
VG: Overview, Internals, and
Short Read Mapping

Jouni Sirén

UCSC Genomics Institute

Slides available at: https://jltsiren.kapsi.fi/files/dalhousie2021.pdf

https://jltsiren.kapsi.fi/files/dalhousie2021.pdf

Reference genomes

A reference genome is a model of the data. It
describes what we expect the genome to
look like.

A good model:

1. is easy to use and understand; and

2. describes the data with sufficient
accuracy and in sufficient detail.

Traditional reference sequences often fail the
second point.

???

Multiple references
We could try to use a representative
collection of haplotypes as the reference.

The haplotypes are highly similar, and the
model fails to tell when the similar-looking
positions are equivalent.

If a sequence aligns to multiple equivalent
positions, the alignment is often useful.

If we find equally good alignments to non-
equivalent positions, the mapping is not very
informative.

???

Genome graphs

If we align and collapse the equivalent
positions, we get a graph representing the
haplotypes.

We need cycles to represent certain kinds of
structural variation accurately.

Cycles introduce paths that make no
biological sense.

Complex regions in the graph may also be
computationally expensive.

???

Graph and paths

If we embed the original haplotypes as paths
in the graph, we get the best of both worlds.

The graph tells which positions in the
haplotypes are equivalent, and the
haplotypes tell what kind of paths we expect
to see.

As the paths restrict the scope of the model,
using it becomes computationally cheaper.

VG Toolkit

VG toolkit
The VG toolkit is a large collection of
algorithms for working with genome graphs.

It started as rapid prototyping with Protobuf.

There are now many file formats, interfaces,
and libraries for wider interoperability.

We are removing unnecessary branches and
relying more on stand-alone tools.

Some documentation can be found in the
wiki: https://github.com/vgteam/vg/wiki.

https://github.com/vgteam/vg

Garrison et al.: Variation graph toolkit
improves read mapping by representing
genetic variation in the reference. 
Nature Biotechnology, 2018. 
DOI: 10.1038/nbt.4227

Hickey et al.: Genotyping structural
variants in pangenome graphs using the
vg toolkit. Genome Biology, 2020. 
DOI: 10.1186/s13059-020-1941-7

https://github.com/vgteam/vg/wiki
https://github.com/vgteam/vg
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1186/s13059-020-1941-7

Compiling VG
$ git clone --recursive https://github.com/vgteam/vg.git
$ cd vg
$ make get-deps # Requires sudo privileges
$ make -j 4 # Number of parallel jobs

$ git clone --recursive https://github.com/vgteam/vg.git
$ cd vg
$ brew bundle
$ export PATH="/usr/local/opt/coreutils/libexec/gnubin:/usr/local/opt/bison/bin:/usr/local/bin:$PATH"
$ export LD_LIBRARY_PATH=/usr/local/lib/
$ export LIBRARY_PATH=/usr/local/lib/
$ export CFLAGS="-isystem /usr/local/include/"
$ make -j 4 # Number of parallel jobs

On macOS with Homebrew

On Ubuntu

VG has many dependencies, which makes the compilation a fragile process, especially on
macOS. A fresh Ubuntu virtual machine provides the best results.

VG releases

There is a VG release with a precompiled Linux binary and a Docker image every six weeks. The
examples in this talk will be based on VG version 1.31.0.

VG data model
VG data model is based on bidirected
sequence graphs.

Each node has undirected edges adjacent to
its left and right sides.

Forward traversal enters from the left, reads
the sequence, and exits from the right.

Reverse traversal enters from the right,
reads the reverse complement, and exits
from the left.

This can be simulated with a directed graph
with separate nodes for each orientation.

GATTACA

GATTACA

TGTAATC

Data model details
• Nodes should be short.

• GCSA2 and the minimizer index do not
work with nodes longer than 1024 bp.

• Some operations create temporary
copies of the sequence.

• Visualization may display the sequence
within the node.

• Cycles should be rare.

• Ideal graph is a "VCF graph": a linear
reference with edits.

• There should be a good snarl
decomposition.

• Paths may represent references,
haplotypes, variants, alignments, and
annotations.

• Paths are stored in the graph itself.

• Threads are lightweight paths with
limited functionality stored in a
GBWT index.

Snarl decomposition
Snarl is an induced subgraph separated by
two node sides from the rest of the graph.

Chain is a sequence of snarls.

A snarl may contain multiple chains.

Many VG algorithms use the hierarchical
decomposition defined by snarls and chains.

Paten et al.: Superbubbles, Ultrabubbles,
and Cacti. 
Journal of Computational Biology, 2018. 
DOI: 10.1089/cmb.2017.0251

https://doi.org/10.1089/cmb.2017.0251

Graph implementations
libhandlegraph defines a common sequence
graph interface based on handles that
encode node id and orientation.

libbdsg contains graph implementations.

HashGraph is a hash table of node records
with adjacency lists. It has replaced the
Protobuf-based .vg as the default graph
format.

XG is a smaller immutable graph based on
bit-packed arrays.

Others: ODGI, PackedGraph, GBWTGraph.

Eizenga et al.: Efficient dynamic variation
graphs. Bioinformatics, 2020. 
DOI: 10.1093/bioinformatics/btaa640

https://github.com/vgteam/libhandlegraph

https://github.com/vgteam/libbdsg

https://doi.org/10.1093/bioinformatics/btaa640
https://github.com/vgteam/libhandlegraph
https://github.com/vgteam/libbdsg

GFA format
GFA (Graphical Fragment Assembly) is
emerging as the standard interchange format
for genome graphs.

A text-based TSV format.

Some features (e.g. overlaps between nodes)
are mostly used by genome assemblers.

