FM-Index and the Reverse Prefix Trie
 Jouni Sirén
 Wellcome Trust Sanger Institute

Contents

1. Reference-free analysis
2. FM-index and the reverse prefix trie
3. Algorithms using the trie
4. Kmer counting
5. All-against-all comparison of sequence collections
6. BWT merging

Reference-Free Analysis

Typical pipeline

Reference bias

- Read alignment, variant calling, and the subsequent analysis all depend on the reference genome.
- Most reference genomes are based on the genomes of a small number of individuals or populations.
- The analysis may be biased towards those individuals and populations.

Avoiding reference bias

1. De novo assembly of individual genomes (not really possible with Illumina reads)
2. Reference-free analysis based on the reads (today)
3. Using a graph reference (tomorrow)
4. Analysis based on assembly graphs (a combination of the above)

Reference-free analysis

- A single high-coverage human sample is around 100 Gbp in 1 billion sequences.
- Large projects sequence thousands of samples.
- Data structure construction is a major bottleneck, often taking many CPU years and weeks of real time.
- We must commit to our data structure choices before we know precisely what we are going to do.
- Versatility and the ease of construction must be key properties of our data structures.

Population BWT

Dirk D. Dolle et al: Using reference-free compressed data structures to analyse sequencing reads from thousands of human genomes. bioRxiv, 2016.
$\rightarrow 1000$ GP phase 3: 922G reads, 87.1 Tbp.
\rightarrow Error correction \& trimming: 819G reads, 75.5 Tbp.
$\rightarrow 16$ FM-indexes: 53.0G distinct sequences, 4.88 Tbp, 561.5 GB.
\rightarrow Metadata: 4.75 TB.
This talk is largely based on ideas how to develop the population BWT further and to use it more effectively.

FM-Index and the Reverse Prefix Trie

Definitions

- Better to use the same definitions both in papers and in implementations.
- Array indices start from 0: S[0...n-1].
- S.rank(i, c) is the number of occurrences of character c in the prefix $\mathrm{S}[0 \ldots \mathrm{i}-1]$.
- S.select(i, c) is the position of the ith occurrence of character c (the last position j where S.rank(j, c) < i).
- Time complexities indicate the number of rank / select operations.

Burrows-Wheeler transform

- Add a unique terminator (\$) to the end of the text, sort the suffixes in lexicographic order, and output the preceding character for each suffix.
- Use distinct terminators for multiple texts.
- The permutation is easily reversible and makes the text easier to compress (Burrows \& Wheeler, 1994).
- The combinatorial structure is similar to the suffix array, which makes the BWT useful as a space-efficient text index (Ferragina \& Manzini, 2000, 2005).

LF-mapping

LF(i) = C[BWT[i]] + BWT.rank(i, BWT[i])

Hypothetical suffixes

Interpretation: LF(i, c) = C[c] + BWT.rank(i, c) suffixes are strictly before the hypothetical suffix.

Backward searching

$$
L F([s p \ldots e p], c)=[L F(s p, c) \ldots L F(e p+1, c)-1]
$$

Backward searching

$$
L F([s p \ldots e p], c)=[L F(s p, c) \ldots L F(e p+1, c)-1]
$$

Backward searching

$$
L F([s p \ldots e p], c)=[L F(s p, c) \ldots L F(e p+1, c)-1]
$$

Backward searching

$$
L F([s p \ldots e p], c)=[L F(s p, c) \ldots L F(e p+1, c)-1]
$$

TAGCATAGAC\$

Algorithms Using the Trie

Reverse prefix trie algorithms

- Many algorithms using the FM-index can be understood as traversals of the reverse prefix trie.
- It is often easier to forget the FM-index and think about the trie instead.
- As an introduction, we will take a look at approximate searching (as in the old BWA) and bidirectional BWT.

Approximate searching

- The edit distance between strings A and B is the number of edit operations required to transform A into B.
- In approximate searching, we want to find the substring of the text with the smallest edit distance to the pattern.

Mismatch
 TAGCATAGAC\$ TAGCATCGAC\$

Insertion

Deletion

TAGCATAGAC\$ TAGCA-AGAC\$
TAGCATA-GAC TAGCATAGGAC\$

- In practice, we want to minimize (or maximize) the score function between the substring and the pattern.

Approximate searching

- We traverse a tree of search states: lexicographic range, matched suffix, score, edit operations.
- Use an oracle to give a lower bound for the score of a full match expanded from the current state.
- Place the states into a priority queue by the lower bounds and use A* search (most promising first) to find the best match.
- This is essentially the backtracking algorithm used in bwa aln (Li \& Durbin, 2009).

We ignore the subtree starting with $\$$ for now and assume that each prefix has a $\$$ as an implicit child.

The number of prefixes is the same as the length of the lexicographic range.

We can keep track of lexicographic ranges for both the pattern in the text and its reverse in the reverse text.

Bidirectional searching

- We have one trie / FM-index for the text and another for the reverse.
- The lexicographic range in one trie is the reverse range in another.
- Backward searching in one FM-index extends the match forward in another.
- This combination of indexes is frequently called the bidirectional BWT (Lam et al, 2009).

