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Reference bias

• Read alignment, variant calling, and the subsequent 
analysis all depend on the reference genome. 

• Most reference genomes are based on the genomes 
of a small number of individuals or populations. 

• The analysis may be biased towards those 
individuals and populations.



Avoiding reference bias

1. De novo assembly of individual genomes (not really 
possible with Illumina reads) 

2. Reference-free analysis based on the reads 
(yesterday) 

3. Using a graph reference (today) 

4. Analysis based on assembly graphs (a combination 
of the above)
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Variation Graphs



From alignments to graphs
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GCATCATA
GCATG-TA
GCTTCATA

• We can represent a collection of aligned 
sequences as a graph. 

• The graph generalizes the alignment by 
allowing for recombinations at aligned 
positions.

GCTTG-TA



Graph genomes
• A graph genome augments the 

reference sequence with known/
frequent variation in the relevant 
species/subspecies/population. 

• Graph genome? Genome 
graph? Reference graph? Graph 
reference? Variation graph? 

• The Global Alliance for 
Genomics and Health has been 
developing and evaluating 
approaches to including 
variation in reference genomes.



Variation graph toolkit vg

https://github.com/vgteam/vg

• Erik Garrison started developing 
the variation graph toolkit vg a 
couple of years ago. 

• The toolkit has become a 
community effort to develop 
tools for working with variation 
graphs. 

• Some companies offer similar 
products, but vg is the only free 
software graph-based sequence 
analysis pipeline anywhere near 
ready for production use.



Variation graphs
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Simple directed graphs are easier to handle. The 
transformation is also useful for other purposes.



Path Indexes



Path indexes

Path indexes are a central tool for working with 
variation graphs. They are text indexes for the path 
labels in a graph. The index finds the (start nodes of) 
the paths labeled by the query string.
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Path indexes
• The number of kmers in a graph increases 

exponentially with k. 

• In one human variation graph, the number of kmers 
is 1.031k⋅2.348 billion, or 116 billion for k = 128. 

• The design of a path index is a trade-off between 
index size, query performance, maximum query 
length, and ignoring complex regions of the graph. 

• Query performance is probably the most critical 
issue, followed by index size.



• The kmer index is a simple 
path index. It consists of a 
set of key-value pairs. 

• A hash table supports fast 
kmer queries. 

• Binary search in a sorted 
array is slower but supports 
queries shorter than k.

Key Value Key Value
$$$ 11 GTA 8
A$$ 10 TA$ 9
ATA 7 TCA 5
ATC 3 TGT 5
ATG 3 TTC 4
CAT 2, 6 TTG 4
CTT 2 #GC 0
GCA 1 ##G 0:1
GCT 1 ### 0:2
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4:T

2:C 5:T

6:C

9:T

7:A

8:G

10:A0:# 11:$



Key Value Key Value
$$$ 11 GTA 8
A$$ 10 TA$ 9
ATA 7 TCA 5
ATC 3 TGT 5
ATG 3 TTC 4
CAT 2, 6 TTG 4
CTT 2 #GC 0
GCA 1 ##G 0:1
GCT 1 ### 0:2

• We can represent the kmer 
index as a de Bruijn graph. 

• Each edge in the de Bruijn 
graph is a (k+1)-mer in the 
input graph. 

• We label each node with the 
first character of the key. All 
paths of length up to k+1 in 
the input graph exist in the 
de Bruijn graph.
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Paths longer than k+1 may be false positives, but we 
can verify them in the input graph.



Storing the de Bruijn graph
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• If we know that node CAT exists, 
we can encode nodes GCA and 
TCA and the edges from them by 
listing the predecessor labels G 
and T. 

• If nodes on unary paths have 
successive values, we can use a 
similar sampling scheme for the 
values as in the FM-index. 

• This reduces the size of the kmer 
index from several integers per 
kmer to a couple of bytes per kmer.



Succinct de Bruijn graphs
Node BWT IN OUT
$$$ A 1 1
A$$ T 1 1
ATA C 1 1
ATC C 1 1
ATG C 1 1
CAT GT 01 001
CTT G 1 01
GCA # 1 1
GCT # 1 1
GTA T 1 1
TA$ AG 01 1
TCA AT 01 1
TGT AT 01 1
TTC C 1 1
TTG C 1 1
#GC # 1 01
##G # 1 1
### $ 1 1

• Sort the nodes, write the 
predecessor labels to BWT, and 
encode the indegrees and the 
outdegrees in unary to bitvectors 
IN and OUT. 