Others (e.g. rGFA tags, W-lines with
haplotype metadata) are more useful for
pangenomics tools.

https://github.com/GFA-spec/GFA-spec/
blob/master/GFA1.md

H VN:Z:1.0
S 11 G
S 12 A
S 13 T
S 14 T
S 15 A
S 16 C
S 17 A
S 21 G
S 22 A
S 23 T
S 24 T
S 25 A
L 11 + 12 + *
L 11 + 13 + *
L 12 + 14 + *
L 13 + 14 + *
L 14 + 15 + *
L 14 + 16 + *
L 15 + 17 + *
L 16 + 17 + *
L 21 + 22 + *
L 21 + 23 + *
L 22 + 24 + *
L 23 + 24 - *
L 24 + 25 + *
P A 11+,12+,14+,15+,17+ *,*,*,*
P B 21+,22+,24+,25+ *,*,*
W sample 1 A 0 5 >11>12>14>15>17
W sample 2 A 0 5 >11>13>14>16>17
W sample 1 B 0 5 >21>22>24<23<21
W sample 2 B 0 4 >21>22>24>25

example.gfa

S	 name	 sequence 
L	 from	 orientation	 to	 orientation	 overlap 
P	 name	 path	 overlaps 
W	 sample	 haplotype	 contig	 begin	 end	 path

https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md
https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md

Indexes: GCSA2
GCSA2 is an FM-index for deterministic Wheeler
graphs.

Older than Wheeler graphs: labeled nodes and
LF-mapping follows incoming edges.

Because there is probably no equivalent Wheeler
graph, we stop prefix-doubling at length 256.
Longer matches may be false positives.

We usually index the graph in both orientations,
allowing us to search for the pattern and its
reverse complement at the same time.

There is also a CST based on PSV/NSV/RMQ
queries on the LCP array. We mostly use it for
parent() queries.

###
0 : 2

##G
0 : 1

#G
0

CA
2, 6

CT
2

ATC
3

ATG
3

TT
4

TC
5

TG
5

ATA
7

GT
8

TA
9

A$
10

$$$
11

GC
1

key OUT BWT IN key BS BV VS

$$$
A$
ATA
ATC
ATG
CA
CT
GC
GT
TA
TC
TG
TT
#G
##G
###

1

0

1
1
1
1

1
1
1
1
0
1
0
1
0
1
1
1
1
1

$$$
A$
ATA
ATC
ATG
CA
CT
GC
GT
TA
TC
TG
TT
#G
##G
###

1
1
1
1
1
0
0
1
1
0
1

1
1
1

1

0
1
1
1
1

A
T
C
C
C
G

T
#

A

A

A

G

T

G
T

T
C
#
#
$

0
0
1
1
1
1
0
0
1
1
1
1
1
0
0
1

1
1
1

1
1
1
1
1
1

0

7
3
3
2

8
9
5
5
4

0 : 2

1 6

Sirén: Indexing variation graphs. 
ALENEX 2017. 
DOI: 10.1137/1.9781611974768.2

https://github.com/jltsiren/gcsa2

BWT.rank(IN.select(i, 1), c) = Bc.rank(i, 1)

https://doi.org/10.1137/1.9781611974768.2
https://github.com/jltsiren/gcsa2

Indexes: GBWT
GBWT is a run-length encoded FM-index for
integer sequences.

We choose to interpret the integers as nodes
and the sequences as haplotype paths.

We partition the BWT into nodes and replace
successor nodes with edge ranks.

Extensions: Bidirectional GBWT, r-index for
fast document listing, cached GBWT for
repeated traversals of small subgraphs...

GBWTGraph adds sequences to support the
HandleGraph interface for the subgraph
induced by the haplotype paths.

Sirén et al.: Haplotype-aware graph
indexes. Bioinformatics, 2020. 
DOI: 10.1093/bioinformatics/btz575

https://github.com/jltsiren/gbwt 
https://github.com/jltsiren/gbwtgraph

https://doi.org/10.1093/bioinformatics/btz575
https://github.com/jltsiren/gbwt
https://github.com/jltsiren/gbwtgraph

Indexes: Distance index
Determining the shortest distance between
two graph positions can be slow.

If we have the snarl decomposition of the
graph, we can compute the distance faster in
the snarl tree.

Useful for applications such as seed
clustering that compute distances between a
large number of pairs.

Chang et al.: Distance indexing and seed
clustering in sequence graphs. 
Bioinformatics, 2020. 
DOI: 10.1093/bioinformatics/btaa446

https://doi.org/10.1093/bioinformatics/btaa446

Indexes: Minimizer index
A (w, k)-minimizer is the k-mer with the
smallest hash value among the k-mers and
their reverse complements in a k + w – 1 bp
window.

Minimizers are a common (but slightly
inelegant) way of selecting a subset of 
k-mers for indexing.

A minimizer index is a simple hash table
mapping k-mers to sets of positions.

If the hits are sorted, we can easily restrict
the query to a subgraph. 

In the Giraffe mapper, the minimizer index
also caches information from the distance
index for positions close to the root of the
snarl tree. This reduces cache misses when
the hits are scattered around the graph.

Index construction is fast: typically 5–10
minutes for (the haplotypes in) a human
graph.

Minimizer indexes tend to be faster and
larger than FM-indexes and to work better
with high error rates.

Graph Construction

VG basics
VG has a large number of subcommands.

General principles:

• Graphs can be in any HandleGraph format.

• Output graph is often written to stdout and
filename - means stdin.

• Option -p often writes progress
information to stderr.

• vg <command> prints usage information
for that subcommand.

• The directory for temporary files can be set
with environment variable TMPDIR (the
examples use ${HOME}/scratch/tmp).

