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Reference genomes

A reference genome is a model of the data. It 
describes what we expect the genome to 
look like.


A good model:


1. is easy to use and understand; and


2. describes the data with sufficient 
accuracy and in sufficient detail.


Traditional reference sequences often fail the 
second point.

???



Multiple references
We could try to use a representative 
collection of haplotypes as the reference.


The haplotypes are highly similar, and the 
model fails to tell when the similar-looking 
positions are equivalent.


If a sequence aligns to multiple equivalent 
positions, the alignment is often useful.


If we find equally good alignments to non-
equivalent positions, the mapping is not very 
informative.

???



Genome graphs

If we align and collapse the equivalent 
positions, we get a graph representing the 
haplotypes.


We need cycles to represent certain kinds of 
structural variation accurately.


Cycles introduce paths that make no 
biological sense.


Complex regions in the graph may also be 
computationally expensive.

???



Graph and paths

If we embed the original haplotypes as paths 
in the graph, we get the best of both worlds.


The graph tells which positions in the 
haplotypes are equivalent, and the 
haplotypes tell what kind of paths we expect 
to see.


As the paths restrict the scope of the model, 
using it becomes computationally cheaper.



VG Toolkit



VG toolkit
The VG toolkit is a large collection of 
algorithms for working with genome graphs.


It started as rapid prototyping with Protobuf.


There are now many file formats, interfaces, 
and libraries for wider interoperability.


We are removing unnecessary branches and 
relying more on stand-alone tools.


Some documentation can be found in the 
wiki: https://github.com/vgteam/vg/wiki.

https://github.com/vgteam/vg

Garrison et al.: Variation graph toolkit 
improves read mapping by representing 
genetic variation in the reference. 
Nature Biotechnology, 2018. 
DOI: 10.1038/nbt.4227

Hickey et al.: Genotyping structural 
variants in pangenome graphs using the 
vg toolkit. Genome Biology, 2020. 
DOI: 10.1186/s13059-020-1941-7

https://github.com/vgteam/vg/wiki
https://github.com/vgteam/vg
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1186/s13059-020-1941-7


Compiling VG
$ git clone --recursive https://github.com/vgteam/vg.git 
$ cd vg 
$ make get-deps # Requires sudo privileges 
$ make -j 4 # Number of parallel jobs

$ git clone --recursive https://github.com/vgteam/vg.git 
$ cd vg 
$ brew bundle 
$ export PATH="/usr/local/opt/coreutils/libexec/gnubin:/usr/local/opt/bison/bin:/usr/local/bin:$PATH" 
$ export LD_LIBRARY_PATH=/usr/local/lib/ 
$ export LIBRARY_PATH=/usr/local/lib/ 
$ export CFLAGS="-isystem /usr/local/include/" 
$ make -j 4 # Number of parallel jobs

On macOS with Homebrew

On Ubuntu

VG has many dependencies, which makes the compilation a fragile process, especially on 
macOS. A fresh Ubuntu virtual machine provides the best results.



VG releases

There is a VG release with a precompiled Linux binary and a Docker image every six weeks. The 
examples in this talk will be based on VG version 1.31.0.



VG data model
VG data model is based on bidirected 
sequence graphs.


Each node has undirected edges adjacent to 
its left and right sides.


Forward traversal enters from the left, reads 
the sequence, and exits from the right.


Reverse traversal enters from the right, 
reads the reverse complement, and exits 
from the left.


This can be simulated with a directed graph 
with separate nodes for each orientation.

GATTACA

GATTACA

TGTAATC



Data model details
• Nodes should be short.


• GCSA2 and the minimizer index do not 
work with nodes longer than 1024 bp.


• Some operations create temporary 
copies of the sequence.


• Visualization may display the sequence 
within the node.


• Cycles should be rare.


• Ideal graph is a "VCF graph": a linear 
reference with edits.


• There should be a good snarl 
decomposition.


• Paths may represent references, 
haplotypes, variants, alignments, and 
annotations.


• Paths are stored in the graph itself.


• Threads are lightweight paths with 
limited functionality stored in a 
GBWT index.



Snarl decomposition
Snarl is an induced subgraph separated by 
two node sides from the rest of the graph.


Chain is a sequence of snarls.


A snarl may contain multiple chains.


Many VG algorithms use the hierarchical 
decomposition defined by snarls and chains.


Paten et al.: Superbubbles, Ultrabubbles, 
and Cacti. 
Journal of Computational Biology, 2018. 
DOI: 10.1089/cmb.2017.0251

https://doi.org/10.1089/cmb.2017.0251


Graph implementations
libhandlegraph defines a common sequence 
graph interface based on handles that 
encode node id and orientation.


libbdsg contains graph implementations.


HashGraph is a hash table of node records 
with adjacency lists. It has replaced the 
Protobuf-based .vg as the default graph 
format.


