BWT-based indexes work with hundreds of 
gigabytes, Sadakane’s bitvector is hard to build 
beyond a few gigabytes.


