
Document Counting
in Compressed Space

Jouni Sirén, Wellcome Trust Sanger Institute

with

Travis Gagie, Aleksi Hartikainen, Juha Kärkkäinen, and Simon J. Puglisi,
University of Helsinki

Gonzalo Navarro, University of Chile

Document counting
• We have a collection of documents (strings, texts,

sequences).

• We want to count the number of documents a
pattern (a string) occurs in.

• Pattern occurrences are substrings of a document.

• We are interested in time/space trade-offs for data
structures that augment existing text indexes.

Background

Query Result Description

find(P) [sp, ep]
v

Lexicographic range of suffixes starting
with pattern P, or suffix tree node
corresponding to P.

locate(P)
locate(sp, ep)

locate(v)
SA[sp, ep]

Starting positions of the occ = ep + 1 – sp
occurrences of pattern P in the document
collection.

count(P)
count(sp, ep)

count(v)
docc The number of documents where the

pattern occurs at least once.

list(P)
list(sp, ep)

list(v)

{ DA[i] |
sp ≤ i ≤ ep }

The identifiers of the documents where
the pattern occurs at least once.

A

Suffix Tree SA Sorted Suffixes BWT

10

2

6

3

7

9

1

4

5

8

$

$GTCATGCAG $

10

2

6

3

7

9

1

4

5

8

$GTCATGCA

$GTCATGC

$GTCATG

$GTCAT

$GTCA

$GTC

$GT

$G

GTCATGCA

A

C

C

G

G

G

T

T

G

G

G

G

G

G

G

G

G

A

A

A

A

A

A

A

C

C

C

C

C

C

G

G

G

G

G

T

T

T

T

A

A

A

C

C

T

AC

C

$

G

T

GTACTG$

TG$

GTACTG$

TG$

$

ACGTACTG$

TACTG$

ACTG$

G$

$GTCATGCAGGC

Compressed text indexes
• The FM-index (Ferragina and Manzini, 2005) and the

compressed suffix array (Grossi and Vitter, 2005) are
based on the Burrows-Wheeler transform. Their size
is close to a compressed representation of the BWT.

• They solve find() essentially in O(|P|) time (0.1 to 1
µs/character) by using backward searching.

• By sampling one out of s suffix array cells, they also
solve locate() in O(s⋅occ) time (typically 1 to 10 µs/
occurrence) with O(s log n) bits of extra space.

Document listing
• Document array stores the document identifier for each

suffix. DA[i] = j, if character T[SA[i]] is in document j. The
array takes n log d bits.

• Brute-D solves list() by sorting DA[sp, ep] and reporting
all unique document identifiers.

• Muthukrishnan (2002) and Sadakane (2007) proposed
algorithms for finding the first occurrences of each
document identifier in DA[sp, ep]. The algorithms are
usually not competitive in practice (Navarro et al., 2014).

Precomputed
document listing

• PDL (Gagie et al., 2013) stores the answers for list()
queries for a subset of suffix tree nodes. The
answers are compressed with a grammar-based
compressor.

• The answer for a list() query is computed as the
union of a small number of stored answers (for long
ranges) or by using locate() for (short ranges).

• PDL is usually as fast as Brute-D, but it may use
much less space.

Our index

• We already have a CSA/FMI augmented with DA or
PDL for the other queries, so we can use them for
count() for free.

• Any specialized counting structure must be faster
than Brute-L and PDL to justify the additional space
usage.

Sadakane’s Method
(2007)

Binary suffix tree

Redundant suffixes: h(v) = | list(u) ⋂ list(w) |

count(v) = count(u) + count(w) – h(v) = … = occ – ∑v’ h(v’)

How to find the subtree of v from sp and ep?

v

u w

occsp ep

• We form array H[1, n – 1] by traversing the binary
suffix tree in inorder and listing h(v) for each
internal node v. This simplifies the counting queries
to count(sp, ep) = occ – ∑ H[sp, ep – 1].

• Array H can be encoded in unary as a bitvector of
length 2n – d – 1. With a select structure, we can
solve count() in O(1) time and 2n + o(n) bits as
count(sp, ep) = 2occ – 1 – (select(ep) – select(sp)).

• There are several ways to compress the bitvector to
use even less space.

Compression

1. Reordering
• We never use count(v) for nodes that do not exist in

the original suffix tree.

• Let V be the set of binary tree nodes created from
original node v. The bitvector is easier to compress,
if we set h(v) = ∑u∈V h(u), and h(u) = 0 for the
remaining u∈V.

• We will always do the reordering, as it has no
significant drawbacks.

2. Run-length encoding
• If a pattern occurs in multiple documents, but only once in

each document, the corresponding subtree has no
redundant suffixes, and the bitvector is compressible with
run-length encoding.

• This happens, if the collection contains random sequences
or multiple revisions of base documents.

• There are Θ(n2 / d) pairs of substrings of a fixed length
from the same document. Intra-document collisions
become unlikely at substring probability Θ(√d / n), when
the expected occ is Θ(√d). Hence the expected number of
runs is Θ(n / √d).

3. Filtering
• If we concatenate all revisions of a base document

into a single document, the suffix tree may have
large subtrees with docc = 1.

• We can filter these subtrees out by collapsing them
into leaves and handling them separately.

• Filters can also be based on the properties of the
bitvector. An 1-filter handles nodes with h(v) = 1
separately, while a sparse filter does the same for
nodes with h(v) > 0.

Experiments

Structures
• Brute-D and PDL use the existing document listing

structures.

• Plain is the original Sadakane’s bitvector.

• Subtree uses run-length encoding for the subtree filter and
Sadakane’s bitvector.

• Sparse uses sparse bitvectors for both the sparse filter
and the stored h(v) values.

• Ones uses run-length encoding for Sadakane’s bitvector
and a sparse bitvector for the 1-filter.

Enwiki (CSA 5.82 bpc, PDL 11.53 bpc)

Ti
m

e
(µ

s/
qu

er
y)

0,1

1

10

100

1000

Size (bpc)
0 0,5 1 1,5 2 2,5

Ones
Sparse

Subtree

Plain

Brute-D

Revision (CSA 0.60 bpc, PDL 0.63 bpc)

Ti
m

e
(µ

s/
qu

er
y)

0,1

1

10

100

1000

Size (bpc)
0 0,5 1 1,5 2 2,5

Ones
Sparse

Subtree

Plain

PDL
Brute-D

Page (CSA 0.60 bpc, PDL 0.53 bpc)

Ti
m

e
(µ

s/
qu

er
y)

0,1

1

10

100

1000

Size (bpc)
0 0,5 1 1,5 2 2,5

OnesSubtree

Plain

PDLBrute-D

Swissprot (CSA 5.28 bpc, DA 18 bpc)

Ti
m

e
(µ

s/
qu

er
y)

0,1

1

10

100

1000

Size (bpc)
0 0,5 1 1,5 2 2,5

OnesSparse
Subtree

Plain

PDL

Brute-D

Influenza (CSA 0.67 bpc, PDL 6.51 bpc)

Ti
m

e
(µ

s/
qu

er
y)

0,1

1

10

100

1000

Size (bpc)
0 0,5 1 1,5 2 2,5

Ones
Sparse

Subtree
Plain

Conclusions

• Sadakane’s document counting structure can be
compressed with run-length encoding and filters.

• “Typical” document collections, where a pattern
usually occurs multiple times in multiple
documents, seem to be the worst case.

• Construction algorithms are the current bottleneck.
While BWT-based indexes work with hundreds of
gigabytes, Sadakane’s bitvector is hard to build
beyond a few gigabytes.