XG is a smaller immutable graph based on 
bit-packed arrays.


Others: ODGI, PackedGraph, GBWTGraph.

Eizenga et al.: Efficient dynamic variation 
graphs. Bioinformatics, 2020. 
DOI: 10.1093/bioinformatics/btaa640


https://github.com/vgteam/libhandlegraph


https://github.com/vgteam/libbdsg

https://doi.org/10.1093/bioinformatics/btaa640
https://github.com/vgteam/libhandlegraph
https://github.com/vgteam/libbdsg


GFA format
GFA (Graphical Fragment Assembly) is 
emerging as the standard interchange format 
for genome graphs.


A text-based TSV format.


Some features (e.g. overlaps between nodes) 
are mostly used by genome assemblers.


Others (e.g. rGFA tags, W-lines with 
haplotype metadata) are more useful for 
pangenomics tools.


https://github.com/GFA-spec/GFA-spec/
blob/master/GFA1.md

H VN:Z:1.0 
S 11 G 
S 12 A 
S 13 T 
S 14 T 
S 15 A 
S 16 C 
S 17 A 
S 21 G 
S 22 A 
S 23 T 
S 24 T 
S 25 A 
L 11 + 12 + * 
L 11 + 13 + * 
L 12 + 14 + * 
L 13 + 14 + * 
L 14 + 15 + * 
L 14 + 16 + * 
L 15 + 17 + * 
L 16 + 17 + * 
L 21 + 22 + * 
L 21 + 23 + * 
L 22 + 24 + * 
L 23 + 24 - * 
L 24 + 25 + * 
P A 11+,12+,14+,15+,17+ *,*,*,* 
P B 21+,22+,24+,25+ *,*,* 
W sample 1 A 0 5 >11>12>14>15>17 
W sample 2 A 0 5 >11>13>14>16>17 
W sample 1 B 0 5 >21>22>24<23<21 
W sample 2 B 0 4 >21>22>24>25

example.gfa

S	 name	 sequence 
L	 from	 orientation	 to	 orientation	 overlap 
P	 name	 path	 overlaps 
W	 sample	 haplotype	 contig	 begin	 end	 path

https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md
https://github.com/GFA-spec/GFA-spec/blob/master/GFA1.md


Indexes: GCSA2
GCSA2 is an FM-index for deterministic Wheeler 
graphs.


Older than Wheeler graphs: labeled nodes and 
LF-mapping follows incoming edges.


Because there is probably no equivalent Wheeler 
graph, we stop prefix-doubling at length 256. 
Longer matches may be false positives.


We usually index the graph in both orientations, 
allowing us to search for the pattern and its 
reverse complement at the same time.


There is also a CST based on PSV/NSV/RMQ 
queries on the LCP array. We mostly use it for 
parent() queries.
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Sirén: Indexing variation graphs. 
ALENEX 2017. 
DOI: 10.1137/1.9781611974768.2


https://github.com/jltsiren/gcsa2

BWT.rank(IN.select(i, 1), c) = Bc.rank(i, 1)

https://doi.org/10.1137/1.9781611974768.2
https://github.com/jltsiren/gcsa2


Indexes: GBWT
GBWT is a run-length encoded FM-index for 
integer sequences.


We choose to interpret the integers as nodes 
and the sequences as haplotype paths.


We partition the BWT into nodes and replace 
successor nodes with edge ranks.


Extensions: Bidirectional GBWT, r-index for 
fast document listing, cached GBWT for 
repeated traversals of small subgraphs...


GBWTGraph adds sequences to support the 
HandleGraph interface for the subgraph 
induced by the haplotype paths.

Sirén et al.: Haplotype-aware graph 
indexes. Bioinformatics, 2020. 
DOI: 10.1093/bioinformatics/btz575


https://github.com/jltsiren/gbwt 
https://github.com/jltsiren/gbwtgraph

https://doi.org/10.1093/bioinformatics/btz575
https://github.com/jltsiren/gbwt
https://github.com/jltsiren/gbwtgraph


Indexes: Distance index
Determining the shortest distance between 
two graph positions can be slow.


If we have the snarl decomposition of the 
graph, we can compute the distance faster in 
the snarl tree.


Useful for applications such as seed 
clustering that compute distances between a 
large number of pairs.


Chang et al.: Distance indexing and seed 
clustering in sequence graphs. 
Bioinformatics, 2020. 
DOI: 10.1093/bioinformatics/btaa446

https://doi.org/10.1093/bioinformatics/btaa446


Indexes: Minimizer index
A (w, k)-minimizer is the k-mer with the 
smallest hash value among the k-mers and 
their reverse complements in a k + w – 1 bp 
window.


Minimizers are a common (but slightly 
inelegant) way of selecting a subset of 
k-mers for indexing.