$ vg
vg: variation graph tool, version v1.31.0 "Caffaraccia"

usage: vg <command> [options]

main mapping and calling pipeline:
 -- construct graph construction
 -- index index graphs or alignments for random access or mapping
 -- map MEM-based read alignment
 -- giraffe fast haplotype-aware short read alignment
 -- augment augment a graph from an alignment
 -- pack convert alignments to a compact coverage index
 -- call call or genotype VCF variants
 -- help show all subcommands

For more commands, type `vg help`.
For technical support, please visit: https://www.biostars.org/t/vg/

Convert GFA to HashGraph, pipe it to vg stats, and print basic stats
$ vg convert -g -a example.gfa | vg stats -z -
nodes 12
edges 13

Progress information from vg gbwt
$ vg gbwt -p -o example.gbwt -G example.gfa
Building input GBWTs
Input type: GFA
Opening GFA file example.gfa
Validating GFA file example.gfa
Found 12 segments, 2 paths, and 4 walks in 0.00111055 seconds
Storing reference paths as sample _gbwt_ref
GBWT insertion batch size: 464 nodes
Parsing segments
Parsed 12 nodes in 9.482e-06 seconds
Parsing metadata
Parsed metadata in 0.00121103 seconds
Metadata: 6 paths with names, 2 samples with names, 3 haplotypes, 2 contigs with
names
Indexing paths/walks
Indexed 2 paths and 4 walks in 0.000557962 seconds
GBWTs built in 0.00379489 seconds, 0.0148582 GiB

Serializing the GBWT to example.gbwt
GBWT serialized in 0.00186231 seconds, 0.018631 GiB

https://www.biostars.org/t/vg/

Example data
We use 1000 Genomes Project
chromosomes 19 and 20 with a total of 5008
haplotypes of length ~120 Mbp.

Large enough to demonstrate techniques
used with whole-genome human graphs but
small enough to work in 24 GiB memory.

We should now have the following files:

• reference.fa: GRCh37 reference genome.

• chr19.vcf.gz and chr20.vcf.gz: bgzip-
compressed VCF files.

• chr19.vcf.gz.tbi and chr20.vcf.gz.tbi: Tabix
indexes for the VCF files.

#!/bin/bash

SOURCE="ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp"

Get the reference
rm -f reference.fa
curl ${SOURCE}/technical/reference/human_g1k_v37.fasta.gz > reference.fa.gz
gunzip reference.fa.gz

Get the VCFs
SUFFIX=.phase3_shapeit2_mvncall_integrated_v5b.20130502.genotypes.vcf.gz
for i in 19 20; do
 rm -f chr${i}.vcf.gz chr${i}.vcf.gz.tbi
 curl ${SOURCE}/release/20130502/ALL.chr${i}${SUFFIX} > chr${i}.vcf.gz
 curl ${SOURCE}/release/20130502/ALL.chr${i}${SUFFIX}.tbi > chr${i}.vcf.gz.tbi
done

get-data.sh

Graph construction
vg construct builds a graph from a FASTA
reference genome and a VCF file.

Because VCF semantics are ambiguous, VG
has to make some arbitrary choices.

Relevant options:

• -r FILE: Reference genome.

• -v FILE: VCF file.

• -R REGION: Restrict to this region or
contig.

• -C: The region is a chromosome (disables
some heuristics).

• -a: Store variants as paths.

#!/bin/bash

Memory usage is low enough that we could built the graphs in parallel.
There will be some warnings on unsupported variant types.
for i in 19 20; do
 vg construct -r reference.fa -v chr${i}.vcf.gz -R $i -C -a > chr${i}.vg
done

build-graphs.sh

Number of nodes, number of edges, total length of sequences
$ vg stats -z -l chr19.vg
nodes 6373442
edges 8341806
length 60981512
$ vg stats -z -l chr20.vg
nodes 6444645
edges 8376323
length 64854544

Number of paths
$ vg paths -v chr19.vg -L | wc -l
3672810
$ vg paths -v chr20.vg -L | wc -l
3632493

Some graph statistics

Joint node id space
Because we built the graphs independently,
they have overlapping node ids.

vg ids can join the node id spaces.

Relevant options:

• -j: Join node id spaces.

• -m: Create an empty node mapping (for
some GCSA2 construction approaches).

Now we have the following files:

• chr19.vg and chr20.vg: Graphs in
HashGraph format.

• node_mapping: Empty node mapping.

#!/bin/bash

vg ids -j -m node_mapping chr19.vg chr20.vg

Create a copy just in case
cp node_mapping node_mapping.backup

join-ids.sh

Original node id ranges
$ vg stats -r chr19.vg
node-id-range 1:6373442
$ vg stats -r chr20.vg
node-id-range 1:6444645

Join node id spaces
$./join-ids.sh

Joint id ranges
$ vg stats -r chr19.vg
node-id-range 1:6373442
$ vg stats -r chr20.vg
node-id-range 6373443:12818087

More statistics

XG construction
XG is an immutable graph format that is often
used for combining single-chromosome
graphs into a whole-genome graph.

For historical reasons, it is called the XG
index and built with vg index -x.

Option -L includes the alt paths (variants)
created by vg construct -a in the XG.
This is necessary for some tasks but makes
the graph unnecessarily large for other tasks.

We create the following files:

• all.xg: Combined chr19 / chr20 graph.

• variants.xg: Combined graph with variants.

#!/bin/bash

XG construction uses large memory-mapped files.
export TMPDIR=${HOME}/scratch/tmp

XG with reference paths
vg index -x all.xg chr19.vg chr20.vg

XG with reference paths and variants
vg index -x variants.xg -L chr19.vg chr20.vg

build-xg.sh

Number of nodes, number of edges, total length of sequences
$ vg stats -z -l all.xg
nodes 12818087
edges 16718129
length 125836056
$ vg stats -z -l variants.xg
nodes 12818087
edges 16718129
length 125836056

Number of paths
$ vg paths -v all.xg -L | wc -l
2
$ vg paths -v variants.xg -L | wc -l
7305303

Graph statistics

GFA import / export

VG relies on other tools (minigraph, Cactus,
pggb) for building graphs from assembled
genomes.

vg convert can convert between various
graph formats, including GFA.

Some vg convert options:

• -g: The input is in GFA format.

• -a: Convert to HashGraph.

• -f: Convert to GFA.

