
Indexing
Variation Graphs

Jouni Sirén
Wellcome Trust Sanger Institute

Typical pipeline

Sequencing

Read alignment

Variant calling

Analysis

Samples

Reads

BAM / CRAM

VCF

Reference
genome

Reference bias

• Read alignment, variant calling, and the subsequent
analysis all depend on the reference genome.

• Most reference genomes are based on the genomes
of a small number of individuals or populations.

• The analysis may be biased towards those
individuals and populations.

Avoiding reference bias

1. De novo assembly of individual genomes (not really
possible with Illumina reads)

2. Reference-free analysis based on the reads
(yesterday)

3. Using a graph reference (today)

4. Analysis based on assembly graphs (a combination
of the above)

Contents
1. Variation graphs

2. Path indexes

3. GCSA2

4. Suffix tree of a path graph

5. Pruning the variation graph

6. Hypertext index

7. Embedding haplotypes

Variation Graphs

From alignments to graphs

1:G

3:A

4:T

2:C 5:T

6:C

9:T

7:A

8:G

10:A0:# 11:$

GCATCATA
GCATG-TA
GCTTCATA

• We can represent a collection of aligned
sequences as a graph.

• The graph generalizes the alignment by
allowing for recombinations at aligned
positions.

GCTTG-TA

Graph genomes
• A graph genome augments the

reference sequence with known/
frequent variation in the relevant
species/subspecies/population.

• Graph genome? Genome
graph? Reference graph? Graph
reference? Variation graph?

• The Global Alliance for
Genomics and Health has been
developing and evaluating
approaches to including
variation in reference genomes.

Variation graph toolkit vg

https://github.com/vgteam/vg

• Erik Garrison started developing
the variation graph toolkit vg a
couple of years ago.

• The toolkit has become a
community effort to develop
tools for working with variation
graphs.

• Some companies offer similar
products, but vg is the only free
software graph-based sequence
analysis pipeline anywhere near
ready for production use.

Variation graphs

v : GATTACA

v:0
G

v:1
A

v:2
T

v:3
T

v:4
A

v:5
C

v:6
A

v:-6
C

v:-5
T

v:-4
A

v:-3
A

v:-2
T

v:-1
G

v:-0
T

Simple directed graphs are easier to handle. The
transformation is also useful for other purposes.

Path Indexes

Path indexes

Path indexes are a central tool for working with
variation graphs. They are text indexes for the path
labels in a graph. The index finds the (start nodes of)
the paths labeled by the query string.

CAT

1:G

3:A

4:T

2:C 5:T

6:C

9:T

7:A

8:G

10:A0:# 11:$

Path indexes
• The number of kmers in a graph increases

exponentially with k.

• In one human variation graph, the number of kmers
is 1.031k⋅2.348 billion, or 116 billion for k = 128.

• The design of a path index is a trade-off between
index size, query performance, maximum query
length, and ignoring complex regions of the graph.

• Query performance is probably the most critical
issue, followed by index size.

• The kmer index is a simple
path index. It consists of a
set of key-value pairs.

• A hash table supports fast
kmer queries.

• Binary search in a sorted
array is slower but supports
queries shorter than k.

Key Value Key Value
$$$ 11 GTA 8
A$$ 10 TA$ 9
ATA 7 TCA 5
ATC 3 TGT 5
ATG 3 TTC 4
CAT 2, 6 TTG 4
CTT 2 #GC 0
GCA 1 ##G 0:1
GCT 1 ### 0:2

1:G

3:A

4:T

2:C 5:T

6:C

9:T

7:A

8:G

10:A0:# 11:$

Key Value Key Value
$$$ 11 GTA 8
A$$ 10 TA$ 9
ATA 7 TCA 5
ATC 3 TGT 5
ATG 3 TTC 4
CAT 2, 6 TTG 4
CTT 2 #GC 0
GCA 1 ##G 0:1
GCT 1 ### 0:2

• We can represent the kmer
index as a de Bruijn graph.

• Each edge in the de Bruijn
graph is a (k+1)-mer in the
input graph.

• We label each node with the
first character of the key. All
paths of length up to k+1 in
the input graph exist in the
de Bruijn graph.