• The result is an FM-index for 
de Bruijn graphs. 

• Backward searching uses select on 
IN to find the incoming edges, LF 
on BWT to find the outgoing edges, 
and rank on OUT to find the 
predecessor nodes. 

• Bowe et al: Succinct de Bruijn 
graphs. WABI 2012.



GCSA2



The index is still too large
• Short reads are typically ~100 bp. The value of k in a 

kmer index should be more than that. 

• There can be hundreds of billions of 128-mers in a 
whole-genome index for both strands. 

• 2 bytes / kmer is too much for such indexes. 

• We can use ideas from GCSA to compress the 
de Bruijn graph. 

• Sirén et al: Indexing Graphs for Path Queries with 
Applications in Genome Research. TCBB, 2014.



Path graphs
• High-order de Bruijn graphs of a 

graph have redundant subgraphs, 
if shorter keys would already 
specify the position uniquely. 

• We can compress the de Bruijn 
graph by merging such subgraphs. 

• Path graphs generalize de Bruijn 
graphs by using any prefix-free set 
of strings as keys. 

• There is an edge from X to Y, if 
string cY exists in the source 
material and one of X and cY is a 
prefix of the other.

X GATTACA
Y  ATTACAT
cY GATTACAT

X GATTACA
Y  ATTAC
cY GATTAC
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We can merge nodes sharing a prefix without affecting 
queries, if the value sets are identical.
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If we keep merging the nodes, we get a (maximally) 
pruned de Bruijn graph, which behaves intuitively.
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We can encode the result in the same way as in the 
succinct de Bruijn graph / GCSA.
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GCSA construction

• Start from paths of length k and use a prefix-doubling 
algorithm to build the pruned de Bruijn graph. 

• extend(): Double the path length by joining paths 
A→B and B→C into paths A→C. 

• prune(): If all paths sharing a common prefix start 
from the same node, merge them into a single path. 

• merge(): Merge all paths with the same label, and all 
paths sharing a prefix if their value sets are identical.



Chr 1

Chr 2

Chr 3

merge()

Nodes

Labels

Path starts

Chr 1

Chr 2

Chr 3

Chr 1

Chr 2

Chr 3

prune()

extend()

extend()

extend()

Chr 1

Chr 2

Chr 3

Chr 1

Chr 2

Chr 3

sort()

sort()

sort()

• prune() and merge() merge 
sorted files using a priority 
queue. 

• extend() is done separately for 
each chromosome. 

• Memory usage is often 
determined by extend() for the 
most complex chromosome.



GCSA2 construction
• Index construction is essentially about determining 

the edges of the pruned de Bruijn graph. 

• One read pointer scans the destination nodes Y, 
while σ additional pointers scan the source nodes X 
starting with each character c∈∑. 

• Path labels are stored as sequences of kmer ranks. 

• LF-mapping in a de Bruijn graph for the original 
kmers transforms the sequence for Y into the 
sequence for cY.



Path length 16→32 16→64 16→128

Kmers
Nodes

6.20G 
4.37G

16.7G 
5.24G

116G 
5.73G

Index size 9.97 GB 
13.8 bits / kmer

9.19 GB 
4.74 bits / kmer

9.17 GB 
0.68 bits / kmer

Construction:
Time

Memory
Disk

8.62 h 
63.1 GB 
387 GB

12.1 h 
55.9 GB 
415 GB

16.1 h 
56.6 GB 
478 GB

I/O:
Read
Write

1.37 TB 
0.88 TB

2.03 TB 
1.51 TB

2.78 TB 
2.25 TB

1000GP human variation (forward strand only) 
vg mod -p -l 16 -e 4 | vg mod -S -l 100 

32 cores, 256 GB memory, distributed Lustre file system



Index k Patterns Found find() locate()

GCSA 16 351584 347453 18.3 µs 12.1 µs

GCSA 32 351555 333258 37.9 µs 11.1 µs

GCSA 64 351567 326101 76.1 µs 5.76 µs

GCSA 128 351596 316500 149 µs 5.98 µs

csa_wt 16 351584 301538 6.06 µs 2.46 µs

csa_wt 32 351555 153957 10.9 µs 2.19 µs

csa_wt 64 351567 88184 17.2 µs 1.91 µs

csa_wt 128 351596 35678 23.6 µs 3.48 µs

GCSA2 vs a similar FM-index from SDSL. 
Patterns extracted from the non-pruned variation graph. 

