Genome Graphs anad
BW IT-based
Data Structures

Jouni Sirén
UCSC Genomics Institute

Variation graph toolkit VG

* Most of this talk is based on my work on the VG
toolkit (Garrison et al, 2018), available at
https://github.com/vgteam/vQ.

* |n addition to the published work, the codebase
contains prototype implementations of many genome
graph algorithms, data structures, and workflows.

* We are in the process of moving the good parts into
reusable modules outside the main VG codebase.

https://github.com/vgteam/vg

Why genome graphs?

Reference bias

\???

* Reference sequences are easy to work with.

* When the sequenced sample diverges from the
reference, using the reference may bias our results.

Collection of haplotypes

]‘ 797
]

 We can try to reduce the reference bias by using a
collection of haplotypes as the reference.

* Multiple hits: Same position in several haplotypes
(useful) or several different positions (less useful)?

Global alignment / DAG

—

T 297

* A global alignment helps with reads mapping to

multiple haplotypes. If we collapse shared regions,
we get a directed acyclic graph.

e How to deal with structural variation?”

L ocal alignments

—%»#EZL

2707 Offset n?
B B

* |t we use local alignments instead, we get assembly
graphs that can handle structural variation.

* They contain nonsensical paths and lack a global
coordinate system.

Graph + path

—<=g

—>

* A primary path can provide a coordinate system.

 \We still cannot deal with structural variation in DAGSs or
with nonsensical paths in assembly graphs.

 This was the initial VG model.

Graph + path + haplotypes

—<=g

Graph: These positions are equivalent.

aplotypes: These paths make sense.

Indexing graphs

Wheeler graphs

 Wheeler graphs (Gagie et al, 2017) are edge-labeled
directed graphs, where the nodes are ordered by a
generalization of the lexicographic order.

* Node rank is determined by sorting by:

1. Incoming edge labels (the ftirst character)
2. Predecessor node ranks (the following suffix)

* Useful subclass (generalizes de Bruijn graphs):
— Nodes are a prefix-free set of strings.
— Node order is the lexicographic order of the strings.
— Path labels start with the string corresponding to
the initial node (in the sorting direction).

|_F/sorting directions

L F-direction

G A T

Sorting direction

* LF-direction: LF-mapping moves forward; node
order is based on reverse prefixes; and locate()
returns the endpoint of the match.

* Sorting direction: LF-mapping moves backward;
node order is based on suffixes; and locate() returns
the starting point of the match.

Indexing Wheeler graphs

* As the node order is based to the lexicographic order, we
can use a generalization of the FM-index.

* One search step (in LF-direction):
— Map the range of nodes into a range of outgoing edges
using select() queries on a bitvector.
— Edge labels form the BWT. Transtorm the range of
outgoing edges into a range of incoming edges using LF-
mapping.
— Map the range of incoming edges into a range of nodes
using rank() queries on a bitvector.

 Based on GCSA (Sirén et al, 2014) and the succinct de
Bruijn graph (Bowe et al, 2012).

i

Nodes Incoming B Outgoing Nodes

~
~~ ~
~ ~
~ *~
1 ~~ ~
'N ~~
~
~ ~
~ ~
~ ~
~§ ~§
¥ . - A
~
~ . ~~
~ ~
~ ~
~~ ~~
1v S “ATA
~
~ ~~
~
~
~ ~~
~
~
O T “ATC
~
~

CT
GC
GT

OHPHAPQFPHLOHEHQOOQOQOAD S
4

4
-~
.... 4 ')\
'IlA ‘. N 4--:-----;--\------'-4-- — TA
S 4 4 A d kg
S ¢ 4 A ’
i ¢ . o
-~ 4 U4
-~ L4 L4
S e ’ * PR
‘.. L4 P A3
-~ 4 ’ A
il * " .
i ’ .
S, 4 P A Y
S ‘ ’ .
4
"~.. ., “
*
..~. ’
-~y L4
~ao P -
S A ="
v~ _—’— .
-
Yo =" “
R =" .
~§~ *—— -
§~ _-_‘_-
~ -
~ -- .
~ -
-- .
~ --
~ - A\
] - .

rank() LF() select()

-aster searching

If the Wheeler graph is deterministic, we can avoid
the select() queries by using indicator bitvectors.

Be[i] = 1, if the node with rank | has an outgoing
edge with label c.

LF-mapping is just two rank() queries on a bitvector,
making the index almost as fast as any FM-index.

GCSAZ2 (Sirén, 2017) can find MEMs between short
reads and a 1000GP graph at 3 Mbp/s and locate
200,000 occurrences/second.

More functionality

Assume that the nodes of the Wheeler graph are a
prefix-free set of strings.

We can use CST technigues to represent the trie of
the strings.

shorter() and longer() in the variable-order de Bruijn
graph (Boucher et al, 2015).

parent(), depth(), and count() in GCSA2.