A minimizer index is a simple hash table 
mapping k-mers to sets of positions.


If the hits are sorted, we can easily restrict 
the query to a subgraph. 

In the Giraffe mapper, the minimizer index 
also caches information from the distance 
index for positions close to the root of the 
snarl tree. This reduces cache misses when 
the hits are scattered around the graph.


Index construction is fast: typically 5–10 
minutes for (the haplotypes in) a human 
graph.


Minimizer indexes tend to be faster and 
larger than FM-indexes and to work better 
with high error rates.



Graph Construction



VG basics
VG has a large number of subcommands.


General principles:


• Graphs can be in any HandleGraph format.


• Output graph is often written to stdout and 
filename - means stdin.


• Option -p often writes progress 
information to stderr.


• vg <command> prints usage information 
for that subcommand.


• The directory for temporary files can be set 
with environment variable TMPDIR (the 
examples use ${HOME}/scratch/tmp).

$ vg 
vg: variation graph tool, version v1.31.0 "Caffaraccia" 

usage: vg <command> [options] 

main mapping and calling pipeline: 
  -- construct     graph construction 
  -- index         index graphs or alignments for random access or mapping 
  -- map           MEM-based read alignment 
  -- giraffe       fast haplotype-aware short read alignment 
  -- augment       augment a graph from an alignment 
  -- pack          convert alignments to a compact coverage index 
  -- call          call or genotype VCF variants 
  -- help          show all subcommands 

For more commands, type `vg help`. 
For technical support, please visit: https://www.biostars.org/t/vg/ 

# Convert GFA to HashGraph, pipe it to vg stats, and print basic stats 
$ vg convert -g -a example.gfa | vg stats -z - 
nodes 12 
edges 13 

# Progress information from vg gbwt 
$ vg gbwt -p -o example.gbwt -G example.gfa 
Building input GBWTs 
Input type: GFA 
Opening GFA file example.gfa 
Validating GFA file example.gfa 
Found 12 segments, 2 paths, and 4 walks in 0.00111055 seconds 
Storing reference paths as sample _gbwt_ref 
GBWT insertion batch size: 464 nodes 
Parsing segments 
Parsed 12 nodes in 9.482e-06 seconds 
Parsing metadata 
Parsed metadata in 0.00121103 seconds 
Metadata: 6 paths with names, 2 samples with names, 3 haplotypes, 2 contigs with 
names 
Indexing paths/walks 
Indexed 2 paths and 4 walks in 0.000557962 seconds 
GBWTs built in 0.00379489 seconds, 0.0148582 GiB 

Serializing the GBWT to example.gbwt 
GBWT serialized in 0.00186231 seconds, 0.018631 GiB

https://www.biostars.org/t/vg/


Example data
We use 1000 Genomes Project 
chromosomes 19 and 20 with a total of 5008 
haplotypes of length ~120 Mbp.


Large enough to demonstrate techniques 
used with whole-genome human graphs but 
small enough to work in 24 GiB memory.


We should now have the following files:


• reference.fa: GRCh37 reference genome.


• chr19.vcf.gz and chr20.vcf.gz: bgzip-
compressed VCF files.


• chr19.vcf.gz.tbi and chr20.vcf.gz.tbi: Tabix 
indexes for the VCF files.

#!/bin/bash 

SOURCE="ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp" 

# Get the reference 
rm -f reference.fa 
curl ${SOURCE}/technical/reference/human_g1k_v37.fasta.gz > reference.fa.gz 
gunzip reference.fa.gz 

# Get the VCFs 
SUFFIX=.phase3_shapeit2_mvncall_integrated_v5b.20130502.genotypes.vcf.gz 
for i in 19 20; do 
  rm -f chr${i}.vcf.gz chr${i}.vcf.gz.tbi 
  curl ${SOURCE}/release/20130502/ALL.chr${i}${SUFFIX} > chr${i}.vcf.gz 
  curl ${SOURCE}/release/20130502/ALL.chr${i}${SUFFIX}.tbi > chr${i}.vcf.gz.tbi 
done

get-data.sh



Graph construction
vg construct builds a graph from a FASTA 
reference genome and a VCF file.


Because VCF semantics are ambiguous, VG 
has to make some arbitrary choices.


Relevant options:


• -r FILE: Reference genome.


• -v FILE: VCF file.


• -R REGION: Restrict to this region or 
contig.


• -C: The region is a chromosome (disables 
some heuristics).


• -a: Store variants as paths.