Convert GFA to HashGraph
$ vg convert -g -a example.gfa > example.vg

Convert HashGraph to GFA
$ vg convert -f example.vg > converted.gfa

Number of segments
$ grep -c "^S" example.gfa
12
$ grep -c "^S" converted.gfa
12

Number of links
$ grep -c "^L" example.gfa
13
$ grep -c "^L" converted.gfa
13

Number of paths
$ grep -c "^P" example.gfa
2
$ grep -c "^P" converted.gfa
2

Number of walks
$ grep -c "^W" example.gfa
4
$ grep -c "^W" converted.gfa
0

https://github.com/lh3/minigraph

https://github.com/ComparativeGenomicsToolkit/
cactus

https://github.com/pangenome/pggb

https://github.com/lh3/minigraph
https://github.com/ComparativeGenomicsToolkit/cactus
https://github.com/ComparativeGenomicsToolkit/cactus
https://github.com/pangenome/pggb

Index Construction

The easy way
The graph on the right describes the
dependencies between common inputs and
index types.

Given the name of the workflow and a set of
inputs, vg autoindex tries to figure out
how to build the necessary indexes.

This does not scale efficiently to whole-
genome human graphs yet.

Instead of using vg autoindex, we build
the indexes manually.

https://github.com/vgteam/vg/wiki/Index-
Construction

https://github.com/vgteam/vg/wiki/Index-Construction
https://github.com/vgteam/vg/wiki/Index-Construction

GBWT construction
• The basic algorithm inserts a batch of

sequences into a dynamic FM-index.

• Based on the BCR algorithm (Bauer et
al, TCS, 2013) and RopeBWT2 (Li,
Bioinformatics, 2014).

• We can partition the construction by
chromosome, run multiple jobs in parallel,
and merge the results quickly.

• In each job, the main thread generates
paths, while a background thread
inserts them into the GBWT index.

• Because the alphabets are disjoint,
merging is almost trivial.

• When the input consists of VCF files, we
match paths with VCF contigs by name
and assume that they are disjoint.

• As VCF parsing is slow, we first parse
the input into temporary files.

• VCF is a variant-based format, while we
generate full paths before inserting them
(and their reverse complements).

• To save memory, we make multiple
passes over the parse and generate
paths in batches of e.g. 200 samples.

VCF to GBWT
Some vg gbwt options:

• -x FILE: Use this graph.

• -v: The inputs are VCF files.

• -o FILE: Write the GBWT to this file.

• --preset X: Use this preset. 1000gp is
good for generating full-length haplotypes
for human graphs.

• --num-jobs N: Limit the number of
parallel jobs to save memory.

We use variants.xg and the VCF files and
build all.gbwt with 5008 haplotypes over
chr19 and chr20.

#!/bin/bash

For VCF parses and temporary GBWTs
export TMPDIR=${HOME}/scratch/tmp

This will take a few hours.
vg gbwt -x variants.xg -o all.gbwt --preset 1000gp -v chr19.vcf.gz chr20.vcf.gz

build-gbwt.sh

Basic GBWT metadata
$ vg gbwt -M all.gbwt
10016 paths with names, 2504 samples with names, 5008 haplotypes, 2 contigs with
names

Extract the GBWT from the VG wrapper
$ vg view -x GBWT all.gbwt > extracted.gbwt

Print more information using standalone GBWT tools
$ gbwt/benchmark extracted
GBWT benchmark v1.2.0

Index name: extracted

Compressed GBWT: extracted (bidirectional)
Total length: 92564668356
Sequences: 20032
Alphabet size: 25636176
Effective: 25636175
Runs: 131479952 concrete / 131499980 logical
DA samples: 90407892
BWT: 363.601 MB
DA samples: 310.42 MB
Total: 674.199 MB
Metadata: 10016 paths with names, 2504 samples with names, 5008
haplotypes, 2 contigs with names

GBWT statistics

GFA to GBWT
When building GBWT from GFA with both 
P-lines and W-lines, VG interprets P-lines as
reference paths and W-lines as threads.

If there are only P-lines, VG interprets them
as threads and parses GBWT metadata from
path names.

More vg gbwt options:

• -G: The input is a GFA file.

• -g FILE: Build GBWTGraph and write it
to this file.

GBWTGraphs can be converted into other
graph formats with vg convert option -b.

Build GBWT and GBWTGraph
$ vg gbwt -o example.gbwt -g example.gg -G example.gfa

GBWT metadata
$ vg gbwt -M example.gbwt
6 paths with names, 2 samples with names, 3 haplotypes, 2 contigs with names

Thread names from GBWT
$ vg gbwt -T example.gbwt
_thread__gbwt_ref_A_0_0
_thread__gbwt_ref_B_0_0
_thread_sample_A_1_0
_thread_sample_A_2_0
_thread_sample_B_1_0
_thread_sample_B_2_0

Convert GBWTGraph to HashGraph
$ vg convert -b example.gbwt -a example.gg > example.vg

Path names from HashGraph
$ vg paths -v example.vg -L
A
B

Sampled GBWT
When we add variants to a graph, both true
and false positive mappings become more
likely (Pritt et al., Genome Biology, 2018).

VG usually gets best results with variants that
occur in at least ~1% of the haplotypes.

vg gbwt -l generates n (default n = 64)
artificial paths per graph component with a
greedy algorithm that tries to sample k-node
(default k = 4) subpaths in the input GBWT
proportionally.

We now take all.xg and all.gbwt and produce
sampled.gbwt and sampled.gg.

#!/bin/bash

Sample the GBWT and build the corresponding GBWTGraph
vg gbwt -x all.xg -o sampled.gbwt -g sampled.gg -l all.gbwt

sample-gbwt.sh

Full GBWT metadata
$ vg gbwt -M all.gbwt
10016 paths with names, 2504 samples with names, 5008 haplotypes, 2 contigs with
names

Sampled GBWT metadata
$ vg gbwt -M sampled.gbwt
128 paths with names, 64 samples, 64 haplotypes, 2 contigs

File sizes
$ ll -h all.gbwt sampled.gbwt
-rw-rw-r-- 1 parallels parallels 675M Mar 28 16:20 all.gbwt
-rw-rw-r-- 1 parallels parallels 173M Mar 28 19:11 sampled.gbwt

GBWT statistics

Graph pruning
For GCSA2, we need a deterministic Wheeler
graph that is 256-equivalent to the original.