If we sort the children by the complements, we get the suffix trie of the reverse complement of the text.

FMD-index

- The FMD-index (Li 2012) has both the text and its reverse complement in the same FM-index.
- This saves time, as we often search for both pattern and its reverse complement.
- Bidirectional search: the reverse range for the pattern is the lexicographic range for the reverse complement of the pattern.
- Used in e.g. BWA-MEM (Li 2013) to find maximal exact matches.

Kmer Counting

Why kmer counting?

- Kmers are easy to understand.
- Determining the kmers and their frequencies in a sequence collection is a common task in bioinformatics.
- Kmers are used for e.g. error correction, indexing, de Bruijn graph construction, genome size / read coverage estimation...

Kmer counting with FM-index

- With an FM-index, the hard part is already done.
- The counting algorithm is reasonably fast and easy to parallelize.
- Uses existing data structures and requires very little additional code.
- Particularly fast with repetitive sequence collections.

The nodes at depth k are the distinct kmers in the text. We can list them and determine their frequencies by traversing the trie.

$[0 \ldots 0]$
\mathbf{A} $[3 \ldots 3]$
\boldsymbol{T}
$[10 \ldots 10]$

$[0 \ldots . .1]$
$[10 \ldots 10]$

Basic algorithm

function traverse(k): S.push($\varepsilon,[0 \ldots|B W T|-1])$ while $S \neq \varnothing$:
$(X,[s p . . . e p]) \leftarrow$ S.pop() if [sp...ep] $=\varnothing$:
continue
if $|X|=k$:
report(X, [sp...ep])

Multithreading:

- Use traverse(k') for k^{\prime} < k to generate seed sequences.
- Traverse the resulting subtrees in separate threads.
if $|X|<k$:
for $c \in \Sigma$:
S.push(cX, LF([sp...ep], c))

Time complexity

Dense part: Most kmers exist, O(1) / kmer. Interesting part: Much branching, most kmers missing.

Sparse part: Unary paths, O(k) / kmer. Better to use other algorithms.

All-Against-All Comparison of Sequence Collections

All-against-all comparison

- We have two FM-indexes containing e.g. assembled genomes, unitigs, or reads.
- Traverse both trees at the same time.
- List the kmers that are specific to / frequent in one of the collections and missing from / rare in the other?
- Cox, Jakobi, Rosone, Schulz-Trieglaff: Comparing DNA sequence collections by direct comparison of compressed text indexes. WABI 2012.

Basic algorithm

function compare(A, B):
S.push(ع, [0...|A|-1], [0...|B|-1])
while $S \neq \varnothing$:
$\left(X,\left[p_{A} \ldots e_{A}\right],\left[\operatorname{sp}_{\text {B }} \ldots e_{B}\right]\right) \leftarrow S . p o p()$
if $\left[\mathrm{spA}_{\mathrm{A}} \ldots \mathrm{ep}_{\mathrm{A}}\right]=\varnothing$ and $\left[\mathrm{spв}_{\mathrm{B}} \ldots \mathrm{ep}_{\mathrm{B}}\right]=\varnothing$:
continue
if report_condition(X, [spa...epA], [spв...ep ${ }_{B}$]):
report(X, [spa...epa], [spв...epв])
if expand_condition(X, [spA...epA], [spв...epв]): for $c \in \Sigma$:
S.push(cX,
A.LF([spa...ep $A], c)$,
B.LF([spв...ерв], c))

Population BWT

- We have a massive collection of reads in multiple FM-indexes distributed over several servers.
- If we want to query the population BWT with another sequence collection, we extract kmers from the query sequences and query the servers with them.
- The intermediate results can take terabytes.
- Ideally we would want to filter the results on the servers.

Another approach

- Build an FM-index for the query sequences and submit it to the servers.
- Write and submit functions report_condition(), report(), and expand_condition().
- Because the collection is in multiple FM-indexes, we also need function reduce() (as in MapReduce) to merge the results for the same substring.
- What would be possible with this approach?

BWT Merging

Large-scale BWT construction

- Data structure construction is a major bottleneck.
- We must sort n suffixes quickly using less than n bits of memory.
- There is no such thing as large amounts of fast disk space in high-performance computing.
- Distributing the work over multiple nodes is possible, but everyone else wants to use the nodes as well.
- The construction algorithms should be incremental to avoid redundant work over time.

Hypothetical suffixes

\$	C \$
AC\$	G AC\$
AGAC\$	T AGAC\$
AGCATAGAC\$	T AGCATAGAC\$
ATAGAC\$	C ATAGAC\$
C\$	A C\$
CATAGAC\$	G CATAGAC\$
GAC\$	A GAC\$
GCATAGAC\$	A GCATAGAC\$
TAGAC\$	A TAGAC\$
TAGCATAGAC\$	\$ TAGCATAGAC

Interpretation: LF(i, c) = C[c] + BWT.rank(i, c) suffixes are strictly before the hypothetical suffix.

