
Genome Graphs and
BWT-based

Data Structures
Jouni Sirén

UCSC Genomics Institute

Variation graph toolkit VG

• Most of this talk is based on my work on the VG
toolkit (Garrison et al, 2018), available at  
https://github.com/vgteam/vg.

• In addition to the published work, the codebase
contains prototype implementations of many genome
graph algorithms, data structures, and workflows.

• We are in the process of moving the good parts into
reusable modules outside the main VG codebase.

https://github.com/vgteam/vg

Why genome graphs?

Reference bias

???

• Reference sequences are easy to work with.

• When the sequenced sample diverges from the
reference, using the reference may bias our results.

Collection of haplotypes

???

• We can try to reduce the reference bias by using a
collection of haplotypes as the reference.

• Multiple hits: Same position in several haplotypes
(useful) or several different positions (less useful)?

Global alignment / DAG

???

• A global alignment helps with reads mapping to
multiple haplotypes. If we collapse shared regions,
we get a directed acyclic graph.

• How to deal with structural variation?

Local alignments

• If we use local alignments instead, we get assembly
graphs that can handle structural variation.

• They contain nonsensical paths and lack a global
coordinate system.

??? Offset n?

Graph + path

• A primary path can provide a coordinate system.

• We still cannot deal with structural variation in DAGs or
with nonsensical paths in assembly graphs.

• This was the initial VG model.

Graph + path + haplotypes

Graph: These positions are equivalent.

Haplotypes: These paths make sense.

Indexing graphs

Wheeler graphs
• Wheeler graphs (Gagie et al, 2017) are edge-labeled

directed graphs, where the nodes are ordered by a
generalization of the lexicographic order.

• Node rank is determined by sorting by:  
1. Incoming edge labels (the first character)  
2. Predecessor node ranks (the following suffix)

• Useful subclass (generalizes de Bruijn graphs):  
– Nodes are a prefix-free set of strings.  
– Node order is the lexicographic order of the strings.  
– Path labels start with the string corresponding to
the initial node (in the sorting direction).

LF/sorting directions

• LF-direction: LF-mapping moves forward; node
order is based on reverse prefixes; and locate()
returns the endpoint of the match.

• Sorting direction: LF-mapping moves backward;
node order is based on suffixes; and locate() returns
the starting point of the match.

TAGAG?G?????

LF-direction

Sorting direction

G A T

Indexing Wheeler graphs
• As the node order is based to the lexicographic order, we

can use a generalization of the FM-index.

• One search step (in LF-direction): 
– Map the range of nodes into a range of outgoing edges
using select() queries on a bitvector. 
– Edge labels form the BWT. Transform the range of
outgoing edges into a range of incoming edges using LF-
mapping.  
– Map the range of incoming edges into a range of nodes
using rank() queries on a bitvector.

• Based on GCSA (Sirén et al, 2014) and the succinct de
Bruijn graph (Bowe et al, 2012).

A
T
C
C
C
G
T
G
$
T
A
G
A
T
A
T
C

BWT
1
1
1
1
1
0
0
1
1
0
1
1
1
1
1
0
1

Incoming

$
A$
ATA
ATC
ATG
CAT
CT
GC
GT
TA
TC
TG
TT

Nodes
1
1
1
1
1
0
1
1
1
1
0
1
0
1
0
1
1

Outgoing

$
A$
ATA
ATC
ATG
CAT
CT
GC
GT
TA
TC
TG
TT

Nodes

LF()rank() select()

Faster searching
• If the Wheeler graph is deterministic, we can avoid

the select() queries by using indicator bitvectors.

• Bc[i] = 1, if the node with rank i has an outgoing
edge with label c.

• LF-mapping is just two rank() queries on a bitvector,
making the index almost as fast as any FM-index.

• GCSA2 (Sirén, 2017) can find MEMs between short
reads and a 1000GP graph at 3 Mbp/s and locate
200,000 occurrences/second.

More functionality

• Assume that the nodes of the Wheeler graph are a
prefix-free set of strings.

• We can use CST techniques to represent the trie of
the strings.

• shorter() and longer() in the variable-order de Bruijn
graph (Boucher et al, 2015).

• parent(), depth(), and count() in GCSA2.

Graph transformations

Indexing general graphs

• We want to index alignment graphs, but we can only
index Wheeler graphs. The intersection of these two
classes consists of de Bruijn graphs.

• In order to index a general graph, we must transform
into an (almost) equivalent Wheeler graph.

• As we want to align reads to the original graph, we
index the transformed graph but make the index map
to the original graph.

Transforming DAGs
• We can transform a DAG into an equivalent (but

potentially much larger) Wheeler graph using prefix-
doubling.

• The nodes of intermediate graphs correspond to
paths of length k in the original graph.

• Prefix-doubling: Extend paths of length k into paths
of length 2k. If all paths in a lexicographic range start
from the same original node, merge them.

• Used in GCSA.

Approximating general graphs
• Graphs with cycles may not have equivalent Wheeler

graphs.

• If we stop the prefix-doubling at length k and merge
only ranges corresponding to a shared prefix, the
graph is equivalent to an order-k de Bruijn graph.

• All original paths exist in the Wheeler graph, and all
Wheeler graph paths of length ≤ k exist in the original
graph.