###
0:2

##G
0:1

#GC
0

GCA
1

GCT
2

CAT
2, 6

CTT
2

ATC
3

ATG
3

TTC
4

TTG
4

TCA
5

TGT
5

ATA
7

GTA
8

TA$
9

A$$
10

$$$
11

###
0:2

##G
0:1

#GC
0

GCA
1

GCT
1

CAT
2, 6

CTT
2

ATC
3

ATG
3

TTC
4

TTG
4

TCA
5

TGT
5

ATA
7

GTA
8

TA$
9

A$$
10

$$$
11

1:G

3:A

4:T

2:C 5:T

6:C

9:T

7:A

8:G

10:A0:# 11:$

Paths longer than k+1 may be false positives, but we
can verify them in the input graph.

Storing the de Bruijn graph

GCT
1

CTT
2

GCA
1

CAT
2, 6

TCA
5

• If we know that node CAT exists,
we can encode nodes GCA and
TCA and the edges from them by
listing the predecessor labels G
and T.

• If nodes on unary paths have
successive values, we can use a
similar sampling scheme for the
values as in the FM-index.

• This reduces the size of the kmer
index from several integers per
kmer to a couple of bytes per kmer.

Succinct de Bruijn graphs
Node BWT IN OUT
$$$ A 1 1
A$$ T 1 1
ATA C 1 1
ATC C 1 1
ATG C 1 1
CAT GT 01 001
CTT G 1 01
GCA # 1 1
GCT # 1 1
GTA T 1 1
TA$ AG 01 1
TCA AT 01 1
TGT AT 01 1
TTC C 1 1
TTG C 1 1
#GC # 1 01
##G # 1 1
$ 1 1

• Sort the nodes, write the
predecessor labels to BWT, and
encode the indegrees and the
outdegrees in unary to bitvectors
IN and OUT.

• The result is an FM-index for
de Bruijn graphs.

• Backward searching uses select on
IN to find the incoming edges, LF
on BWT to find the outgoing edges,
and rank on OUT to find the
predecessor nodes.

• Bowe et al: Succinct de Bruijn
graphs. WABI 2012.

GCSA2

The index is still too large
• Short reads are typically ~100 bp. The value of k in a

kmer index should be more than that.

• There can be hundreds of billions of 128-mers in a
whole-genome index for both strands.

• 2 bytes / kmer is too much for such indexes.

• We can use ideas from GCSA to compress the
de Bruijn graph.

• Sirén et al: Indexing Graphs for Path Queries with
Applications in Genome Research. TCBB, 2014.

Path graphs
• High-order de Bruijn graphs of a

graph have redundant subgraphs,
if shorter keys would already
specify the position uniquely.

• We can compress the de Bruijn
graph by merging such subgraphs.

• Path graphs generalize de Bruijn
graphs by using any prefix-free set
of strings as keys.

• There is an edge from X to Y, if
string cY exists in the source
material and one of X and cY is a
prefix of the other.

X GATTACA
Y ATTACAT
cY GATTACAT

X GATTACA
Y ATTAC
cY GATTAC

###
0:2

##G
0:1

#GC
0

GCA
1

GCT
1

CAT
2, 6

CTT
2

ATC
3

ATG
3

TT
4

TCA
5

TGT
5

ATA
7

GTA
8

TA$
9

A$$
10

$$$
11

###
0:2

##G
0:1

#GC
0

GCA
1

GCT
1

CAT
2, 6

CTT
2

ATC
3

ATG
3

TTC
4

TTG
4

TCA
5

TGT
5

ATA
7

GTA
8

TA$
9

A$$
10

$$$
11

We can merge nodes sharing a prefix without affecting
queries, if the value sets are identical.

###
0:2

##G
0:1

#GC
0

GCA
1

GCT
1

CAT
2, 6

CTT
2

ATC
3

ATG
3

TTC
4

TTG
4

TCA
5

TGT
5

ATA
7

GTA
8

TA$
9

A$$
10

$$$
11

If we keep merging the nodes, we get a (maximally)
pruned de Bruijn graph, which behaves intuitively.

###
0:2

##G
0:1

#G
0

GC
1

CAT
2, 6

CT
2

ATC
3

ATG
3

TT
4

TC
5

TG
5

ATA
7

GT
8

TA
9

A$
10

$$$
11

We can encode the result in the same way as in the
succinct de Bruijn graph / GCSA.