If there is too much local complexity in the
graph, the Wheeler graph may be too large.

We prune graph regions where k-mers
(default k = 24) make more than e (default 
e = 3) nontrivial edge choices.

Then we may remove high-degree nodes,
restore reference paths, or unfold local
haplotypes in the pruned regions.

We build GCSA for the pruned graph and use
the index with the original graph.

b

c

a

d

e

f

g

h

i

j

b

c

a

h

i

j

b

a

e1

d1

g1

g2 i

j

c e2

d2

f1

f2

h

b

c

a

h

i

j

d f

Pruning in practice
Haplotype unfolding creates duplicate nodes.
We use node mapping to keep track of their
original ids and to create a GCSA index that
maps to the original graph.

Some vg prune options:

• -u: Unfold haplotypes.

• -g FILE: Use this GBWT.

• -m FILE: Use this node mapping.

• -a: Append to an existing node mapping.

We use chr19.vg, chr20.vg, and all.gbwt to
produce pruned graphs chr19.unfolded.vg
and chr20.unfolded.vg.

#!/bin/bash

For building temporary XG indexes
export TMPDIR=${HOME}/scratch/tmp

Prune and unfold haplotypes
for i in 19 20; do
 vg prune -u -g all.gbwt -a -m node_mapping chr${i}.vg > chr${i}.unfolded.vg
done

prune-graphs.sh

Original graphs
$ vg stats -z -l chr19.vg
nodes 6373442
edges 8341806
length 60981512
$ vg stats -z -l chr20.vg
nodes 6444645
edges 8376323
length 64854544

Pruned graphs
$ vg stats -z -l chr19.unfolded.vg
nodes 7306423
edges 9238425
length 64341208
$ vg stats -z -l chr20.unfolded.vg
nodes 6996528
edges 8891383
length 66934937