#!/bin/bash 

# Memory usage is low enough that we could built the graphs in parallel. 
# There will be some warnings on unsupported variant types. 
for i in 19 20; do 
  vg construct -r reference.fa -v chr${i}.vcf.gz -R $i -C -a > chr${i}.vg 
done

build-graphs.sh

# Number of nodes, number of edges, total length of sequences 
$ vg stats -z -l chr19.vg 
nodes 6373442 
edges 8341806 
length 60981512 
$ vg stats -z -l chr20.vg 
nodes 6444645 
edges 8376323 
length 64854544 

# Number of paths 
$ vg paths -v chr19.vg -L | wc -l 
3672810 
$ vg paths -v chr20.vg -L | wc -l 
3632493

Some graph statistics



Joint node id space
Because we built the graphs independently, 
they have overlapping node ids.


vg ids can join the node id spaces.


Relevant options:


• -j: Join node id spaces.


• -m: Create an empty node mapping (for 
some GCSA2 construction approaches).


Now we have the following files:


• chr19.vg and chr20.vg: Graphs in 
HashGraph format.


• node_mapping: Empty node mapping.

#!/bin/bash 

vg ids -j -m node_mapping chr19.vg chr20.vg 

# Create a copy just in case 
cp node_mapping node_mapping.backup

join-ids.sh

# Original node id ranges 
$ vg stats -r chr19.vg 
node-id-range 1:6373442 
$ vg stats -r chr20.vg 
node-id-range 1:6444645 

# Join node id spaces 
$ ./join-ids.sh 

# Joint id ranges 
$ vg stats -r chr19.vg 
node-id-range 1:6373442 
$ vg stats -r chr20.vg 
node-id-range 6373443:12818087

More statistics



XG construction
XG is an immutable graph format that is often 
used for combining single-chromosome 
graphs into a whole-genome graph.


For historical reasons, it is called the XG 
index and built with vg index -x.


Option -L includes the alt paths (variants) 
created by vg construct -a in the XG. 
This is necessary for some tasks but makes 
the graph unnecessarily large for other tasks.


We create the following files:


• all.xg: Combined chr19 / chr20 graph.


• variants.xg: Combined graph with variants.

#!/bin/bash 

# XG construction uses large memory-mapped files. 
export TMPDIR=${HOME}/scratch/tmp 

# XG with reference paths 
vg index -x all.xg chr19.vg chr20.vg 

# XG with reference paths and variants 
vg index -x variants.xg -L chr19.vg chr20.vg

build-xg.sh

# Number of nodes, number of edges, total length of sequences 
$ vg stats -z -l all.xg 
nodes 12818087 
edges 16718129 
length 125836056 
$ vg stats -z -l variants.xg 
nodes 12818087 
edges 16718129 
length 125836056 

# Number of paths 
$ vg paths -v all.xg -L | wc -l 
2 
$ vg paths -v variants.xg -L | wc -l 
7305303

Graph statistics



GFA import / export

VG relies on other tools (minigraph, Cactus, 
pggb) for building graphs from assembled 
genomes.


vg convert can convert between various 
graph formats, including GFA.


Some vg convert options:


• -g: The input is in GFA format.


• -a: Convert to HashGraph.


• -f: Convert to GFA.

# Convert GFA to HashGraph 
$ vg convert -g -a example.gfa > example.vg 

# Convert HashGraph to GFA 
$ vg convert -f example.vg > converted.gfa 

# Number of segments 
$ grep -c "^S" example.gfa 
12 
$ grep -c "^S" converted.gfa 
12 

# Number of links 
$ grep -c "^L" example.gfa 
13 
$ grep -c "^L" converted.gfa 
13 

# Number of paths 
$ grep -c "^P" example.gfa 
2 
$ grep -c "^P" converted.gfa 
2 

# Number of walks 
$ grep -c "^W" example.gfa 
4 
$ grep -c "^W" converted.gfa 
0

https://github.com/lh3/minigraph


https://github.com/ComparativeGenomicsToolkit/
cactus


https://github.com/pangenome/pggb

https://github.com/lh3/minigraph
https://github.com/ComparativeGenomicsToolkit/cactus
https://github.com/ComparativeGenomicsToolkit/cactus
https://github.com/pangenome/pggb


Index Construction



The easy way
The graph on the right describes the 
dependencies between common inputs and 
index types.


Given the name of the workflow and a set of 
inputs, vg autoindex tries to figure out 
how to build the necessary indexes.


This does not scale efficiently to whole-
genome human graphs yet.


Instead of using vg autoindex, we build 
the indexes manually.


https://github.com/vgteam/vg/wiki/Index-
Construction

https://github.com/vgteam/vg/wiki/Index-Construction
https://github.com/vgteam/vg/wiki/Index-Construction


GBWT construction
• The basic algorithm inserts a batch of 

sequences into a dynamic FM-index.


• Based on the BCR algorithm (Bauer et 
al, TCS, 2013) and RopeBWT2 (Li, 
Bioinformatics, 2014).


• We can partition the construction by 
chromosome, run multiple jobs in parallel, 
and merge the results quickly.