###
0 : 2

##G
0 : 1

#G
0

CAT
2, 6

CT
2

ATC
3

ATG
3

TT
4

TC
5

TG
5

ATA
7

GT
8

TA
9

A$
10

$$$
11

GC
1

key OUT BWT IN key BS BV VS

$$$
A$
ATA
ATC
ATG
CAT
CT
GC
GT
TA
TC
TG
TT
#G
##G
###

1

0

1
1
1
1

1
1
1
1
0
1
0
1
0
1
1
1
1
1

$$$
A$
ATA
ATC
ATG
CAT
CT
GC
GT
TA
TC
TG
TT
#G
##G
###

1
1
1
1
1
0
0
1
1
0
1

1
1
1

1

0
1
1
1
1

A
T
C
C
C
G

T
#

A

A

A

G

T

G
T

T
C
#
#
$

0
0
1
1
1
1
0
0
1
1
1
1
1
0
0
1

1
1
1

1
1
1
1
1
1

0

7
3
3
2

8
9
5
5
4

0 : 2

1 6

GCSA construction

• Start from paths of length k and use a prefix-doubling
algorithm to build the pruned de Bruijn graph.

• extend(): Double the path length by joining paths
A→B and B→C into paths A→C.

• prune(): If all paths sharing a common prefix start
from the same node, merge them into a single path.

• merge(): Merge all paths with the same label, and all
paths sharing a prefix if their value sets are identical.

Chr 1

Chr 2

Chr 3

merge()

Nodes

Labels

Path starts

Chr 1

Chr 2

Chr 3

Chr 1

Chr 2

Chr 3

prune()

extend()

extend()

extend()

Chr 1

Chr 2

Chr 3

Chr 1

Chr 2

Chr 3

sort()

sort()

sort()

• prune() and merge() merge
sorted files using a priority
queue.

• extend() is done separately for
each chromosome.

• Memory usage is often
determined by extend() for the
most complex chromosome.

GCSA2 construction
• Index construction is essentially about determining

the edges of the pruned de Bruijn graph.

• One read pointer scans the destination nodes Y,
while σ additional pointers scan the source nodes X
starting with each character c∈∑.

• Path labels are stored as sequences of kmer ranks.

• LF-mapping in a de Bruijn graph for the original
kmers transforms the sequence for Y into the
sequence for cY.

Path length 16→32 16→64 16→128

Kmers
Nodes

6.20G
4.37G

16.7G
5.24G

116G
5.73G

Index size 9.97 GB
13.8 bits / kmer

9.19 GB
4.74 bits / kmer

9.17 GB
0.68 bits / kmer

Construction:
Time

Memory
Disk

8.62 h
63.1 GB
387 GB

12.1 h
55.9 GB
415 GB

16.1 h
56.6 GB
478 GB

I/O:
Read
Write

1.37 TB
0.88 TB

2.03 TB
1.51 TB

2.78 TB
2.25 TB

1000GP human variation (forward strand only)
vg mod -p -l 16 -e 4 | vg mod -S -l 100

32 cores, 256 GB memory, distributed Lustre file system

Index k Patterns Found find() locate()

GCSA 16 351584 347453 18.3 µs 12.1 µs

GCSA 32 351555 333258 37.9 µs 11.1 µs

GCSA 64 351567 326101 76.1 µs 5.76 µs

GCSA 128 351596 316500 149 µs 5.98 µs

csa_wt 16 351584 301538 6.06 µs 2.46 µs

csa_wt 32 351555 153957 10.9 µs 2.19 µs

csa_wt 64 351567 88184 17.2 µs 1.91 µs

csa_wt 128 351596 35678 23.6 µs 3.48 µs

GCSA2 vs a similar FM-index from SDSL.
Patterns extracted from the non-pruned variation graph.

Time per find query / distinct occurrence.

Suffix Tree of a Path Graph

Maximal exact matches
• Many read aligners are based on finding maximal

exact matches between the read and the reference
using the bidirectional BWT.

• The bidirectional BWT requires that the lexicographic
range and the reverse range have the same length.

• The key set must contain the reverse complement of
each key to guarantee this. We do not know how to
do that efficiently.

• We can use compressed suffix trees instead.

