
FM-Index and the
Reverse Prefix Trie

Jouni Sirén
Wellcome Trust Sanger Institute

Contents

1. Reference-free analysis

2. FM-index and the reverse prefix trie

3. Algorithms using the trie

4. Kmer counting

5. All-against-all comparison of sequence collections

6. BWT merging

Reference-Free Analysis

Typical pipeline

Sequencing

Read alignment

Variant calling

Analysis

Samples

Reads

BAM / CRAM

VCF

Reference
genome

Reference bias

• Read alignment, variant calling, and the subsequent
analysis all depend on the reference genome.

• Most reference genomes are based on the genomes
of a small number of individuals or populations.

• The analysis may be biased towards those
individuals and populations.

Avoiding reference bias

1. De novo assembly of individual genomes (not really
possible with Illumina reads)

2. Reference-free analysis based on the reads (today)

3. Using a graph reference (tomorrow)

4. Analysis based on assembly graphs (a combination
of the above)

Reference-free analysis
• A single high-coverage human sample is around

100 Gbp in 1 billion sequences.

• Large projects sequence thousands of samples.

• Data structure construction is a major bottleneck,
often taking many CPU years and weeks of real time.

• We must commit to our data structure choices before
we know precisely what we are going to do.

• Versatility and the ease of construction must be key
properties of our data structures.

Population BWT
Dirk D. Dolle et al: Using reference-free compressed
data structures to analyse sequencing reads from
thousands of human genomes. bioRxiv, 2016.

→ 1000 GP phase 3: 922G reads, 87.1 Tbp.
→ Error correction & trimming: 819G reads, 75.5 Tbp.
→ 16 FM-indexes: 53.0G distinct sequences, 4.88 Tbp,

561.5 GB.
→ Metadata: 4.75 TB.

This talk is largely based on ideas how to develop the
population BWT further and to use it more effectively.

FM-Index and the
Reverse Prefix Trie

Definitions
• Better to use the same definitions both in papers and

in implementations.

• Array indices start from 0: S[0…n–1].

• S.rank(i, c) is the number of occurrences of
character c in the prefix S[0…i–1].

• S.select(i, c) is the position of the ith occurrence of
character c (the last position j where S.rank(j, c) < i).

• Time complexities indicate the number of rank /
select operations.

Burrows-Wheeler transform
 TAGCATAGAC$

C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

• Add a unique terminator ($) to the end of
the text, sort the suffixes in lexicographic
order, and output the preceding character
for each suffix.

• Use distinct terminators for multiple texts.

• The permutation is easily reversible and
makes the text easier to compress
(Burrows & Wheeler, 1994).

• The combinatorial structure is similar to
the suffix array, which makes the BWT
useful as a space-efficient text index
(Ferragina & Manzini, 2000, 2005).

LF-mapping
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

 $
 AC$
 AGAC$
 AGCATAGAC$
 ATAGAC$
 C$
 CATAGAC$
 GAC$
 GCATAGAC$
 TAGAC$
TAGCATAGAC$

LF(i) = C[BWT[i]] + BWT.rank(i, BWT[i])

Hypothetical suffixes
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

 $
 AC$
 AGAC$
 AGCATAGAC$
 ATAGAC$
 C$
 CATAGAC$
 GAC$
 GCATAGAC$
 TAGAC$
TAGCATAGAC$

LF(3, C)

Interpretation: LF(i, c) = C[c] + BWT.rank(i, c) suffixes
are strictly before the hypothetical suffix.

Backward searching
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

 $
 AC$
 AGAC$
 AGCATAGAC$
 ATAGAC$
 C$
 CATAGAC$
 GAC$
 GCATAGAC$
 TAGAC$
TAGCATAGAC$

LF([sp…ep], c) = [LF(sp, c)…LF(ep+1, c) –1]

LF([1…4], A)

Backward searching
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

 $
 AC$
 AGAC$
 AGCATAGAC$
 ATAGAC$
 C$
 CATAGAC$
 GAC$
 GCATAGAC$
 TAGAC$
TAGCATAGAC$

LF([1…4], C)

LF([sp…ep], c) = [LF(sp, c)…LF(ep+1, c) –1]

Backward searching
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

 $
 AC$
 AGAC$
 AGCATAGAC$
 ATAGAC$
 C$
 CATAGAC$
 GAC$
 GCATAGAC$
 TAGAC$
TAGCATAGAC$

LF([1…4], G)

LF([sp…ep], c) = [LF(sp, c)…LF(ep+1, c) –1]

Backward searching
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

 $
 AC$
 AGAC$
 AGCATAGAC$
 ATAGAC$
 C$
 CATAGAC$
 GAC$
 GCATAGAC$
 TAGAC$
TAGCATAGAC$

LF([1…4], T)

LF([sp…ep], c) = [LF(sp, c)…LF(ep+1, c) –1]

[0…10]

$
[0…0]

A
[1…1]

G
[7…7]

A
[2…2]

C
[5…5]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

[0…10]

$
[0…0]

A
[1…1]

G
[7…7]

A
[2…2]

C
[5…5]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

• Each node represents a distinct
substring of the text: the path label
from the node to the root.

