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Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, Niko 
Välimäki: Storage and Retrieval of Highly 
Repetitive Sequence Collections. Journal of 
Computational Biology, 2010. Earlier in SPIRE 2008, 
RECOMB 2009.

Collections of individual genomes or different 
versions of documents compress extremely well. 
With them, o(n) bits of overhead information in a 
CSA can be too much.

CSAs where overhead scales with compressed size.



Jouni Sirén: Compressed Suffix Arrays for 
Massive Data. SPIRE 2009.

Compressed data structures allow handling larger 
data sets in main memory than with uncompressed 
ones. Yet how do we build the compressed 
structures in the first place?

A space-efficient parallel construction algorithm for 
CSAs. Practical for data sets of tens of gigabytes in 
size.



Jouni Sirén, Niko Välimäki, Veli Mäkinen: Indexing 
Finite Language Representation of 
Population Genotypes. WABI 2011.

Compressed suffix arrays can index sets of 
sequences. What if we want to index plausible 
recombinations of those sequences, or a reference 
sequence and a set of known genetic variation? 

CSAs for indexing generalizations of (subgraphs of) 
De Bruijn graphs.
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Suffix array

• Pointers to the suffixes of the text in 
lexicographic order.

• Index size (usually 5 or 9 Bpc) limits the 
size of the data that can be indexed.

• find(P) returns the lexicographic range of 
suffixes prefixed by pattern P.

• locate(i) returns the suffix of rank i.



Burrows-Wheeler 
transform

• Permutation of the text related to SA.

• Instead of a pointer to the suffix, we store 
the previous character.

• Easier to compress than the original text.

• An index based on the BWT does not 
require the original text.
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locate(i) with BWT

• SA[LF(i)] = SA[i] – 1

• LF(i) = C[BWT[i]] + rankBWT[i](BWT, i)

• We sample some text positions (i, SA[i]).

• If SA[i] has not been sampled, we compute 
it as SA[i] = SA[LFj(i)] + j, where SA[LFj(i)] 
has been sampled.
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Paolo Ferragina, Jouni Sirén, Rossano Venturini: 
Distribution-aware compressed full-text 
indexes. ESA 2011.

Locating the occurrences of a pattern with a 
compressed suffix array is relatively slow. If the 
query distribution is skewed, we should be able to 
use that information to solve locate queries faster.

Efficient algorithm for optimizing a CSA for a 
known query distribution.



Modeling the problem

• Cost of locate() is proportional to the 
distance d(i, S) to the nearest sampled text 
position s∈S.

• We can only move backward.

• Position i is located with probability P(i).

• Find S of size k that minimizes ∑i P(i) d(i, S).



• Define a DAG with nodes 1 to n+1 and all 
possible forward edges.

• Edge (s, s’) encodes the cost of locating 
text positions s to s’–1 by using sample s.

• Its weight is w(s, s’) = ∑s≤i<s’ P(i) (i – s).

• Optimal solution is the set of nodes in a 
minimum-weight k-link path from 1 to n+1.



Finding the solution

• We want a solution using O(n polylog(n)) 
time and O(n log n) bits of space.

• Yet there are θ(n2) edges in the DAG!

• We need a better algorithm and a way to 
compute edge weights quickly.



Our DAG satisfies the concave Monge property:

w(i+1, j+1) – w(i+1, j) = P(j) (j – i – 1) ≤ P(j) (j – i) = w(i, j+1) – w(i, j)
⟹

w(i, j) + w(i+1, j+1) ≤ w(i, j+1) + w(i+1, j).

If the weights are non-negative integers, we can 
solve the problem in O(n log U) time, where U is 
the largest edge weight.

The condition holds, if we replace probabilities P(i) 
with frequencies f(i) in a query log.



A. Aggarwal, B. Schieber, T. Tokuyama: Finding a 
Minimum-Weight k-Link Path in Graphs 
with the Concave Monge Property and 
Applications. Discrete & Computational 
Geometry, 1994.

If there are minimum-weight paths of length a and 
b, we can combine them to get a minimum-weight 
path of any length between a and b.

Use binary search to find a weight adjustment q, 
such that when q is added to all edge weights, there 
is a minimum-weight path of length k.



Finding the path

• Finding a minimum-weight path usually 
involves dynamic programming.

• Concave Monge property allows us to 
restrict our attention to short edges.

• Several theoretical O(n) time algorithms 
and a practical O(n log n) time algorithm 
are based on that restriction.



Edge weights?

w(i, j)

w(j, n+1)

(j – i) f(j..n)w(i, n+1) =

f(j..n)

j – i

We need w(i, n+1), w(j, n+1) and 
f(j..n) to compute w(i, j). While 
w(i, n+1) can be huge, we can do 
the computations mod 264.



Experimental results

• Text: 1.24 gigabytes of HTML pages.

• Patterns: Search terms from a query log, 
weighted by term frequencies.

• Queries: 10000 randomly chosen patterns 
with 122 million occurrences.

• System: 2x 2.53 GHz Xeon E5540 (used 
only one core), 32 GB memory.
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Uniform is the 
standard sampling 
strategy.

Greedy samples 
most frequent 
text positions.

HalfGreedy is 50% 
Uniform, 50% 
Greedy.
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Objectives

• Learn the distribution online space-
efficiently.

• Uniform samples take 6–10 bytes each. 
Doubling their number doubles the speed.

• Ideal solution would take O(1) time, but 
O(log n) time with O(1) random memory 
accesses is acceptable.



Find set S of k points that minimizes the sum
∑i f(i) min { i – s | s∈S, s≤i }.

OR

Find a minimum-weight k-link path from 1 to n+1, 
where w(s, s’) = w(s, s’) = ∑s≤i<s’ f(i) (i – s).



We have used sample s to retrieve text position i. 
This can imply that

a) s is a good sample; or
b) i should be sampled, making s less useful as a 

sample.

What do we choose?

s i s’



Basic solution

• Store the sampled positions in a hash table.

• Sample all located positions.

• If there is a collision, drop the old sample.

• Approximates something between Greedy 
and HalfGreedy.



Same data and 
patterns as in the 
static case.

100000 queries 
with 1.3 billion 
occurrences.
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Additional heuristics

• Use some static samples, as in HalfGreedy.

• Guarantees reasonable worst-case 
performance.

• Two other heuristics can be used to 
improve the performance further.



Two hash tables

• New samples are added to hash table B.

• If a sample from hash table B is used, it is 
promoted to hash table A.

• If a collision happens in hash table A, the 
old sample is demoted to hash table B.

• Good samples are more likely to remain in 
the hash tables.



Random sampling

• Cost function: ∑i f(i) min { i – s | s∈S, s≤i }

• If text position i is retrieved by using 
sample s, we sample it with a probability 
proportional to i – s.

• Text positions that contribute more to the 
cost function are more likely to be 
sampled.



Same data and 
patterns as in the 
static case.

100000 queries 
with 1.3 billion 
occurrences.
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Caching

• In case of a collision, we drop the old 
sample from the hash table.

• This is similar to random caching policy.

• Would some other policy such as LFU or 
LRU perform better?

• Can they be implemented in the desired 
time and space constraints?



Streaming algorithms

• We are looking for an efficient streaming 
algorithm for approximating the cost 
function.

• Streaming algorithms already exist for 
similar problems, such as finding heavy 
hitters.

• Can they be adapted to our problem?



Thank you!