Key
$$$
A$
ATA
ATC
ATG
CAT
CT
GC
GT
TA
TC
TG
TT
#G

##G
###

A

C

G

T

#

T

#

The compacted trie of
keys looks sufficiently
similar to the suffix tree.

We can consider it the
suffix tree of the path
graph.

If the path graph is a
maximally pruned
de Bruijn graph, the
suffix tree behaves
intuitively.

Key LCP
$$$ 0
A$ 0
ATA 1
ATC 2
ATG 2
CAT 0
CT 1
GC 0
GT 1
TA 0
TC 1
TG 1
TT 1
#G 0

##G 1
2

A

C

G

T

#

T

#

LCP[i…j] is an LCP-interval at
depth d, if:
• LCP[i] < d;
• LCP[j+1] < d;
• LCP[i+1…j] ≥ d; and
• LCP[i+1…j] contains value

d.
The LCP interval tree is
equivalent to the suffix tree.
(Abouelhoda et al: Replacing
suffix trees with enhanced
suffix arrays. JDA, 2004.)

We can simulate the suffix tree
with next/previous smaller
value queries and range
minimum queries in the LCP
array. (Fischer et al: Faster
entropy-bounded compressed
suffix trees. TCS, 2009)

If lexicographic range [sp…ep] matches substring
P[i…j] of the pattern,

• lexicographic range LF([sp…ep], P[i–1]) matches
substring P[i–1…j] of the pattern; and

• range parent([sp…ep]) matches P[i–1…i+d–1],
where d < j+1–i is the depth of the parent node.

Ohlebusch et al: Computing Matching Statistics and
Maximal Exact Matches on Compressed Full-Text
Indexes. SPIRE 2010.

i ji–1 i+d–1

P

LF([sp…ep], P[i–1]) parent([sp…ep])

Suffix tree implementation

• The LCP array requires 5n to 7n bits, depending on
the number of doubling steps.

• To support NSV / PSV / RMQ, we build a 64-ary
range minimum tree over the array.

• The result is a simple and fast compressed suffix
tree, which could also be useful with sequences
after some modifications.

Counting queries

• Determine the number of distinct start nodes of the
paths matching the pattern.

• The length of the BWT range tells this in text indexes:
each pointer in the suffix array is unique.

• A node of a path graph may contain multiple pointers
to the original graph, and multiple nodes may
contain the same pointer.

Key Value Red.
$$$ 11 0
A$ 10 0
ATA 7 1
ATC 3 0
ATG 3 0
CAT 2, 6 1
CT 2 0
GC 1 0
GT 8 0
TA 9 1
TC 5 0
TG 5 0
TT 4 0
#G 0 0

##G 0:1 0
0:2 –

3
0

2
1

2
0

3
1

3
0

2
1

2
0

14
0

Determine the number of
distinct and redundant values
for each internal node of the
suffix tree.

Traverse the tree in inorder and
write down the number of
redundant matches on the first
visit to each node.

Lexicographic range [sp…ep]:
inorder range [sp…ep–1].

count([sp…ep]): the total
number of values in the
lexicographic range minus the
number of redundant values in
the inorder range.

Key Value Red.
$$$ 11 0
A$ 10 0
ATA 7 1
ATC 3 0
ATG 3 0
CAT 2, 6 1
CT 2 0
GC 1 0
GT 8 0
TA 9 1
TC 5 0
TG 5 0
TT 4 0
#G 0 0

##G 0:1 0
0:2 –

3
0

2
1

2
0

3
1

3
0

2
1

2
0

14
0

count([sp…ep]): the total
number of values in the
lexicographic range minus the
number of redundant values in
the inorder range.

Encode the integer arrays in
unary to compute range sums
with select queries.

Sadakane: Succinct data
structures for flexible text
retrieval systems. JDA, 2007.

The bitvectors are often highly
compressible (Gagie et al:
Document Counting in
Compressed Space. DCC
2015).