• The emphasized nodes are the
prefixes.

• Each node contains the lexicographic
range of suffixes starting with the
substring.

• Nodes with the same lexicographic
range are roots of identical subtrees.

TAGCATAGAC$

Algorithms Using the Trie

Reverse prefix trie algorithms

• Many algorithms using the FM-index can be
understood as traversals of the reverse prefix trie.

• It is often easier to forget the FM-index and think
about the trie instead.

• As an introduction, we will take a look at approximate
searching (as in the old BWA) and bidirectional BWT.

Approximate searching

TAGCATAGAC$
TAGCATCGAC$Mismatch

TAGCATA-GAC$
TAGCATAGGAC$Insertion

TAGCATAGAC$
TAGCA-AGAC$Deletion

• The edit distance between
strings A and B is the number
of edit operations required to
transform A into B.

• In approximate searching, we
want to find the substring of
the text with the smallest edit
distance to the pattern.

• In practice, we want to
minimize (or maximize) the
score function between the
substring and the pattern.

[0…10]

$
[0…0]

A
[1…1]

G
[7…7]

A
[2…2]

C
[5…5]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

Match
 A
TACA

Score: 0

[0…10]

$
[0…0]

A
[1…1]

G
[7…7]

A
[2…2]

C
[5…5]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

Mismatch
 GA
TACA

Score: 1

Mismatch
 TA
TACA

Score: 1

Match
 CA
TACA

Score: 0

Match
 A
TACA

Score: 0

[0…10]

$
[0…0]

A
[1…1]

G
[7…7]

A
[2…2]

C
[5…5]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

Insertion
 -A
TACA

Score: 1

Match
 A
TACA

Score: 0

[0…10]

$
[0…0]

A
[1…1]

G
[7…7]

A
[2…2]

C
[5…5]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

Deletion
 GA
TAC-A

Score: 1

Deletion
 TA
TAC-A

Score: 1

Deletion
 CA
TAC-A

Score: 1

Match
 A
TACA

Score: 0

Approximate searching
• We traverse a tree of search states: lexicographic

range, matched suffix, score, edit operations.

• Use an oracle to give a lower bound for the score of
a full match expanded from the current state.

• Place the states into a priority queue by the lower
bounds and use A* search (most promising first) to
find the best match.

• This is essentially the backtracking algorithm used in
bwa aln (Li & Durbin, 2009).

[0…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

Prefixes
[1..4] in

preorder.

We ignore the subtree starting with $ for now and
assume that each prefix has a $ as an implicit child.

[0…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

Prefixes
[2..2] in

preorder.

Prefixes
[3..4] in

preorder.

Prefixes
[1..1] in

preorder.

Prefixes
[1..4] in

preorder.

The number of prefixes is the same as
the length of the lexicographic range.

[0…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

• Reverse prefixes are suffixes of the
reverse text.

• If the children are in alphabetic order,
the reverse prefix trie is the suffix trie
of the reverse text.

• Preorder range of prefixes:
lexicographic range of suffixes of the
reverse text.

• We partition the preorder range of the
parent into preorder ranges of the
children by the lengths of the
lexicographic ranges of the children.

[0…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

Reverse
range
[2..2].

Reverse
range
[3..4].

Reverse
range
[1..1].

Reverse
range
[1..4].

We can keep track of lexicographic ranges for both the
pattern in the text and its reverse in the reverse text.

Bidirectional searching

• We have one trie / FM-index for the text and another
for the reverse.

• The lexicographic range in one trie is the reverse
range in another.

• Backward searching in one FM-index extends the
match forward in another.

• This combination of indexes is frequently called the
bidirectional BWT (Lam et al, 2009).

[0…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

If we sort the children by the complements, we get the
suffix trie of the reverse complement of the text.

A

A

T

G

C

T

FMD-index
• The FMD-index (Li 2012) has both the text and its

reverse complement in the same FM-index.

• This saves time, as we often search for both pattern
and its reverse complement.

• Bidirectional search: the reverse range for the
pattern is the lexicographic range for the reverse
complement of the pattern.

• Used in e.g. BWA-MEM (Li 2013) to find maximal
exact matches.

Kmer Counting

Why kmer counting?

• Kmers are easy to understand.

• Determining the kmers and their frequencies in a
sequence collection is a common task in
bioinformatics.