Time per find query / distinct occurrence.



Suffix Tree of a Path Graph



Maximal exact matches
• Many read aligners are based on finding maximal 

exact matches between the read and the reference 
using the bidirectional BWT. 

• The bidirectional BWT requires that the lexicographic 
range and the reverse range have the same length. 

• The key set must contain the reverse complement of 
each key to guarantee this. We do not know how to 
do that efficiently. 

• We can use compressed suffix trees instead.



Key
$$$
A$
ATA
ATC
ATG
CAT
CT
GC
GT
TA
TC
TG
TT
#G

##G
###

A

C

G

T

#

T

#

The compacted trie of 
keys looks sufficiently 
similar to the suffix tree. 

We can consider it the 
suffix tree of the path 
graph. 

If the path graph is a 
maximally pruned 
de Bruijn graph, the 
suffix tree behaves 
intuitively.



Key LCP
$$$ 0
A$ 0
ATA 1
ATC 2
ATG 2
CAT 0
CT 1
GC 0
GT 1
TA 0
TC 1
TG 1
TT 1
#G 0

##G 1
### 2

A

C

G

T

#

T

#

LCP[i…j] is an LCP-interval at 
depth d, if: 
• LCP[i] < d; 
• LCP[j+1] < d; 
• LCP[i+1…j] ≥ d; and 
• LCP[i+1…j] contains value 

d. 
The LCP interval tree is 
equivalent to the suffix tree. 
(Abouelhoda et al: Replacing 
suffix trees with enhanced 
suffix arrays. JDA, 2004.) 

We can simulate the suffix tree 
with next/previous smaller 
value queries and range 
minimum queries in the LCP 
array. (Fischer et al: Faster 
entropy-bounded compressed 
suffix trees. TCS, 2009)



If lexicographic range [sp…ep] matches substring 
P[i…j] of the pattern, 

• lexicographic range LF([sp…ep], P[i–1]) matches 
substring P[i–1…j] of the pattern; and 

• range parent([sp…ep]) matches P[i–1…i+d–1], 
where d < j+1–i is the depth of the parent node. 

Ohlebusch et al: Computing Matching Statistics and 
Maximal Exact Matches on Compressed Full-Text 
Indexes. SPIRE 2010.

i ji–1 i+d–1

P

LF([sp…ep], P[i–1]) parent([sp…ep])



Suffix tree implementation

• The LCP array requires 5n to 7n bits, depending on 
the number of doubling steps. 

• To support NSV / PSV / RMQ, we build a 64-ary 
range minimum tree over the array. 

• The result is a simple and fast compressed suffix 
tree, which could also be useful with sequences 
after some modifications.



Counting queries

• Determine the number of distinct start nodes of the 
paths matching the pattern. 

• The length of the BWT range tells this in text indexes: 
each pointer in the suffix array is unique. 

• A node of a path graph may contain multiple pointers 
to the original graph, and multiple nodes may 
contain the same pointer.



Key Value Red.
$$$ 11 0
A$ 10 0
ATA 7 1
ATC 3 0
ATG 3 0
CAT 2, 6 1
CT 2 0
GC 1 0
GT 8 0
TA 9 1
TC 5 0
TG 5 0
TT 4 0
#G 0 0

##G 0:1 0
### 0:2 –

3 
0

2 
1

2 
0

3 
1

3 
0

2 
1

2 
0

14 
0

Determine the number of 
distinct and redundant values 
for each internal node of the 
suffix tree. 

Traverse the tree in inorder and 
write down the number of 
redundant matches on the first 
visit to each node. 

Lexicographic range [sp…ep]: 
inorder range [sp…ep–1]. 

count([sp…ep]): the total 
number of values in the 
lexicographic range minus the 
number of redundant values in 
the inorder range.