• Used in GCSA2.

123

45

7

6

8

9

1011
AT

AC

G

T

TT

A

G

C

C

AT

A

GTG

C

C

C

C

A

T

G

T

A

12

3

4

5

6

7

8

9 10

11

12

13

14

15

CT

A$$: 2TA$: 3

GTA: 6

ATA: 45, 10TCA: 7

ATC: 8

ATG: 8

TTG: 9

TTC: 9

TGT: 710GCT: 11

GCA: 11
CAT:

CTT:

AT

A

GTG

C

C

C

A

T

G

A

12

3

4

5

6

7

8

10

11

12

1314

CT

A$: 2TA: 3

GT: 6

ATA: 45, 10TC: 7

ATC: 8

ATG: 8

TT: 9 TG: 710

GC: 11

CA:

CT: T

AT

A

GT

C

A

T

A

12

34 5

67

8

9

10

1112

CT

A$: 2TA: 3

GT: 6

ATA: 4TC: 7

TT: 9 TG: 7

10GC: 11

CATA: 5

CATC–CT:

T

ATC–ATG: 8

G C

Original graph

Order-3 de Bruijn graph

Order-3 pruned de
Bruijn graph (GCSA2)

Prefix-range-sorted
graph (GCSA)

b

c

a

d

e

f

g

h

i

j

b

a

d f h

j

b

a

e0

d0

g0

g1 h

j

c

e1

d1

f0

f1

i

Graph simplification

Complex graph regions cannot
be indexed using Wheeler
graph-based methods,
because they contain too
many paths of length k.

VG removes regions with too
many paths in a short window
and replaces them with the
reference sequence.

If we have the original
haplotypes, we can unfold
them in the complex region
(Sirén et al, 2018).

GBWT

Are FM-indexes too slow?
• Iterated LF-mapping jumps randomly around the

BWT. We usually get cache misses for each
character of the pattern.

• Once the pattern is unique, it should be faster to
extend it in the graph than in the index.

• Do we need an FM-index if we only match short
patterns?

• Minimizer indexes (sparse k-mer indexes) are 10x
faster in 2x space.

GBWT
• GBWT (Sirén et al, 2018) is the haplotype index used

in VG. It is based on the graph extension (Novak et
al, 2017) of the PBWT (Durbin, 2014).

• We represent the haplotypes as paths in the graph
and store the node sequences in RLBWT.

• Index construction is straightforward at 1000GP
scale (5,000 human haplotypes, n ≈ 241).

• Indexing 100x larger datasets (n ≈ 248) is feasible but
expensive.

GBWT details

1
3 6

5
7

2

4

Node $
|�$| = 1
0 : (1, 0)

0
0
0

Node 1
|�1| = 2
0 : (2, 0)
1 : (3, 0)

0
0
1

Node 2
|�2| = 2
0 : (4, 0)
1 : (5, 0)

0
1

Node 3
|�3| = 1
0 : (4, 1)

0

Node 4
|�4| = 2
0 : (5, 1)
1 : (6, 0)

1
0

Node 5
|�5| = 1
0 : (7, 0)

0
0

Node 6
|�6| = 1
0 : (7, 2)

0

Node 7
|�7| = 1
0 : ($, 0)

0
0
0

Node 4
Outdegree 2

0: node 5, offset 1
1: node 6, offset 0

10

• We partition the BWT by the most  
significant character.

• Each node contains the corresponding part
of the BWT and a local rank() structure.

• If the graph layout is cache-friendly, iterated
LF-mapping is also cache-friendly.

• One iteration of LF-mapping per node vs per
character.

GBWT construction
• Basic construction is like in RopeBWT2 (Li, 2014):

We insert a batch of paths into a dynamic FM-index
using the BCR algorithm (Bauer et al, 2013).

• When the basic algorithm is too slow, we can build
partial indexes in parallel and merge them using
BWT-merge (Sirén, 2016). (This is unnecessary at
1000GP scale.)

• Different chromosomes use different node ids, so we
can index them in parallel and merge the indexes by
concatenating the BWTs.

GBWT benchmarks
AWS i3.8xlarge instance: 16 physical / 32 logical CPU
cores, 244 GiB memory.

1000GP haplotypes: 240,232 paths of total length 2.19
trillion nodes in a graph with 612 million nodes.

Index construction: 17 hours.

Index size: 8.43 GiB for bidirectional GBWT, 8.17 GiB
for DA samples (d = 1024).

Bidirectional search: 2 million nodes/second (short
patterns), 4 million nodes/second (long patterns).

Some GBWT applications

• Haplotype unfolding for GCSA2 construction.

• Minimizer index construction: 10 minutes for 1000GP
haplotypes (>30 hours with GCSA2).

• Gapless seed extension: Illumina sequencing errors
are mostly substitutions, and most real indels are
already in the haplotypes.

Faster document listing?

• With the default DA sample rate 1024, GBWT can list
the matching haplotypes at 10,000 (single positions)
to 100,000 (ranges of positions) hits/second.

• It would be nice to use the fast locate() structure
from the r-index (Gagie et al, 2018).

• Can we maintain the r-index locate() structure when
inserting/deleting strings and merging indexes?