• Kmers are used for e.g. error correction, indexing,
de Bruijn graph construction, genome size / read
coverage estimation…

Kmer counting with FM-index

• With an FM-index, the hard part is already done.

• The counting algorithm is reasonably fast and easy
to parallelize.

• Uses existing data structures and requires very little
additional code.

• Particularly fast with repetitive sequence collections.

[0…10]

$
[0…0]

A
[1…1]

G
[7…7]

A
[2…2]

C
[5…5]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

The nodes at depth k are the distinct kmers in the text.
We can list them and determine their frequencies by

traversing the trie.

Basic algorithm
function traverse(k):

S.push(ε, [0…|BWT| –1])
while S ≠ ∅:

(X, [sp…ep]) ← S.pop()
if [sp…ep] = ∅:

continue
if |X| = k:

report(X, [sp…ep])
if |X| < k:

for c ∈ ∑:
S.push(cX, LF([sp…ep], c))

Multithreading:

• Use traverse(k’) for k’ < k to
generate seed sequences.

• Traverse the resulting
subtrees in separate threads.

Time complexity

log|∑| n

O(log n)

Dense part: Most
kmers exist, O(1) / kmer.
Interesting part: Much
branching, most kmers
missing.

Sparse part: Unary
paths, O(k) / kmer.
Better to use other
algorithms.

All-Against-All Comparison
of Sequence Collections

All-against-all comparison

• We have two FM-indexes containing e.g. assembled
genomes, unitigs, or reads.

• Traverse both trees at the same time.

• List the kmers that are specific to / frequent in one of
the collections and missing from / rare in the other?

• Cox, Jakobi, Rosone, Schulz-Trieglaff: Comparing
DNA sequence collections by direct comparison of
compressed text indexes. WABI 2012.

Basic algorithm
function compare(A, B):

S.push(ε, [0…|A| –1], [0…|B| –1])
while S ≠ ∅:

(X, [spA…epA], [spB…epB]) ← S.pop()
if [spA…epA] = ∅ and [spB…epB] = ∅:

continue
if report_condition(X, [spA…epA], [spB…epB]):

report(X, [spA…epA], [spB…epB])
if expand_condition(X, [spA…epA], [spB…epB]):

for c ∈ ∑:
S.push(cX,

A.LF([spA…epA], c),
B.LF([spB…epB], c))

Population BWT

• We have a massive collection of reads in multiple
FM-indexes distributed over several servers.

• If we want to query the population BWT with another
sequence collection, we extract kmers from the
query sequences and query the servers with them.

• The intermediate results can take terabytes.

• Ideally we would want to filter the results on the
servers.

Another approach

• Build an FM-index for the query sequences and
submit it to the servers.

• Write and submit functions report_condition(),
report(), and expand_condition().

• Because the collection is in multiple FM-indexes, we
also need function reduce() (as in MapReduce) to
merge the results for the same substring.

• What would be possible with this approach?

BWT Merging

Large-scale BWT construction
• Data structure construction is a major bottleneck.

• We must sort n suffixes quickly using less than n bits
of memory.

• There is no such thing as large amounts of fast disk
space in high-performance computing.

• Distributing the work over multiple nodes is possible,
but everyone else wants to use the nodes as well.

• The construction algorithms should be incremental to
avoid redundant work over time.

Hypothetical suffixes
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

 $
 AC$
 AGAC$
 AGCATAGAC$
 ATAGAC$
 C$
 CATAGAC$
 GAC$
 GCATAGAC$
 TAGAC$
TAGCATAGAC$

LF(10, C)

Interpretation: LF(i, c) = C[c] + BWT.rank(i, c) suffixes
are strictly before the hypothetical suffix.