Key Value Red.
$$$ 11 0
A$ 10 0
ATA 7 1
ATC 3 0
ATG 3 0
CAT 2, 6 1
CT 2 0
GC 1 0
GT 8 0
TA 9 1
TC 5 0
TG 5 0
TT 4 0
#G 0 0

##G 0:1 0
### 0:2 –

3 
0

2 
1

2 
0

3 
1

3 
0

2 
1

2 
0

14 
0

count([sp…ep]): the total 
number of values in the 
lexicographic range minus the 
number of redundant values in 
the inorder range. 

Encode the integer arrays in 
unary to compute range sums 
with select queries. 

Sadakane: Succinct data 
structures for flexible text 
retrieval systems. JDA, 2007. 

The bitvectors are often highly 
compressible (Gagie et al: 
Document Counting in 
Compressed Space. DCC 
2015).



Path length 16→32 16→64 16→128

Kmers
Nodes

6.20G 
4.37G

16.7G 
5.24G

116G 
5.73G

Index with 
extensions

9.97 → 13.6 GB 
18.9 bits / kmer

 9.19 → 14.1 GB 
7.27 bits / kmer

9.17 → 15.2 GB 
1.12 bits / kmer

Construction:
Time

Memory
Disk

8.62 h 
63.1 GB 
387 GB

12.1 h 
55.9 GB 
415 GB

16.1 h 
56.6 GB 
478 GB

I/O:
Read
Write

1.37 TB 
0.88 TB

2.03 TB 
1.51 TB

2.78 TB 
2.25 TB

1000GP human variation (forward strand only) 
vg mod -p -l 16 -e 4 | vg mod -S -l 100 

32 cores, 256 GB memory, distributed Lustre file system



Index k find() locate() parent() count()

GCSA 16 18.3 µs 12.1 µs 0.41 µs 0.87 µs

GCSA 32 37.9 µs 11.1 µs 0.28 µs 0.38 µs

GCSA 64 76.1 µs 5.76 µs 0.26 µs 0.28 µs

GCSA 128 149 µs 5.98 µs 0.26 µs 0.26 µs

csa_wt 16 6.06 µs 2.46 µs – –

csa_wt 32 10.9 µs 2.19 µs – –

csa_wt 64 17.2 µs 1.91 µs – –

csa_wt 128 23.6 µs 3.48 µs – –

GCSA2 vs a similar FM-index from SDSL. 
Patterns extracted from the non-pruned variation graph. 

Time per query / distinct occurrence.



Pruning the Variation Graph



Complex regions

• A whole-genome human variation graph based on 
1000GP variation contains trillions (quadrillions?) of 
distinct 128-mers. 

• Almost all of them are from a few complex regions. 

• We cannot index all potential recombinations in such 
regions. 

• vg and GCSA2 have several ways for dealing with 
the complex regions.



Pruning

vg mod -p -l 16 -e 4 
Remove paths of length 16 
crossing more than 4 nontrivial 
edges. 

vg mod -S -l 100 
Remove subgraphs shorter 
than 100 bases. 

• Easy and efficient. 

• Complex regions may be 
removed completely.
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Indexing subgraphs
GCSA2 construction handles 
each chromosome (disjoint 
subgraph) separately. 

We can also index overlapping 
subgraphs (e.g. a pruned 
variation graph and the 
reference path). 

• Guarantees that the entire 
genome is indexed. 

• Redundant paths can make 
index construction more 
expensive.
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Indexing haplotypes
Duplicate nodes to index only 
paths corresponding to known 
haplotypes in complex regions. 

Multiple nodes of the input 
graph map to the same node in 
the variation graph. 

• Guarantees that the entire 
genome and all observed 
variation is indexed. 

• Not implemented yet in vg. 
(How to do it efficiently?)
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Hypertext Index



Hypertext index
We build an FMD-index for the 
node labels of a variation graph. In 
order to match for a pattern, we: 
• Search for the pattern and its 

reverse complement. 
• Combine the partial match for 

each suffix with the partial match 
for the reverse complement of 
the corresponding prefix with a 
range query in the edge matrix. 

• Matches crossing multiple edges 
can also be found, though it may 
not be practical. 

This is similar to LZ-indexes and 
grammar-compressed indexes.

Chris Thachuk: Indexing 
Hypertext. JDA, 2013.