Graph statistics

Degenerate cases
325:TAACCCTAACCCTAACCCTAAC

348:CCC

346:CCCCTAAC

347:C

326:CCCTAA

357:C

367:C

376:C
368:CC

337:A
338:A

342:CC

343:T 344:T

351:T

349:T 350:C

324:CCCTAACCCTAACCCTACCCTAACCCTAACCC

365:A
366:C333:C

334:CCCTAACCCTAA

359:T

361:A

362:T 363:C

378:C
379:C

364:A

353:A

352:T

327:A

329:CCCTAA

331:CCCTAACCCTAACCCTAACCCTAACCCTAACC330:CCCTAA

377:T

328:C

369:G 371:T

372:A

356:C

355:A

385:G 388:T

387:C

339:C

341:C

340:CCTAA
345:AA

384:ACC
386:C

374:C

375:A

373:G

354:A

382:C

336:C

358:C
360:C

370:T
389:AACCCTCGCGGTACCCTCAGCCGGCCCGCCCG 390:CCCGGGTCT

380:C

383:A381:T

332:CTAAC

323:ACCCCAACCCCAACCCCAACCCTAACCCCTAA

335:CCCT

01F
5DB 1 323 01F

5DB 324

01F
5DB 325

01F
5DB 326 01F

5DB 328 01F
5DB 330 01F

5DB 334 01F
5DB 335 01F

5DB 337 01F
5DB 338 01F

5DB 339 01F
5DB 340 01F

5DB 341 01F
5DB 342 01F

5DB 344 01F
5DB 345 01F

5DB 348 01F
5DB 351 01F

5DB 353 01F
5DB 354 01F

5DB 356

01F
5DB 357

01F
5DB 358 01F

5DB 360 01F
5DB 362 01F

5DB 364 01F
5DB 365

01F
5DB 367

01F
5DB 368 01F

5DB 370 01F
5DB 372 01F

5DB 375

01F
5DB 376

01F
5DB 378

01F
5DB 379

01F
5DB 381 01F

5DB 383
01F
5DB 384

01F
5DB 386 01F

5DB 388
01F
5DB 389 01F

5DB 390

276854944:A
276854945:A

276855183:C

276855184:C

276855008:A
276855007:C

276854995:A
276854994:A

276855059:AA 276855060:CCC

276855015:C 276855014:T276855072:C
276855071:CC

276855067:C
276855056:T

276854972:T

276855296:C

276854974:C

276855237:A 276855238:C

276855189:A 276855190:C

276855094:C

276855093:CC

276854968:CC 276854967:T

276855328:C 276855327:C

276855379:C

276855378:C

276855363:C
276855362:C

276855029:CCCT 276855030:A

276855270:A
276855271:A

276855360:ACC 276855359:C

276855105:C 276855110:C

276854980:C 276854981:C

276855209:CCC 276855210:T

276855200:C

276854973:C

276855137:A
276855138:C

276855109:T

276855217:CCCT 276855218:A

276854991:C
276854990:T

276855197:A 276855198:C

276855009:A

276855066:C

276855185:C 276855186:CCC

276854975:CCC

276854976:T

276855182:A

276855063:A 276855064:C

276855149:A 276855150:A

276855345:A 276855344:C

276855364:C

276854954:A

276854955:A

276854957:C

276855340:C

276855089:C

276855354:C

276855397:C

276855119:C

276855012:C

276855027:C

276855077:C

276855058:C

276855080:C

276855358:C

276855316:C

276855091:C

276855116:C

276855406:C

276855099:C

276855375:C

276855121:C

276854970:A 276854969:C

276855024:A 276855023:A

276855177:AA

276855194:CCC

276855178:C

276855350:A 276855349:C

276855370:C 276855369:CC

276855219:A 276855220:C

276854943:CCCT 276855201:C

276855191:C

276855114:T 276855113:C
276855230:C 276855231:C

276855087:T
276855086:A

276855402:A 276855401:C

276855075:A 276855074:A

276855053:A

276855256:C 276855257:CC

276854983:T

276854984:A

276854946:C 276854947:CCTAA

276855174:C

276855147:C 276855148:T

276855339:C

276855134:C

276855135:T

276855145:C

276855394:A 276855393:A

276855175:CC
276855176:T

276855092:G

276855020:T 276855019:A

276854985:A

276854986:C

276855211:A 276855212:A

276855361:A

276855088:C

276855098:C 276855097:T

276855343:C 276855342:C

276855022:C

276855161:A

276855162:C

276855291:CCC 276855292:T

276855312:A 276855313:C

388:T
389:AACCCTCGCGGTACCCTCAGCCGGCCCGCCCG

276855261:T 276855262:A

276855295:C

276855333:C 276855332:CC

390:CCCGGGTCT276855026:C 276855025:T

276855267:C

276855268:CCCTAACCCTAA

276855107:A 276855106:C

276855383:T 276855382:A

276855356:T 276855355:A

276855269:CCCT

276855399:T 276855398:A

276855263:A

276855341:C

276854960:A

276854951:AA 276855290:CCCCTAAC

276854952:CCC

276855141:C

387:C

276854942:CCCTAACCCTAA
276855124:C

276855010:T

276855395:T

276855125:C

276855205:C 276855206:CC

276855160:C

276855309:C

276855310:C

276855334:C

276855090:T

276855139:CC

276855034:C

276855035:CC

276855050:CC

276855049:T

276855017:C
276855016:C

276854963:C

276854962:C

276855391:CC 276855390:T

276854961:T

276855232:CCCTAA 276855233:CCCTAA

276855085:A
276855084:C

276855013:C

276854959:ACC

276854997:CC 276854996:T

276855388:A

276854987:G

276855258:T

276855331:T

276855048:A

276855047:A

276855353:C

276855207:T 276855208:AA

276855293:A 276855294:A

276855365:C

276855387:C

276855386:C

276854989:C
276855038:CCC

276855039:T

276854948:C 276854949:CC

276855297:CCC

276855202:A

276855225:AA 276855226:CCC

276855157:A 276855158:A

325:TAACCCTAACCCTAACCCTAAC

326:CCCTAA

276855103:C

276855104:C

276855046:C

276855045:T

276855102:A
276855128:A

276855129:A

276855061:T

276855152:T 276855153:T

276855335:C

276855036:T

276855259:AA

276855396:C

276854982:C

276855214:C

276855302:C

276855303:C

276855031:A 276855032:C

276855123:C

276855122:C

276855245:T 276855246:A

276855254:C
276855255:CCTAA

276855264:C 276855265:C

276855288:A 276855289:C

276855308:A 276854971:A
276855118:C

276855117:A

276855215:CCCTAA 276855216:CCCTAACCCTAA

331:CCCTAACCCTAACCCTAACCCTAACCCTAACC

276855389:T

276855101:A

276855280:A 276855281:A

276855171:A 276855172:C

276855033:CCTAA

276855065:C

276855193:C

276855126:C 276855127:T

276855005:T 276855004:A
276855011:C

276855329:C

276854964:C

276854950:T

276855037:AA

276855163:T 276855164:A

276855285:CCC 276855286:T

276855192:C

276855159:A

276855154:AA

276855224:T

276855070:T 276855069:A

276855223:CC

276855166:C

276855078:T

276855068:G

276855052:A
276855051:C

276855076:C

276855057:C

276855229:A

276855239:CCTAA 276855240:C

276855040:A

276855041:A

276855195:T 276855196:A

276855001:C 276855000:C

276854958:C

276855326:C 276855325:T

276855140:T

276854966:A

276855002:C

276855242:T 276855243:AA

276855221:CCTAA

276855366:A

276855304:C

276855054:C

276855079:C

276855372:A 276855371:A

276855374:C 276855373:T

276855227:T

276855199:C

276855142:C 276855143:C

276855392:C

276855403:A

332:CTAAC

276855299:A
276855300:A

276855320:T

276855385:C

276855180:T 276855181:A

276855021:CC

276855136:A

276854988:ACC276854999:T

276855155:CCC

276855156:T

276855043:C

276855044:C

276855321:C

276855400:CC

276855100:C

276855095:A

276855384:C

276855055:C

276855167:C 276855168:CCC

276855315:T

276855173:C

276855115:C

276855266:C

276855287:A

276855188:A

276855282:C

276855283:C

276855319:A 276855318:A

276855132:C

276855133:C

276855144:T

276855165:A

276855247:A

276855248:C

276855260:CCC

276855073:A

276855323:C 276855322:C

276855311:T

328:C

276855028:CCCTAACCCTAA

276854941:CCCTAA

276854977:A

276855234:CCCTAACCCTAA 276855235:CCCT

276855241:CC

276855112:C

276854956:C

276855324:C

276855236:A

276855146:C

276855346:A

276855336:A

276855131:CC

276855111:C

276855317:C

276855314:C

276855169:T

276855279:T

276854953:T

276855042:C

276855203:C

276855305:T

276855306:T

276855222:C

276854998:A

276855357:C

276855130:C

276855213:C

276855338:T 276855337:A

276854979:C

276855376:T

276855252:A 276855253:A

276855006:CC

276855348:CC 276855347:T

276855377:C

323:ACCCCAACCCCAACCCCAACCCTAACCCCTAA 324:CCCTAACCCTAACCCTACCCTAACCCTAACCC

276855273:CCTAA 276855274:C

276855251:CCCT 276855228:A

276855179:CCC

276855082:T 276855081:T

276855330:A

276854992:C

276855187:T

276855108:A

276855276:T 276855277:AA

276855380:C

276855170:A

276855003:A

276855368:T 276855367:A

276855096:A

276855151:C

276855272:C

276855250:CCCTAACCCTAA

276855275:CC

276855204:CCTAA

276855278:CCC

276855298:T

276854965:A276855083:CC

276854993:C

276855352:T 276855351:C

276855249:C

276855284:CCCCTAAC

327:A

276855381:A

276855244:CCC

276855405:C

276854978:A

276855062:A

276855120:T

276855018:A

276855301:C

276855404:T

276855307:A

The part with many edges connects the trie of haplotype prefixes to the trie of reverse suffixes.
There is a high degree of nondeterminism: almost every leaf has label C.