• In each job, the main thread generates 
paths, while a background thread 
inserts them into the GBWT index.


• Because the alphabets are disjoint, 
merging is almost trivial.


• When the input consists of VCF files, we 
match paths with VCF contigs by name 
and assume that they are disjoint.


• As VCF parsing is slow, we first parse 
the input into temporary files.


• VCF is a variant-based format, while we 
generate full paths before inserting them 
(and their reverse complements).


• To save memory, we make multiple 
passes over the parse and generate 
paths in batches of e.g. 200 samples.



VCF to GBWT
Some vg gbwt options:


• -x FILE: Use this graph.


• -v: The inputs are VCF files.


• -o FILE: Write the GBWT to this file.


• --preset X: Use this preset. 1000gp is 
good for generating full-length haplotypes 
for human graphs.


• --num-jobs N: Limit the number of 
parallel jobs to save memory.


We use variants.xg and the VCF files and 
build all.gbwt with 5008 haplotypes over 
chr19 and chr20.

#!/bin/bash 

# For VCF parses and temporary GBWTs 
export TMPDIR=${HOME}/scratch/tmp 

# This will take a few hours. 
vg gbwt -x variants.xg -o all.gbwt --preset 1000gp -v chr19.vcf.gz chr20.vcf.gz

build-gbwt.sh

# Basic GBWT metadata 
$ vg gbwt -M all.gbwt 
10016 paths with names, 2504 samples with names, 5008 haplotypes, 2 contigs with 
names 

# Extract the GBWT from the VG wrapper 
$ vg view -x GBWT all.gbwt > extracted.gbwt 

# Print more information using standalone GBWT tools 
$ gbwt/benchmark extracted 
GBWT benchmark v1.2.0 

Index name:       extracted 

Compressed GBWT:  extracted (bidirectional) 
Total length:     92564668356 
Sequences:        20032 
Alphabet size:    25636176 
Effective:        25636175 
Runs:             131479952 concrete / 131499980 logical 
DA samples:       90407892 
BWT:              363.601 MB 
DA samples:       310.42 MB 
Total:            674.199 MB 
Metadata:         10016 paths with names, 2504 samples with names, 5008 
haplotypes, 2 contigs with names

GBWT statistics



GFA to GBWT
When building GBWT from GFA with both 
P-lines and W-lines, VG interprets P-lines as 
reference paths and W-lines as threads.


If there are only P-lines, VG interprets them 
as threads and parses GBWT metadata from 
path names.


More vg gbwt options:


• -G: The input is a GFA file.


• -g FILE: Build GBWTGraph and write it 
to this file.


GBWTGraphs can be converted into other 
graph formats with vg convert option -b.

# Build GBWT and GBWTGraph 
$ vg gbwt -o example.gbwt -g example.gg -G example.gfa 

# GBWT metadata 
$ vg gbwt -M example.gbwt 
6 paths with names, 2 samples with names, 3 haplotypes, 2 contigs with names 

# Thread names from GBWT 
$ vg gbwt -T example.gbwt 
_thread__gbwt_ref_A_0_0 
_thread__gbwt_ref_B_0_0 
_thread_sample_A_1_0 
_thread_sample_A_2_0 
_thread_sample_B_1_0 
_thread_sample_B_2_0 

# Convert GBWTGraph to HashGraph 
$ vg convert -b example.gbwt -a example.gg > example.vg 

# Path names from HashGraph 
$ vg paths -v example.vg -L 
A 
B



Sampled GBWT
When we add variants to a graph, both true 
and false positive mappings become more 
likely (Pritt et al., Genome Biology, 2018).


VG usually gets best results with variants that 
occur in at least ~1% of the haplotypes.


vg gbwt -l generates n (default n = 64) 
artificial paths per graph component with a 
greedy algorithm that tries to sample k-node 
(default k = 4) subpaths in the input GBWT 
proportionally.


We now take all.xg and all.gbwt and produce 
sampled.gbwt and sampled.gg.

#!/bin/bash 

# Sample the GBWT and build the corresponding GBWTGraph 
vg gbwt -x all.xg -o sampled.gbwt -g sampled.gg -l all.gbwt

sample-gbwt.sh

# Full GBWT metadata 
$ vg gbwt -M all.gbwt 
10016 paths with names, 2504 samples with names, 5008 haplotypes, 2 contigs with 
names 

# Sampled GBWT metadata 
$ vg gbwt -M sampled.gbwt 
128 paths with names, 64 samples, 64 haplotypes, 2 contigs 

# File sizes 
$ ll -h all.gbwt sampled.gbwt 
-rw-rw-r-- 1 parallels parallels 675M Mar 28 16:20 all.gbwt 
-rw-rw-r-- 1 parallels parallels 173M Mar 28 19:11 sampled.gbwt

GBWT statistics



Graph pruning
For GCSA2, we need a deterministic Wheeler 
graph that is 256-equivalent to the original.