GATTACA

AATC

ACA



Potential recombinations

• We can use the hypertext index to add new edges to 
a path graph indexed by GCSA2. 

• This can be used for example to add potential 
recombinations to complex regions, where we would 
otherwise index only known haplotypes. 

• Include only edges from the reverse complement 
strand to the forward strand in the edge matrix. 

• (I have not decided whether this is worth the effort.)



Representing rearrangements

We may have the 
same sequence or 
even subgraph in 
different positions.

Duplicated subgraphs Unsupported paths

Neither option works well in a reference genome.



We may need something 
stronger than graphs, 
which correspond to 
regular languages.

A →
B →
C →
D →

S → ABCD | ACBD A B1 B2 C1 C2 D
A 0 1 0 0 1 0

B1 0 0 0 1 0 0
B2 0 0 0 0 0 1
C1 0 0 0 0 0 1
C2 0 0 1 0 0 0
D 0 0 0 0 0 0

We can use the hypertext index, as long as the grammar is non-
nested. For more general grammars, we may need a GCSA-like 

generalization of grammar-compressed indexes.



Embedding haplotypes



A series of theoretical papers on indexing similar 
sequences by embedding them in a graph. 

Na et al: Suffix Tree of Alignment: An Efficient Index for 
Similar Data. IWOCA 2013. 

Na et al: Suffix Array of Alignment: A Practical Index for 
Similar Data. SPIRE 2013. 

Na et al: FM-index of alignment: A compressed index 
for similar strings. TCS, 2015. 

Na et al: FM-index of Alignment with Gaps. arXiv:
1606.03897, 2016.



From alignment to graph
#CCT C-A- AAC C $
#CCT CCA- AAC A $
#CCT T-AT AAC - $
#CCT ---- AAC C $

#C CTC-A- A ACC $
#C CTCCA- A ACA $
#C CTT-AT A AC- $
#C CT---- A ACC $

#C --CTCA A ACC $
#C -CTCCA A ACA $
#C -CTTAT A -AC $
#C ----CT A ACC $

• Start from aligned sequences and 
split the alignment into shared and 
diverging segments. 

• Move the shortest globally 
unique suffix of each shared 
segment to the next diverging 
segment. 

• Justify the diverging segments to 
the right.



From alignment to graph
1: #C --CTCA A ACC $
2: #C -CTCCA A ACA $
3: #C -CTTAT A -AC $
4: #C ----CT A ACC $

Each distinct suffix 
of each diverging 
segment becomes 

a node.
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Indexing the graph
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• The graph is reverse deterministic. 
• All paths from a node share a prefix that ends with a globally 

unique substring. 
• Hence the graph is a path graph and we can encode it with GCSA.



Indexing the sequences

• Paths that pass from one diverging segment to the next may be false 
positives, if they continue past the globally unique substring. 

• The length of the lexicographic range is 1, once backward searching 
reaches the shared segment. 

• Shared segment ends if and only if a node has outdegree > 1.
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Indexing the sequences

• Paths that pass from one diverging segment to the next may be false 
positives, if they continue past the globally unique substring. 

• The length of the lexicographic range is 1, once backward searching 
reaches the shared segment. 

• Shared segment ends if and only if a node has outdegree > 1.
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If the length of the range is 1 
and the outdegree is > 1, we 

store the sequence ids from the 
successor nodes.

Once the search finishes, we 
take intersection of the stored 
sets and the sequence ids in 

the matching node.



Indexing graph and sequences
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• We have indexed the graph in a way that allows for restricting the 
search to the original sequences. 

• This depends on the specific properties of the graph. 
• Could we do the same efficiently with any GCSA? 



Conclusions



• The design of a path index is a trade-off between 
index size, query performance, maximum query 
length, and ignoring complex regions of the graph. 

• GCSA2 prioritizes performance and size, while 
supporting long enough queries to map short reads 
in one piece. It ignores unobserved recombinations 
in complex regions. 

• It uses a de Bruijn graph as a kmer index, 
compresses it by merging redundant subgraphs, and 
encodes the result as a compressed suffix tree. 

• Sirén: Indexing Variation Graphs. arXiv:1604.06605, 
2016. https://github.com/jltsiren/gcsa2

https://github.com/jltsiren/gcsa2