Original graph

Pruned and 
unfolded 
graph

GCSA2 construction
GCSA2 construction uses a semi-external
prefix-doubling algorithm.

We first generate all 16 bp paths in the graph
and store them in one file per chromosome.

With four prefix-doubling steps, we increase
path length to (up to) 256 bp.

Each step starts with a pruning step that
processes the paths in lexicographic order,
marks the ones that no longer have to be
extended, and merges ranges of redundant
paths.

The extend step reads the paths from one
chromosome at a time and generates new
paths to a new file.

Prefix-doubling is followed by the merging
step, which is similar to the pruning step.

Final construction is done in a single pass
over the merged path files, with σ additional
read pointers completing a second pass by
keeping track of the results of LF-mapping.

GCSA in practice
GCSA construction typically needs hundreds
of bytes of disk space per bp, and the total 
I/O volume is kilobytes per bp.

The progress information from option -p can
help when something goes wrong.

Relevant vg index options:

• -g FILE: Build GCSA and store it in FILE
and FILE.lcp.

• -f FILE: Use this node mapping.

We use the unfolded graphs and the node
mapping as inputs and produce all.gcsa and
all.gcsa.lcp.

#!/bin/bash

We need almost 60 GiB of disk space
export TMPDIR=${HOME}/scratch/tmp

vg index -g all.gcsa -f node_mapping -p chr19.unfolded.vg chr20.unfolded.vg

build-gcsa.sh

Extract the GCSA and the LCP from VG wrappers
$ vg view -x GCSA all.gcsa > extracted.gcsa
$ vg view -x LCP all.gcsa.lcp > extracted.lcp

Print some information using standalone GCSA2 tools
$ gcsa2/benchmark/query_gcsa extracted
GCSA2 query benchmark v1.3.0

Base name: extracted

Paths: 486992624
Edges: 501419052
Samples: 67249859 (at 52403160 positions, 35 bits each)
Max query: 256

Core index: 328.545 MB
Samples: 355.358 MB
Counter: 108.958 MB
LCP array: 471.804 MB
Total size: 1264.67 MB

GCSA statistics

Distance index
Distance index construction is still a bit
inconvenient.

First we have to find snarls in the graph with
vg snarls and include the trivial ones with
option -T.

Then we use vg index:

• -s FILE: Use these snarls.

• -j FILE: Build a distance index and store
it in this file.

We need the combined graph all.xg and build
distance index all.dist.

#!/bin/bash

Find snarls, including trivial ones
vg snarls -T all.xg > all.snarls

Build the distance index
vg index -s all.snarls -j all.dist all.xg

build-dist.sh

Minimizer index
Minimizer index construction is fast, and the
tools using it can also build it on their own.

If we do not have a GBWTGraph, the
construction will create a temporary one.

vg minimizer options:

• -g FILE: Use this GBWT.

• -i FILE: Store the index in this file.

• -d FILE: Annotate the hits with positions
from this distance index.

• -G: The input graph is GBWTGraph.

We build sampled.min from sampled.gbwt,
sampled.gg, and all.dist.

Build the minimizer index and display progress information
$ vg minimizer -g sampled.gbwt -i sampled.min -d all.dist -G -p sampled.gg
Loading GBWT index sampled.gbwt
Loading GBWTGraph sampled.gg
Loading MinimumDistanceIndex all.dist
Building MinimizerIndex with k = 29, w = 11
19415804 keys (18831937 unique)
Minimizer occurrences: 21954507
Load factor: 0.578636
Construction so far: 11.1741 seconds
Writing the index to sampled.min
Time usage: 13.7561 seconds
Memory usage: 2.49887 GiB

List the indexes and other outputs
$ ll -h all.* sampled.*
-rw-rw-r-- 1 parallels parallels 577M Mar 29 22:05 all.dist
-rw-rw-r-- 1 parallels parallels 675M Mar 28 16:20 all.gbwt
-rw-rw-r-- 1 parallels parallels 793M Mar 28 21:00 all.gcsa
-rw-rw-r-- 1 parallels parallels 472M Mar 28 21:00 all.gcsa.lcp
-rw-rw-r-- 1 parallels parallels 27M Mar 29 22:03 all.snarls
-rw-rw-r-- 1 parallels parallels 528M Mar 27 22:54 all.xg
-rw-rw-r-- 1 parallels parallels 173M Mar 28 19:11 sampled.gbwt
-rw-rw-r-- 1 parallels parallels 322M Mar 28 19:12 sampled.gg
-rw-rw-r-- 1 parallels parallels 821M Mar 29 22:12 sampled.min

Short Read Mapping

VG read aligners
vg map Giraffe vg mpmap

The original short read aligner
based on finding MEMs using
GCSA2. The algorithm is similar
to BWA-MEM.

Garrison et al.: Variation graph
toolkit improves read mapping
by representing genetic
variation in the reference. 
Nature Biotechnology, 2018. 
DOI: 10.1038/nbt.4227

Minimizer-based short read
aligner that maps the reads to
haplotype paths. Much faster
than vg map.

Sirén et al.: Genotyping
common, large structural
variations in 5,202 genomes
using pangenomes, the Giraffe
mapper, and the vg toolkit. 
bioRxiv, 2021. 
DOI: 10.1101/2020.12.04.412486

Similar to vg map, but the
alignments are directed
subgraphs instead of paths.
Primarily for RNA-seq reads, so
we skip it now.

Sibbesen et al.: Haplotype-
aware pantranscriptome
analyses using spliced
pangenome graphs. 
bioRxiv, 2021. 
DOI: 10.1101/2021.03.26.437240

https://doi.org/10.1038/nbt.4227
https://doi.org/10.1101/2020.12.04.412486
https://doi.org/10.1101/2021.03.26.437240

Output formats
GAM 
The original Protobuf-based alignment format
used by VG. Poorly documented and being
phased out but still the default.