Path length 16→32 16→64 16→128

Kmers
Nodes

6.20G
4.37G

16.7G
5.24G

116G
5.73G

Index with
extensions

9.97 → 13.6 GB
18.9 bits / kmer

 9.19 → 14.1 GB
7.27 bits / kmer

9.17 → 15.2 GB
1.12 bits / kmer

Construction:
Time

Memory
Disk

8.62 h
63.1 GB
387 GB

12.1 h
55.9 GB
415 GB

16.1 h
56.6 GB
478 GB

I/O:
Read
Write

1.37 TB
0.88 TB

2.03 TB
1.51 TB

2.78 TB
2.25 TB

1000GP human variation (forward strand only)
vg mod -p -l 16 -e 4 | vg mod -S -l 100

32 cores, 256 GB memory, distributed Lustre file system

Index k find() locate() parent() count()

GCSA 16 18.3 µs 12.1 µs 0.41 µs 0.87 µs

GCSA 32 37.9 µs 11.1 µs 0.28 µs 0.38 µs

GCSA 64 76.1 µs 5.76 µs 0.26 µs 0.28 µs

GCSA 128 149 µs 5.98 µs 0.26 µs 0.26 µs

csa_wt 16 6.06 µs 2.46 µs – –

csa_wt 32 10.9 µs 2.19 µs – –

csa_wt 64 17.2 µs 1.91 µs – –

csa_wt 128 23.6 µs 3.48 µs – –

GCSA2 vs a similar FM-index from SDSL.
Patterns extracted from the non-pruned variation graph.

Time per query / distinct occurrence.

Pruning the Variation Graph

Complex regions

• A whole-genome human variation graph based on
1000GP variation contains trillions (quadrillions?) of
distinct 128-mers.

• Almost all of them are from a few complex regions.

• We cannot index all potential recombinations in such
regions.

• vg and GCSA2 have several ways for dealing with
the complex regions.

Pruning

vg mod -p -l 16 -e 4
Remove paths of length 16
crossing more than 4 nontrivial
edges.

vg mod -S -l 100
Remove subgraphs shorter
than 100 bases.

• Easy and efficient.

• Complex regions may be
removed completely.

b

c

a

d

e

f

g

h

i

j

b

c

a

h

i

j

Indexing subgraphs
GCSA2 construction handles
each chromosome (disjoint
subgraph) separately.

We can also index overlapping
subgraphs (e.g. a pruned
variation graph and the
reference path).

• Guarantees that the entire
genome is indexed.

• Redundant paths can make
index construction more
expensive.

b

c

a

d

e

f

g

h

i

j

b

c

a

h

i

j

b

a

d f h

j

Indexing haplotypes
Duplicate nodes to index only
paths corresponding to known
haplotypes in complex regions.

Multiple nodes of the input
graph map to the same node in
the variation graph.

• Guarantees that the entire
genome and all observed
variation is indexed.

• Not implemented yet in vg.
(How to do it efficiently?)

b

c

a

d

e

f

g

h

i

j

b0

b1

a

e0

d1

g0

g1

h0

i1

j

c2

c3

e2

d3

f2

f3

h2

i3

Hypertext Index

Hypertext index
We build an FMD-index for the
node labels of a variation graph. In
order to match for a pattern, we:
• Search for the pattern and its

reverse complement.
• Combine the partial match for

each suffix with the partial match
for the reverse complement of
the corresponding prefix with a
range query in the edge matrix.

• Matches crossing multiple edges
can also be found, though it may
not be practical.

This is similar to LZ-indexes and
grammar-compressed indexes.

Chris Thachuk: Indexing
Hypertext. JDA, 2013.

GATTACA

AATC

ACA

Potential recombinations

• We can use the hypertext index to add new edges to
a path graph indexed by GCSA2.

• This can be used for example to add potential
recombinations to complex regions, where we would
otherwise index only known haplotypes.

• Include only edges from the reverse complement
strand to the forward strand in the edge matrix.

• (I have not decided whether this is worth the effort.)

Representing rearrangements

We may have the
same sequence or
even subgraph in
different positions.

Duplicated subgraphs Unsupported paths

Neither option works well in a reference genome.

We may need something
stronger than graphs,
which correspond to
regular languages.

A →
B →
C →
D →

S → ABCD | ACBD A B1 B2 C1 C2 D
A 0 1 0 0 1 0

B1 0 0 0 1 0 0
B2 0 0 0 0 0 1
C1 0 0 0 0 0 1
C2 0 0 1 0 0 0
D 0 0 0 0 0 0

We can use the hypertext index, as long as the grammar is non-
nested. For more general grammars, we may need a GCSA-like

generalization of grammar-compressed indexes.