If there is too much local complexity in the 
graph, the Wheeler graph may be too large.


We prune graph regions where k-mers 
(default k = 24) make more than e (default 
e = 3) nontrivial edge choices.


Then we may remove high-degree nodes, 
restore reference paths, or unfold local 
haplotypes in the pruned regions.


We build GCSA for the pruned graph and use 
the index with the original graph.
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Pruning in practice
Haplotype unfolding creates duplicate nodes. 
We use node mapping to keep track of their 
original ids and to create a GCSA index that 
maps to the original graph.


Some vg prune options:


• -u: Unfold haplotypes.


• -g FILE: Use this GBWT.


• -m FILE: Use this node mapping.


• -a: Append to an existing node mapping.


We use chr19.vg, chr20.vg, and all.gbwt to 
produce pruned graphs chr19.unfolded.vg 
and chr20.unfolded.vg.

#!/bin/bash 

# For building temporary XG indexes 
export TMPDIR=${HOME}/scratch/tmp 

# Prune and unfold haplotypes 
for i in 19 20; do 
  vg prune -u -g all.gbwt -a -m node_mapping chr${i}.vg > chr${i}.unfolded.vg 
done

prune-graphs.sh

# Original graphs 
$ vg stats -z -l chr19.vg 
nodes 6373442 
edges 8341806 
length 60981512 
$ vg stats -z -l chr20.vg 
nodes 6444645 
edges 8376323 
length 64854544 

# Pruned graphs 
$ vg stats -z -l chr19.unfolded.vg 
nodes 7306423 
edges 9238425 
length 64341208 
$ vg stats -z -l chr20.unfolded.vg 
nodes 6996528 
edges 8891383 
length 66934937

Graph statistics
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The part with many edges connects the trie of haplotype prefixes to the trie of reverse suffixes. 
There is a high degree of nondeterminism: almost every leaf has label C.

Original graph

Pruned and 
unfolded 
graph



GCSA2 construction
GCSA2 construction uses a semi-external 
prefix-doubling algorithm.


We first generate all 16 bp paths in the graph 
and store them in one file per chromosome.


With four prefix-doubling steps, we increase 
path length to (up to) 256 bp.


Each step starts with a pruning step that 
processes the paths in lexicographic order, 
marks the ones that no longer have to be 
extended, and merges ranges of redundant 
paths.


The extend step reads the paths from one 
chromosome at a time and generates new 
paths to a new file.


Prefix-doubling is followed by the merging 
step, which is similar to the pruning step.


Final construction is done in a single pass 
over the merged path files, with σ additional 
read pointers completing a second pass by 
keeping track of the results of LF-mapping.



GCSA in practice
GCSA construction typically needs hundreds 
of bytes of disk space per bp, and the total 
I/O volume is kilobytes per bp.


The progress information from option -p can 
help when something goes wrong.


Relevant vg index options:


• -g FILE: Build GCSA and store it in FILE 
and FILE.lcp.


• -f FILE: Use this node mapping.


We use the unfolded graphs and the node 
mapping as inputs and produce all.gcsa and 
all.gcsa.lcp.

#!/bin/bash 

# We need almost 60 GiB of disk space 
export TMPDIR=${HOME}/scratch/tmp 

vg index -g all.gcsa -f node_mapping -p chr19.unfolded.vg chr20.unfolded.vg

build-gcsa.sh

# Extract the GCSA and the LCP from VG wrappers 
$ vg view -x GCSA all.gcsa > extracted.gcsa 
$ vg view -x LCP all.gcsa.lcp > extracted.lcp 

# Print some information using standalone GCSA2 tools 
$ gcsa2/benchmark/query_gcsa extracted 
GCSA2 query benchmark v1.3.0 

Base name:        extracted 

Paths:            486992624 
Edges:            501419052 
Samples:          67249859 (at 52403160 positions, 35 bits each) 
Max query:        256 

Core index:       328.545 MB 
Samples:          355.358 MB 
Counter:          108.958 MB 
LCP array:        471.804 MB 
Total size:       1264.67 MB

GCSA statistics



Distance index
Distance index construction is still a bit 
inconvenient.


First we have to find snarls in the graph with 
vg snarls and include the trivial ones with 
option -T.


Then we use vg index:


• -s FILE: Use these snarls.


• -j FILE: Build a distance index and store 
it in this file.


We need the combined graph all.xg and build 
distance index all.dist.

#!/bin/bash 

# Find snarls, including trivial ones 
vg snarls -T all.xg > all.snarls 

# Build the distance index 
vg index -s all.snarls -j all.dist all.xg

build-dist.sh



Minimizer index
Minimizer index construction is fast, and the 
tools using it can also build it on their own.