TAGCATAGAC\$			CTAGCATAGAC	
\$	C	Insert \mathbf{C} to the beginning	\$	C
AC\$	G		AC\$	G
AGAC\$	T		AGAC\$	T
AGCATAGAC\$	T		AGCATAGAC\$	T
ATAGAC\$	C		ATAGAC\$	C
C\$	A		C\$	A
CATAGAC\$	G		CATAGAC\$	G
		LF(i, C) suffixes.	CTAGCATAGAC\$	\$
GCATAGAC\$	A		GCATAGAC\$	A
TAGAC\$	A		TAGAC\$	A
TAGCATAGAC\$	\$	at position i with the inserted \mathbf{c}	TAGCATAGAC\$	C

\$	C		RA	
AC\$	G	Merge the BWT of		\$
AGAC\$	T	TAGCATAGAC\$ with the	1	\$
AGCATAGAC\$	T	BWT of ctaccatcgac		AC\$
ATAGAC\$	C		2	AC\$
C\$	A	assuming that $\$<\mathbf{\$}$	2	AGAC\$
CATAGAC\$	G		2	AGCATAGAC\$
CTAGCATAGAC\$	\$	Rank		AGCATCGAC\$
GAC\$	A		3	ATAGAC\$
GCATAGAC\$	A	many black suffixes ar		ATCGAC\$
TAGAC\$	A	before each red suffix in		C\$
TAGCATAGAC\$	C	lexicographic order.	5	C\$
			5	CATAGAC\$
\$	C			CATCGAC\$
AC\$	G	We start with RA[0] =		CGAC\$
AGCATCGAC	T	Once we know RA[i], we	7	CTAGCATAGAC\$
ATCGAC\$	C	can set RA[LF $\operatorname{red}(i)]$ to		CTAGCATCGAC\$
C\$	A	can set RA $[$ Lred $(1)]$ to		GAC\$
CATCGAC\$	G	LFblack(RA[I], BWTred[I])	9	GAC\$
CGAC\$	T		9	GCATAGAC\$
CTAGCATCGAC\$	\$			GCATCGAC\$
GAC\$	C	Because the rank array is	10	TAGAC\$
GCATCGAC\$	A	sorted, we can output it in	10	TAGCATAGAC\$
TAGCATCGAC\$	C	any order.		TAGCATCGAC\$
TCGAC\$	A			TCGAC\$

BWT merging

Jouni Sirén: Burrows-Wheeler transform for terabases. DCC 2016. https://github.com/jltsiren/bwt-merge (Also: Hon et al, 2007; Sirén, 2009)

Search: Generate the ranks in any order by e.g. traversing the subtrees corresponding to the suffixes.

Sort: Sort the ranks to build the rank array. This can be done in parallel with the other phases.

Merge: Interleave the source BWTs according to the rank array. This can be done almost in-place with twolevel arrays.

Search algorithm

function search($\left.A, B, n_{A}, n_{B}\right)$: S.push(nA, [0...nB -1$]$)
while $S \neq \varnothing$:

$$
\begin{aligned}
& (r, \text { [sp...ep]) } \leftarrow \text { S.pop() } \\
& \text { if }[\mathrm{sp} . . . \mathrm{ep}]=\varnothing:
\end{aligned}
$$

continue
report(r, ep + 1-sp)
for $c \in \sum$:
S.push(A.LF(r, c), B.LF([sp...ep], c))

Insert the n_{B} sequences from FM-index B into index A containing n_{A} sequences.

Sorting $1 / 3$

function report(rank, count):
run_buffer.insert(rank, count)
if run_buffer.full():
sort(run_buffer)
compress(run_buffer)
thread_buffer \leftarrow merge(run_buffer, thread_buffer)
if thread_buffer.full():
merge(thread_buffer, merge_buffers)

The buffers are thread-specific.

Sorting 2/3

Each level below the root has one merge buffer.

Sorting 3/3 + merging

Multithreaded merging would help with a faster disk.

Benchmark: Population BWT

- We use 32 threads, 128 MB run buffers, 256 MB thread buffers, and 6 levels of merge buffers.
- Input: 16 FM-indexes partitioned by last two bases; 53.0G distinct sequences, 4.88 Tbp, 561.5 GB.
- Output: 2 FM-indexes partitioned by the last base.
- Switch from 3+5-bit run-length encoding to another byte-level code that can handle long runs.

Merging: *A, *C / *G, *T

Input

Merged
SGA
format

BWT-merge format

$7 \mathrm{Mbp} / \mathrm{s}$, <n bits of memory, 2 n bits of working space.

BWT construction

- Use RopeBWT to build indexes for subcollections. (In-memory implementation of Bauer et al: Lightweight algorithms for constructing and inverting the BWT of string collections. TCS, 2013)
- Slightly faster than merging, and we often have enough memory to run 2 or 3 processes in parallel.
- We can build BWT for terabytes of short reads at $\sim 5 \mathrm{MB} / \mathrm{s}$ in $<n$ bits of memory and $2 n$ bits of working space.

Conclusions

- FM-index works with lexicographic ranges of suffixes but encodes the reverse prefix trie of the text.
- Many algorithms can be understood as traversals of the trie.
- We can compare sequence collections and merge FM-indexes by traversing the reverse prefix tries.
- These algorithms are fast and space-efficient and require very little additional code or data structures.