Embedding haplotypes

A series of theoretical papers on indexing similar
sequences by embedding them in a graph.

Na et al: Suffix Tree of Alignment: An Efficient Index for
Similar Data. IWOCA 2013.

Na et al: Suffix Array of Alignment: A Practical Index for
Similar Data. SPIRE 2013.

Na et al: FM-index of alignment: A compressed index
for similar strings. TCS, 2015.

Na et al: FM-index of Alignment with Gaps. arXiv:
1606.03897, 2016.

From alignment to graph
#CCT C-A- AAC C $
#CCT CCA- AAC A $
#CCT T-AT AAC - $
#CCT ---- AAC C $

#C CTC-A- A ACC $
#C CTCCA- A ACA $
#C CTT-AT A AC- $
#C CT---- A ACC $

#C --CTCA A ACC $
#C -CTCCA A ACA $
#C -CTTAT A -AC $
#C ----CT A ACC $

• Start from aligned sequences and
split the alignment into shared and
diverging segments.

• Move the shortest globally
unique suffix of each shared
segment to the next diverging
segment.

• Justify the diverging segments to
the right.

From alignment to graph
1: #C --CTCA A ACC $
2: #C -CTCCA A ACA $
3: #C -CTTAT A -AC $
4: #C ----CT A ACC $

Each distinct suffix
of each diverging
segment becomes

a node.

C

A
1 2

T
3 4

C
1 2

C
4

A
3

T
3

T
3

C
3

T
1

C
2

C
1

C
2

T
2

A

A
2

C
1 3 4

C
1 4

A
3

A
1 4

C
2

A
2

$

Indexing the graph

C

A
1 2

T
3 4

C
1 2

C
4

A
3

T
3

T
3

C
3

T
1

C
2

C
1

C
2

T
2

A

A
2

C
1 3 4

C
1 4

A
3

A
1 4

C
2

A
2

$

• The graph is reverse deterministic.
• All paths from a node share a prefix that ends with a globally

unique substring.
• Hence the graph is a path graph and we can encode it with GCSA.

Indexing the sequences

• Paths that pass from one diverging segment to the next may be false
positives, if they continue past the globally unique substring.

• The length of the lexicographic range is 1, once backward searching
reaches the shared segment.

• Shared segment ends if and only if a node has outdegree > 1.

C

A
1 2

T
3 4

C
1 2

C
4

A
3

T
3

T
3

C
3

T
1

C
2

C
1

C
2

T
2

A

A
2

C
1 3 4

C
1 4

A
3

A
1 4

C
2

A
2

$

Indexing the sequences

• Paths that pass from one diverging segment to the next may be false
positives, if they continue past the globally unique substring.

• The length of the lexicographic range is 1, once backward searching
reaches the shared segment.

• Shared segment ends if and only if a node has outdegree > 1.

C

A
1 2

T
3 4

C
1 2

C
4

A
3

T
3

T
3

C
3

T
1

C
2

C
1

C
2

T
2

A

A
2

C
1 3 4

C
1 4

A
3

A
1 4

C
2

A
2

$

If the length of the range is 1
and the outdegree is > 1, we

store the sequence ids from the
successor nodes.

Once the search finishes, we
take intersection of the stored
sets and the sequence ids in

the matching node.

Indexing graph and sequences

C

A
1 2

T
3 4

C
1 2

C
4

A
3

T
3

T
3

C
3

T
1

C
2

C
1

C
2

T
2

A

A
2

C
1 3 4

C
1 4

A
3

A
1 4

C
2

A
2

$

• We have indexed the graph in a way that allows for restricting the
search to the original sequences.

• This depends on the specific properties of the graph.
• Could we do the same efficiently with any GCSA?

Conclusions

• The design of a path index is a trade-off between
index size, query performance, maximum query
length, and ignoring complex regions of the graph.

• GCSA2 prioritizes performance and size, while
supporting long enough queries to map short reads
in one piece. It ignores unobserved recombinations
in complex regions.

• It uses a de Bruijn graph as a kmer index,
compresses it by merging redundant subgraphs, and
encodes the result as a compressed suffix tree.

• Sirén: Indexing Variation Graphs. arXiv:1604.06605,
2016. https://github.com/jltsiren/gcsa2

https://github.com/jltsiren/gcsa2

