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Variation graph toolkit VG

• Most of this talk is based on my work on the VG 
toolkit (Garrison et al, 2018), available at  
https://github.com/vgteam/vg. 

• In addition to the published work, the codebase 
contains prototype implementations of many genome 
graph algorithms, data structures, and workflows. 

• We are in the process of moving the good parts into 
reusable modules outside the main VG codebase.

https://github.com/vgteam/vg


Why genome graphs?



Reference bias

???

• Reference sequences are easy to work with. 

• When the sequenced sample diverges from the 
reference, using the reference may bias our results. 



Collection of haplotypes

???

• We can try to reduce the reference bias by using a 
collection of haplotypes as the reference. 

• Multiple hits: Same position in several haplotypes 
(useful) or several different positions (less useful)?



Global alignment / DAG

???

• A global alignment helps with reads mapping to 
multiple haplotypes. If we collapse shared regions, 
we get a directed acyclic graph. 

• How to deal with structural variation?



Local alignments

• If we use local alignments instead, we get assembly 
graphs that can handle structural variation. 

• They contain nonsensical paths and lack a global 
coordinate system.

??? Offset n?



Graph + path

• A primary path can provide a coordinate system. 

• We still cannot deal with structural variation in DAGs or 
with nonsensical paths in assembly graphs. 

• This was the initial VG model.



Graph + path + haplotypes

Graph: These positions are equivalent. 

Haplotypes: These paths make sense.



Indexing graphs



Wheeler graphs
• Wheeler graphs (Gagie et al, 2017) are edge-labeled 

directed graphs, where the nodes are ordered by a 
generalization of the lexicographic order. 

• Node rank is determined by sorting by:  
1. Incoming edge labels (the first character)  
2. Predecessor node ranks (the following suffix) 

• Useful subclass (generalizes de Bruijn graphs):  
– Nodes are a prefix-free set of strings.  
– Node order is the lexicographic order of the strings.  
– Path labels start with the string corresponding to 
the initial node (in the sorting direction).



LF/sorting directions

• LF-direction: LF-mapping moves forward; node 
order is based on reverse prefixes; and locate() 
returns the endpoint of the match. 

• Sorting direction: LF-mapping moves backward; 
node order is based on suffixes; and locate() returns 
the starting point of the match.

TAGAG?G?????

LF-direction

Sorting direction
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Indexing Wheeler graphs
• As the node order is based to the lexicographic order, we 

can use a generalization of the FM-index. 

• One search step (in LF-direction): 
– Map the range of nodes into a range of outgoing edges 
using select() queries on a bitvector. 
– Edge labels form the BWT. Transform the range of 
outgoing edges into a range of incoming edges using LF-
mapping.  
– Map the range of incoming edges into a range of nodes 
using rank() queries on a bitvector. 

• Based on GCSA (Sirén et al, 2014) and the succinct de 
Bruijn graph (Bowe et al, 2012).
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Faster searching
• If the Wheeler graph is deterministic, we can avoid 

the select() queries by using indicator bitvectors. 

• Bc[i] = 1, if the node with rank i has an outgoing 
edge with label c. 

• LF-mapping is just two rank() queries on a bitvector, 
making the index almost as fast as any FM-index. 

• GCSA2 (Sirén, 2017) can find MEMs between short 
reads and a 1000GP graph at 3 Mbp/s and locate 
200,000 occurrences/second.



More functionality

• Assume that the nodes of the Wheeler graph are a 
prefix-free set of strings. 

• We can use CST techniques to represent the trie of 
the strings. 

• shorter() and longer() in the variable-order de Bruijn 
graph (Boucher et al, 2015). 

• parent(), depth(), and count() in GCSA2.



Graph transformations



Indexing general graphs

• We want to index alignment graphs, but we can only 
index Wheeler graphs. The intersection of these two 
classes consists of de Bruijn graphs. 

• In order to index a general graph, we must transform 
into an (almost) equivalent Wheeler graph. 

• As we want to align reads to the original graph, we 
index the transformed graph but make the index map 
to the original graph.



Transforming DAGs
• We can transform a DAG into an equivalent (but 

potentially much larger) Wheeler graph using prefix-
doubling. 

• The nodes of intermediate graphs correspond to 
paths of length k in the original graph. 

• Prefix-doubling: Extend paths of length k into paths 
of length 2k. If all paths in a lexicographic range start 
from the same original node, merge them. 