If we do not have a GBWTGraph, the 
construction will create a temporary one.


vg minimizer options:


• -g FILE: Use this GBWT.


• -i FILE: Store the index in this file.


• -d FILE: Annotate the hits with positions 
from this distance index.


• -G: The input graph is GBWTGraph.


We build sampled.min from sampled.gbwt, 
sampled.gg, and all.dist.

# Build the minimizer index and display progress information 
$ vg minimizer -g sampled.gbwt -i sampled.min -d all.dist -G -p sampled.gg 
Loading GBWT index sampled.gbwt 
Loading GBWTGraph sampled.gg 
Loading MinimumDistanceIndex all.dist 
Building MinimizerIndex with k = 29, w = 11 
19415804 keys (18831937 unique) 
Minimizer occurrences: 21954507 
Load factor: 0.578636 
Construction so far: 11.1741 seconds 
Writing the index to sampled.min 
Time usage: 13.7561 seconds 
Memory usage: 2.49887 GiB 

# List the indexes and other outputs 
$ ll -h all.* sampled.* 
-rw-rw-r-- 1 parallels parallels 577M Mar 29 22:05 all.dist 
-rw-rw-r-- 1 parallels parallels 675M Mar 28 16:20 all.gbwt 
-rw-rw-r-- 1 parallels parallels 793M Mar 28 21:00 all.gcsa 
-rw-rw-r-- 1 parallels parallels 472M Mar 28 21:00 all.gcsa.lcp 
-rw-rw-r-- 1 parallels parallels  27M Mar 29 22:03 all.snarls 
-rw-rw-r-- 1 parallels parallels 528M Mar 27 22:54 all.xg 
-rw-rw-r-- 1 parallels parallels 173M Mar 28 19:11 sampled.gbwt 
-rw-rw-r-- 1 parallels parallels 322M Mar 28 19:12 sampled.gg 
-rw-rw-r-- 1 parallels parallels 821M Mar 29 22:12 sampled.min



Short Read Mapping



VG read aligners
vg map Giraffe vg mpmap

The original short read aligner 
based on finding MEMs using 
GCSA2. The algorithm is similar 
to BWA-MEM.


Garrison et al.: Variation graph 
toolkit improves read mapping 
by representing genetic 
variation in the reference. 
Nature Biotechnology, 2018. 
DOI: 10.1038/nbt.4227

Minimizer-based short read 
aligner that maps the reads to 
haplotype paths. Much faster 
than vg map.


Sirén et al.: Genotyping 
common, large structural 
variations in 5,202 genomes 
using pangenomes, the Giraffe 
mapper, and the vg toolkit. 
bioRxiv, 2021. 
DOI: 10.1101/2020.12.04.412486

Similar to vg map, but the 
alignments are directed 
subgraphs instead of paths. 
Primarily for RNA-seq reads, so 
we skip it now.


Sibbesen et al.: Haplotype-
aware pantranscriptome 
analyses using spliced 
pangenome graphs. 
bioRxiv, 2021. 
DOI: 10.1101/2021.03.26.437240

https://doi.org/10.1038/nbt.4227
https://doi.org/10.1101/2020.12.04.412486
https://doi.org/10.1101/2021.03.26.437240


Output formats
GAM 
The original Protobuf-based alignment format 
used by VG. Poorly documented and being 
phased out but still the default.


GAMP 
The version of GAM used by vg mpmap.


GAF 
Portable text-based TSV format. Downstream 
tools are more likely to support this. 
https://github.com/lh3/gfatools/blob/master/
doc/rGFA.md 

VG can also output alignments in the 
standard SAM / BAM / CRAM formats.


Because these formats represent alignments 
relative to linear reference sequences, VG 
must project the alignments relative to a set 
of reference paths. This is a lossy process.


For historical reasons, this is called 
surjecting the alignments to reference paths.

https://github.com/lh3/gfatools/blob/master/doc/rGFA.md
https://github.com/lh3/gfatools/blob/master/doc/rGFA.md


Simulating reads
Because our example graph only contains two 
chromosomes, we have to use simulated 
reads.


We simulate 1 million 150 bp read pairs from 
1000GP sample NA12878 with vg sim.


In a proper experiment, we would annotate 
the reads with reference positions and remove 
NA12878 and its close relatives from the 
graph we are mapping to.


We might also want to take the error profile 
from real reads.


We need all.xg and all.gbwt and output 
reads.fq.