Graph transtormations

Indexing general grapns

* We want to index alignment graphs, but we can only
index Wheeler graphs. The intersection of these two

classes consists of de Bruijn graphs.

* In order to index a general graph, we must transform
into an (almost) equivalent Wheeler graph.

* As we want to align reads to the original graph, we
index the transformed graph but make the index map
to the original graph.

Transforming DAGS

We can transform a DAG into an equivalent (but
potentially much larger) Wheeler graph using prefix-
doubling.

The nodes of intermediate graphs correspond to
paths of length k in the original graph.

Pretix-doubling: Extend paths of length k into paths
of length 2k. If all paths in a lexicographic range start
from the same original node, merge them.

Used in GCSA.

Approximating general graphs

* (Graphs with cycles may not have equivalent Wheeler
graphs.

* |t we stop the prefix-doubling at length k and merge
only ranges corresponding to a shared prefix, the
graph is equivalent to an order-k de Bruijn graph.

* All original paths exist in the Wheeler graph, and all
Wheeler graph paths of length < k exist in the original

graph.
e Usedin GCSAZ2.

Original graph

Order-3 de Bruijn graph

TTC: 9-|-
CTT:
GCT 11 10 TGT 7 GTA: 6
G
TTG: 9

Order-3 pruned de
Bruijn graph (GCSA?2)

ATC ATG: 8 TC: 7 CATA: 5 ATA: 4

Prefix-range-sorted i
graph (GCSA) B

Graph simplification

Complex graph regions cannot
be indexed using Wheeler
graph-based methods,
because they contain too
many paths of length k.

VG removes regions with too
many paths in a short window
and replaces them with the
reference sequence.

It we have the original
haplotypes, we can unfold
them in the complex region
(Sirén et al, 2018).

GBWT

Are FM-indexes too slow?

lterated LF-mapping jumps randomly around the
BWT. We usually get cache misses for each
character of the pattern.

Once the pattern is unique, it should be faster to
extend it In the graph than in the Index.

Do we need an FM-index if we only match short
patterns?

Minimizer indexes (sparse k-mer indexes) are 10x
faster in 2x space.

GBWT

GBWT (Sirén et al, 2018) is the haplotype index used
in VG. It is based on the graph extension (Novak et
al, 2017) of the PBWT (Durbin, 2014).

We represent the haplotypes as paths in the graph
and store the node sequences in RLBWTT.

Index construction is straightforward at 1000GP
scale (5,000 human haplotypes, n = 241).

Indexing 100x larger datasets (n = 248) is feasible but
expensive.

GBWT detalls

Node 2 Node 5
32| =2 35| =1
0:(4,0) 0:(7,0)
1:(5,0)

0:(1,0) [0:(2,0) 0:

Node $ Node 1 0 0 Node 7
%\\ s =1 212/ 1 H— 1 o \27@5

1:(3,0)
0 0 Node 3 Node 4 Node 6 0
0 ! s =1 | [Sa=2| | [[Zs]=1 0
0:(4,1) 0:(5,1) 0:(7,2)
1:(6,0)
. 1 b
We partition the BWT by the most 0
significant character.
Each node contains the corresponding part Node 4
of the BWT and a local rank() structure. Outdegree 2
0: node 5, offset 1
It the graph layout is cache-friendly, iterated 1: node 6, offset O
LF-mapping is also cache-friendly. 10

One iteration of LF-mapping per node vs per
character.

GBWT construction

* Basic construction is like in RopeBWT2 (Li, 2014):
We Iinsert a batch of paths into a dynamic FM-index
using the BCR algorithm (Bauer et al, 2013).

* \When the basic algorithm is too slow, we can build
partial indexes In parallel and merge them using
BWT-merge (Sirén, 2016). (This is unnecessary at
1000GP scale.)

* Different chromosomes use ditferent node ids, so we
can index them in parallel and merge the indexes by
concatenating the BWTs.

GBWT benchmarks

AWS i3.8xlarge instance: 16 physical / 32 logical CPU
cores, 244 GiIB memory.

1000GP haplotypes: 240,232 paths of total length 2.19
trillion nodes in a graph with 612 million nodes.

Index construction: 17 hours.

Index size: 8.43 GIB for bidirectional GBWT, 8.17 GIB
for DA samples (d = 1024).

Bidirectional search: 2 million nodes/second (short
patterns), 4 million nodes/second (long patterns).

Some GBWT applications

* Haplotype unfolding for GCSA2 construction.

* Minimizer index construction: 10 minutes for 1000GP
haplotypes (>30 hours with GCSA?2).

* Gapless seed extension: lllumina sequencing errors
are mostly substitutions, and most real indels are
already In the haplotypes.

Faster document listing”?

* With the default DA sample rate 1024, GBWT can list
the matching haplotypes at 10,000 (single positions)
to 100,000 (ranges of positions) hits/second.

* |t would be nice to use the fast locate() structure
from the r-index (Gagie et al, 2018).

 Can we maintain the r-index locate() structure when
inserting/deleting strings and merging indexes?