• Used in GCSA.



Approximating general graphs
• Graphs with cycles may not have equivalent Wheeler 

graphs. 

• If we stop the prefix-doubling at length k and merge 
only ranges corresponding to a shared prefix, the 
graph is equivalent to an order-k de Bruijn graph. 

• All original paths exist in the Wheeler graph, and all 
Wheeler graph paths of length ≤ k exist in the original 
graph. 

• Used in GCSA2.
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Graph simplification 

Complex graph regions cannot 
be indexed using Wheeler 
graph-based methods, 
because they contain too 
many paths of length k. 

VG removes regions with too 
many paths in a short window 
and replaces them with the 
reference sequence. 

If we have the original 
haplotypes, we can unfold 
them in the complex region 
(Sirén et al, 2018).



GBWT



Are FM-indexes too slow?
• Iterated LF-mapping jumps randomly around the 

BWT. We usually get cache misses for each 
character of the pattern. 

• Once the pattern is unique, it should be faster to 
extend it in the graph than in the index. 

• Do we need an FM-index if we only match short 
patterns? 

• Minimizer indexes (sparse k-mer indexes) are 10x 
faster in 2x space.



GBWT
• GBWT (Sirén et al, 2018) is the haplotype index used 

in VG. It is based on the graph extension (Novak et 
al, 2017) of the PBWT (Durbin, 2014). 

• We represent the haplotypes as paths in the graph 
and store the node sequences in RLBWT. 

• Index construction is straightforward at 1000GP 
scale (5,000 human haplotypes, n ≈ 241). 

• Indexing 100x larger datasets (n ≈ 248) is feasible but 
expensive.



GBWT details

1
3 6

5
7

2

4

Node $
|�$| = 1
0 : (1, 0)

0
0
0

Node 1
|�1| = 2
0 : (2, 0)
1 : (3, 0)

0
0
1

Node 2
|�2| = 2
0 : (4, 0)
1 : (5, 0)

0
1

Node 3
|�3| = 1
0 : (4, 1)

0

Node 4
|�4| = 2
0 : (5, 1)
1 : (6, 0)

1
0

Node 5
|�5| = 1
0 : (7, 0)

0
0

Node 6
|�6| = 1
0 : (7, 2)

0

Node 7
|�7| = 1
0 : ($, 0)

0
0
0

Node 4
Outdegree 2 

0: node 5, offset 1 
1: node 6, offset 0

10

• We partition the BWT by the most  
significant character. 

• Each node contains the corresponding part 
of the BWT and a local rank() structure. 

• If the graph layout is cache-friendly, iterated 
LF-mapping is also cache-friendly. 

• One iteration of LF-mapping per node vs per 
character.



GBWT construction
• Basic construction is like in RopeBWT2 (Li, 2014): 

We insert a batch of paths into a dynamic FM-index 
using the BCR algorithm (Bauer et al, 2013). 

• When the basic algorithm is too slow, we can build 
partial indexes in parallel and merge them using 
BWT-merge (Sirén, 2016). (This is unnecessary at 
1000GP scale.) 

• Different chromosomes use different node ids, so we 
can index them in parallel and merge the indexes by 
concatenating the BWTs.



GBWT benchmarks
AWS i3.8xlarge instance: 16 physical / 32 logical CPU 
cores, 244 GiB memory. 

1000GP haplotypes: 240,232 paths of total length 2.19 
trillion nodes in a graph with 612 million nodes. 

Index construction: 17 hours. 

Index size: 8.43 GiB for bidirectional GBWT, 8.17 GiB 
for DA samples (d = 1024). 

Bidirectional search: 2 million nodes/second (short 
patterns), 4 million nodes/second (long patterns).



Some GBWT applications

• Haplotype unfolding for GCSA2 construction. 

• Minimizer index construction: 10 minutes for 1000GP 
haplotypes (>30 hours with GCSA2). 

• Gapless seed extension: Illumina sequencing errors 
are mostly substitutions, and most real indels are 
already in the haplotypes.



Faster document listing?

• With the default DA sample rate 1024, GBWT can list 
the matching haplotypes at 10,000 (single positions) 
to 100,000 (ranges of positions) hits/second. 

• It would be nice to use the fast locate() structure 
from the r-index (Gagie et al, 2018). 

• Can we maintain the r-index locate() structure when 
inserting/deleting strings and merging indexes?