#!/bin/bash 

# 1 million pairs of 150 bp reads 
PAIRS=1000000 
LENGTH=150 

# Substitution rate 0.003, indel rate 0.0003 
SUBST=0.003 
INDEL=0.0003 

# Fragment length 500 bp, stdev 50 bp 
FRAGMENT=500 
STDEV=50 

# Simulate the reads 
vg sim -r -x all.xg -g all.gbwt -m NA12878 \ 
  -n $PAIRS -l $LENGTH \ 
  -e $SUBST -i $INDEL \ 
  -p $FRAGMENT -v $STDEV \ 
  -a > reads.gam 

# Convert to FASTQ 
vg view -X reads.gam > reads.fq

simulate-reads.sh



vg map algorithm
vg map uses a seed-and-extend algorithm 
similar to the one used in BWA-MEM (Li, 
arXiv, 2013).


1. Find (super-)maximal exact matches 
(MEMs) using GCSA2.


• LF() extends the match to the left, 
parent() removes characters from the 
right (Ohlebusch et al., SPIRE 2010).


2. Cluster the seed MEMs and chain them 
in each promising cluster.


• Distances are based on projections of 
the MEMs to the embedded paths.


3. Unfold the subgraphs around promising 
chains and transform them into DAGs.


4. Align the read to the DAG using an 
extension of the Smith–Waterman 
algorithm.



Using vg map
We need all.xg, all.gcsa, and all.gcsa.lcp, and 
we also use all.gbwt for better mapq 
estimation. The output will be map.gam.


Some vg map options:


• -d STR: Use this base name for indexes 
(or specify with -x, -g, and -1).


• -t N: Number of parallel mapping threads 
(one extra thread for output).


• -f FILE: Map the reads from this FASTQ 
file (can be gzip-compressed).


• -i: We have interleaved paired-end reads 
(or specify another FASTQ file).


• -%: Output GAF format.

# Map the reads using 7 threads 
$ vg map -d all -t 7 -f reads.fq -i > map.gam 

# Print some alignment statistics 
$ vg stats -a map.gam variants.xg  
Total alignments: 2000000 
Total primary: 2000000 
Total secondary: 0 
Total aligned: 2000000 
Total perfect: 1249207 
Total gapless (softclips allowed): 1952126 
Insertions: 46018 bp in 46002 read events 
Deletions: 3219 bp in 3201 read events 
Substitutions: 890472 bp in 890472 read events 
Softclips: 2676 bp in 824 read events 
Unvisited nodes: 4270702/12818087 (16047334 bp) 
Single-visited nodes: 1622640/12818087 (17006534 bp) 
Significantly biased heterozygous sites: 164630/3484484 (4.72466%)



Giraffe algorithm

The Giraffe algorithm is a custom seed-and-
extend algorithm. With a few exceptions, it 
aligns the reads to haplotype paths while 
avoiding other paths.


1. Get seeds from the minimizer index.


• Use all minimizers with at most 10 hits 
and some with up to 500 hits.


2. Cluster the seeds using the distance 
index. 

3. Extend the seeds in promising clusters 
without gaps.


• Most Illumina sequencing errors are 
substitutions, so most alignments 
should be gapless.


4. Align the best extensions from promising 
clusters using the dozeu library.


• https://github.com/ocxtal/dozeu

https://github.com/ocxtal/dozeu


Using Giraffe
We use sampled.gg, sampled.gbwt, all.dist, 
and sampled.min and output giraffe.gam.


Some vg giraffe options:


• -g FILE: Use this GBWTGraph (or -x for 
other graph types).


• -H FILE: Use this GBWT index.


• -d FILE: Use this distance index.


• -m FILE: Use this minimizer index (may 
be omitted).


• -t N, -f FILE, -i: As in vg map.


• -o gaf: Output GAF format.

# Map the reads using 7 threads 
$ vg giraffe -g sampled.gg -H sampled.gbwt -d all.dist -m sampled.min -t 7 -f 
reads.fq -i > giraffe.gam 

# Print some alignment statistics 
$ vg stats -a giraffe.gam variants.xg  
Total alignments: 2000000 
Total primary: 2000000 
Total secondary: 0 
Total aligned: 2000000 
Total perfect: 1238868 
Total gapless (softclips allowed): 1953675 
Insertions: 44603 bp in 44417 read events 
Deletions: 3762 bp in 3277 read events 
Substitutions: 914710 bp in 914710 read events 
Softclips: 560 bp in 82 read events 
Unvisited nodes: 4295656/12818087 (16185980 bp) 
Single-visited nodes: 1598937/12818087 (16965505 bp) 
Significantly biased heterozygous sites: 166803/3484484 (4.78702%)



After mapping

• Genotyping and variant calling:


• https://github.com/vgteam/vg/wiki/Whole-genome-calling-and-
genotyping


• https://github.com/vgteam/vg/blob/master/README.md


• GAM file filtering and manipulation with vg filter.

https://github.com/vgteam/vg/wiki/Whole-genome-calling-and-genotyping
https://github.com/vgteam/vg/wiki/Whole-genome-calling-and-genotyping
https://github.com/vgteam/vg/blob/master/README.md