 TAGCATAGAC$

$ C
AC$ G
AGAC$ T
AGCATAGAC$ T
ATAGAC$ C
C$ A
CATAGAC$ G

GAC$ A
GCATAGAC$ A
TAGAC$ A
TAGCATAGAC$ $

CTAGCATAGAC$

$ C
AC$ G
AGAC$ T
AGCATAGAC$ T
ATAGAC$ C
C$ A
CATAGAC$ G
CTAGCATAGAC$ $
GAC$ A
GCATAGAC$ A
TAGAC$ A
TAGCATAGAC$ C

Insert C to the
beginning

1. Replace the $
at position i with
the inserted C.

2. Insert $ after
LF(i, C) suffixes.

$ C
AC$ G
AGAC$ T
AGCATAGAC$ T
ATAGAC$ C
C$ A
CATAGAC$ G
CTAGCATAGAC$ $
GAC$ A
GCATAGAC$ A
TAGAC$ A
TAGCATAGAC$ C

$ C
AC$ G
AGCATCGAC$ T
ATCGAC$ C
C$ A
CATCGAC$ G
CGAC$ T
CTAGCATCGAC$ $
GAC$ C
GCATCGAC$ A
TAGCATCGAC$ C
TCGAC$ A

$ C
$ C
AC$ G
AC$ G
AGAC$ T
AGCATAGAC$ T
AGCATCGAC$ T
ATAGAC$ C
ATCGAC$ C
C$ A
C$ A
CATAGAC$ G
CATCGAC$ G
CGAC$ T
CTAGCATAGAC$ $
CTAGCATCGAC$ $
GAC$ C
GAC$ A
GCATAGAC$ A
GCATCGAC$ A
TAGAC$ A
TAGCATAGAC$ C
TAGCATCGAC$ C
TCGAC$ A

RA

1

2
2
2

3

5
5

7

9
9

10
10

Merge the BWT of
TAGCATAGAC$ with the

BWT of CTAGCATCGAC$,
assuming that $ < $.

Rank array RA tells how
many black suffixes are
before each red suffix in

lexicographic order.

We start with RA[0] = 1.
Once we know RA[i], we

can set RA[LFred(i)] to
LFblack(RA[i], BWTred[i])

Because the rank array is
sorted, we can output it in

any order.

BWT merging
Jouni Sirén: Burrows-Wheeler transform for terabases.
DCC 2016. https://github.com/jltsiren/bwt-merge (Also:
Hon et al, 2007; Sirén, 2009)

Search: Generate the ranks in any order by e.g.
traversing the subtrees corresponding to the suffixes.

Sort: Sort the ranks to build the rank array. This can be
done in parallel with the other phases.

Merge: Interleave the source BWTs according to the
rank array. This can be done almost in-place with two-
level arrays.

[0…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

Traverse only the subtree
containing the suffixes.

Divide the sequences among
multiple search threads.

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[1…1]

C
[5…5]

$
[0…0]

Search algorithm
function search(A, B, nA, nB):

S.push(nA, [0…nB –1])
while S ≠ ∅:

(r, [sp…ep]) ← S.pop()
if [sp…ep] = ∅:

continue
report(r, ep + 1 – sp)
for c ∈ ∑:

S.push(A.LF(r, c), B.LF([sp…ep], c))

Insert the nB sequences from FM-index B into index A
containing nA sequences.

Sorting 1/3

function report(rank, count):
run_buffer.insert(rank, count)
if run_buffer.full():

sort(run_buffer)
compress(run_buffer)
thread_buffer ← merge(run_buffer, thread_buffer)
if thread_buffer.full():

merge(thread_buffer, merge_buffers)

The buffers are thread-specific.

Sorting 2/3

Each level below the root has one merge buffer.

thread_buffer
merge()

thread_buffer

thread_buffer

thread_buffer

thread_buffer

thread_buffer

thread_buffer

thread_buffer

merge()

merge()

merge()

merge()

merge()

file

Sorting 3/3 + merging

Multithreaded merging would help with a faster disk.

file

file

file

file

file

file

file

file

priority
queue interleave() BWTA⋃B

BWTA

BWTB

Thread 1:
merging

Thread 2:
interleaving

Benchmark: Population BWT

• We use 32 threads, 128 MB run buffers, 256 MB
thread buffers, and 6 levels of merge buffers.

• Input: 16 FM-indexes partitioned by last two bases;
53.0G distinct sequences, 4.88 Tbp, 561.5 GB.

• Output: 2 FM-indexes partitioned by the last base.

• Switch from 3+5-bit run-length encoding to another
byte-level code that can handle long runs.

Merging: *A, *C / *G, *T

281 GB
281 GB

239 GB
239 GB

225 GB
226 GB

181 GB
180 GB

81.3 hours
221 GB memory

297 GB disk

83.0 hours
219 GB memory

300 GB disk

SGA
format

BWT-merge
format

Input Merged

7 Mbp/s, <n bits of memory, 2n bits of working space.

BWT construction

• Use RopeBWT to build indexes for subcollections.
(In-memory implementation of Bauer et al:
Lightweight algorithms for constructing and inverting
the BWT of string collections. TCS, 2013)

• Slightly faster than merging, and we often have
enough memory to run 2 or 3 processes in parallel.

• We can build BWT for terabytes of short reads at
~5 MB/s in <n bits of memory and 2n bits of working
space.

Conclusions

• FM-index works with lexicographic ranges of suffixes
but encodes the reverse prefix trie of the text.

• Many algorithms can be understood as traversals of
the trie.

• We can compare sequence collections and merge
FM-indexes by traversing the reverse prefix tries.

• These algorithms are fast and space-efficient and
require very little additional code or data structures.