GAMP 
The version of GAM used by vg mpmap.

GAF 
Portable text-based TSV format. Downstream
tools are more likely to support this. 
https://github.com/lh3/gfatools/blob/master/
doc/rGFA.md 

VG can also output alignments in the
standard SAM / BAM / CRAM formats.

Because these formats represent alignments
relative to linear reference sequences, VG
must project the alignments relative to a set
of reference paths. This is a lossy process.

For historical reasons, this is called
surjecting the alignments to reference paths.

https://github.com/lh3/gfatools/blob/master/doc/rGFA.md
https://github.com/lh3/gfatools/blob/master/doc/rGFA.md

Simulating reads
Because our example graph only contains two
chromosomes, we have to use simulated
reads.

We simulate 1 million 150 bp read pairs from
1000GP sample NA12878 with vg sim.

In a proper experiment, we would annotate
the reads with reference positions and remove
NA12878 and its close relatives from the
graph we are mapping to.

We might also want to take the error profile
from real reads.

We need all.xg and all.gbwt and output
reads.fq.

#!/bin/bash

1 million pairs of 150 bp reads
PAIRS=1000000
LENGTH=150

Substitution rate 0.003, indel rate 0.0003
SUBST=0.003
INDEL=0.0003

Fragment length 500 bp, stdev 50 bp
FRAGMENT=500
STDEV=50

Simulate the reads
vg sim -r -x all.xg -g all.gbwt -m NA12878 \
 -n $PAIRS -l $LENGTH \
 -e $SUBST -i $INDEL \
 -p $FRAGMENT -v $STDEV \
 -a > reads.gam

Convert to FASTQ
vg view -X reads.gam > reads.fq

simulate-reads.sh

vg map algorithm
vg map uses a seed-and-extend algorithm
similar to the one used in BWA-MEM (Li,
arXiv, 2013).

1. Find (super-)maximal exact matches
(MEMs) using GCSA2.

• LF() extends the match to the left,
parent() removes characters from the
right (Ohlebusch et al., SPIRE 2010).

2. Cluster the seed MEMs and chain them
in each promising cluster.

• Distances are based on projections of
the MEMs to the embedded paths.

3. Unfold the subgraphs around promising
chains and transform them into DAGs.

4. Align the read to the DAG using an
extension of the Smith–Waterman
algorithm.

Using vg map
We need all.xg, all.gcsa, and all.gcsa.lcp, and
we also use all.gbwt for better mapq
estimation. The output will be map.gam.

Some vg map options:

• -d STR: Use this base name for indexes
(or specify with -x, -g, and -1).

• -t N: Number of parallel mapping threads
(one extra thread for output).

• -f FILE: Map the reads from this FASTQ
file (can be gzip-compressed).

• -i: We have interleaved paired-end reads
(or specify another FASTQ file).

• -%: Output GAF format.

Map the reads using 7 threads
$ vg map -d all -t 7 -f reads.fq -i > map.gam

Print some alignment statistics
$ vg stats -a map.gam variants.xg
Total alignments: 2000000
Total primary: 2000000
Total secondary: 0
Total aligned: 2000000
Total perfect: 1249207
Total gapless (softclips allowed): 1952126
Insertions: 46018 bp in 46002 read events
Deletions: 3219 bp in 3201 read events
Substitutions: 890472 bp in 890472 read events
Softclips: 2676 bp in 824 read events
Unvisited nodes: 4270702/12818087 (16047334 bp)
Single-visited nodes: 1622640/12818087 (17006534 bp)
Significantly biased heterozygous sites: 164630/3484484 (4.72466%)

Giraffe algorithm

The Giraffe algorithm is a custom seed-and-
extend algorithm. With a few exceptions, it
aligns the reads to haplotype paths while
avoiding other paths.

1. Get seeds from the minimizer index.

• Use all minimizers with at most 10 hits
and some with up to 500 hits.

2. Cluster the seeds using the distance
index. 

3. Extend the seeds in promising clusters
without gaps.

• Most Illumina sequencing errors are
substitutions, so most alignments
should be gapless.

4. Align the best extensions from promising
clusters using the dozeu library.

• https://github.com/ocxtal/dozeu

https://github.com/ocxtal/dozeu

Using Giraffe
We use sampled.gg, sampled.gbwt, all.dist,
and sampled.min and output giraffe.gam.

Some vg giraffe options:

• -g FILE: Use this GBWTGraph (or -x for
other graph types).

• -H FILE: Use this GBWT index.

• -d FILE: Use this distance index.

• -m FILE: Use this minimizer index (may
be omitted).

• -t N, -f FILE, -i: As in vg map.

• -o gaf: Output GAF format.

Map the reads using 7 threads
$ vg giraffe -g sampled.gg -H sampled.gbwt -d all.dist -m sampled.min -t 7 -f
reads.fq -i > giraffe.gam

Print some alignment statistics
$ vg stats -a giraffe.gam variants.xg
Total alignments: 2000000
Total primary: 2000000
Total secondary: 0
Total aligned: 2000000
Total perfect: 1238868
Total gapless (softclips allowed): 1953675
Insertions: 44603 bp in 44417 read events
Deletions: 3762 bp in 3277 read events
Substitutions: 914710 bp in 914710 read events
Softclips: 560 bp in 82 read events
Unvisited nodes: 4295656/12818087 (16185980 bp)
Single-visited nodes: 1598937/12818087 (16965505 bp)
Significantly biased heterozygous sites: 166803/3484484 (4.78702%)

After mapping

• Genotyping and variant calling:

• https://github.com/vgteam/vg/wiki/Whole-genome-calling-and-
genotyping

• https://github.com/vgteam/vg/blob/master/README.md

• GAM file filtering and manipulation with vg filter.

https://github.com/vgteam/vg/wiki/Whole-genome-calling-and-genotyping
https://github.com/vgteam/vg/wiki/Whole-genome-calling-and-genotyping
https://github.com/vgteam/vg/blob/master/README.md

