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Reference-Free Analysis



Typical pipeline

Sequencing

Read alignment

Variant calling

Analysis

Samples

Reads

BAM / CRAM

VCF

Reference 
genome



Reference bias

• Read alignment, variant calling, and the subsequent 
analysis all depend on the reference genome. 

• Most reference genomes are based on the genomes 
of a small number of individuals or populations. 

• The analysis may be biased towards those 
individuals and populations.



Avoiding reference bias

1. De novo assembly of individual genomes (not really 
possible with Illumina reads) 

2. Reference-free analysis based on the reads (today) 

3. Using a graph reference (tomorrow) 

4. Analysis based on assembly graphs (a combination 
of the above)



Reference-free analysis
• A single high-coverage human sample is around 

100 Gbp in 1 billion sequences. 

• Large projects sequence thousands of samples. 

• Data structure construction is a major bottleneck, 
often taking many CPU years and weeks of real time. 

• We must commit to our data structure choices before 
we know precisely what we are going to do. 

• Versatility and the ease of construction must be key 
properties of our data structures.



Population BWT
Dirk D. Dolle et al: Using reference-free compressed 
data structures to analyse sequencing reads from 
thousands of human genomes. bioRxiv, 2016. 

→ 1000 GP phase 3: 922G reads, 87.1 Tbp. 
→ Error correction & trimming: 819G reads, 75.5 Tbp. 
→ 16 FM-indexes: 53.0G distinct sequences, 4.88 Tbp, 

561.5 GB. 
→ Metadata: 4.75 TB. 

This talk is largely based on ideas how to develop the 
population BWT further and to use it more effectively.



FM-Index and the 
Reverse Prefix Trie



Definitions
• Better to use the same definitions both in papers and 

in implementations. 

• Array indices start from 0: S[0…n–1]. 

• S.rank(i, c) is the number of occurrences of 
character c in the prefix S[0…i–1]. 

• S.select(i, c) is the position of the ith occurrence of 
character c (the last position j where S.rank(j, c) < i). 

• Time complexities indicate the number of rank / 
select operations.



Burrows-Wheeler transform
 TAGCATAGAC$

C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

• Add a unique terminator ($) to the end of 
the text, sort the suffixes in lexicographic 
order, and output the preceding character 
for each suffix. 

• Use distinct terminators for multiple texts. 

• The permutation is easily reversible and 
makes the text easier to compress 
(Burrows & Wheeler, 1994). 

• The combinatorial structure is similar to 
the suffix array, which makes the BWT 
useful as a space-efficient text index 
(Ferragina & Manzini, 2000, 2005).



LF-mapping
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

LF(i) = C[BWT[i]] + BWT.rank(i, BWT[i])



Hypothetical suffixes
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

LF(3, C)

Interpretation: LF(i, c) = C[c] + BWT.rank(i, c) suffixes 
are strictly before the hypothetical suffix.



Backward searching
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

LF([sp…ep], c) = [LF(sp, c)…LF(ep+1, c) –1]

LF([1…4], A)



Backward searching
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

LF([1…4], C)

LF([sp…ep], c) = [LF(sp, c)…LF(ep+1, c) –1]



Backward searching
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

LF([1…4], G)

LF([sp…ep], c) = [LF(sp, c)…LF(ep+1, c) –1]



Backward searching
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

LF([1…4], T)

LF([sp…ep], c) = [LF(sp, c)…LF(ep+1, c) –1]
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C
[5…5]
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[9…9]

A
[4…4]

C
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C
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G
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A
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T
[10…10]
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• Each node represents a distinct 
substring of the text: the path label 
from the node to the root. 

• The emphasized nodes are the 
prefixes. 

• Each node contains the lexicographic 
range of suffixes starting with the 
substring. 

• Nodes with the same lexicographic 
range are roots of identical subtrees.

TAGCATAGAC$



Algorithms Using the Trie



Reverse prefix trie algorithms

• Many algorithms using the FM-index can be 
understood as traversals of the reverse prefix trie. 

• It is often easier to forget the FM-index and think 
about the trie instead. 

• As an introduction, we will take a look at approximate 
searching (as in the old BWA) and bidirectional BWT.



Approximate searching

TAGCATAGAC$
TAGCATCGAC$Mismatch

TAGCATA-GAC$
TAGCATAGGAC$Insertion

TAGCATAGAC$
TAGCA-AGAC$Deletion

• The edit distance between 
strings A and B is the number 
of edit operations required to 
transform A into B. 

• In approximate searching, we 
want to find the substring of 
the text with the smallest edit 
distance to the pattern. 

• In practice, we want to 
minimize (or maximize) the 
score function between the 
substring and the pattern.
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Match 
   A
TACA

Score: 0
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Mismatch 
  GA
TACA

Score: 1

Mismatch 
  TA
TACA

Score: 1

Match 
  CA
TACA

Score: 0

Match 
   A
TACA

Score: 0
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Insertion 
  -A
TACA

Score: 1

Match 
   A
TACA

Score: 0
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Deletion 
   GA
TAC-A

Score: 1

Deletion 
   TA
TAC-A

Score: 1

Deletion 
   CA
TAC-A

Score: 1

Match 
   A
TACA

Score: 0



Approximate searching
• We traverse a tree of search states: lexicographic 

range, matched suffix, score, edit operations. 

• Use an oracle to give a lower bound for the score of 
a full match expanded from the current state. 

• Place the states into a priority queue by the lower 
bounds and use A* search (most promising first) to 
find the best match. 

• This is essentially the backtracking algorithm used in 
bwa aln (Li & Durbin, 2009).
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Prefixes 
[1..4] in 

preorder.

We ignore the subtree starting with $ for now and 
assume that each prefix has a $ as an implicit child.
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Prefixes 
[2..2] in 

preorder.

Prefixes 
[3..4] in 

preorder.

Prefixes 
[1..1] in 

preorder.

Prefixes 
[1..4] in 

preorder.

The number of prefixes is the same as 
the length of the lexicographic range.
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• Reverse prefixes are suffixes of the 
reverse text. 

• If the children are in alphabetic order, 
the reverse prefix trie is the suffix trie 
of the reverse text. 

• Preorder range of prefixes: 
lexicographic range of suffixes of the 
reverse text. 

• We partition the preorder range of the 
parent into preorder ranges of the 
children by the lengths of the 
lexicographic ranges of the children.
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Reverse 
range 
[2..2].

Reverse 
range 
[3..4].

Reverse 
range 
[1..1].

Reverse 
range 
[1..4].

We can keep track of lexicographic ranges for both the 
pattern in the text and its reverse in the reverse text.



Bidirectional searching

• We have one trie / FM-index for the text and another 
for the reverse. 

• The lexicographic range in one trie is the reverse 
range in another. 

• Backward searching in one FM-index extends the 
match forward in another. 

• This combination of indexes is frequently called the 
bidirectional BWT (Lam et al, 2009).
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If we sort the children by the complements, we get the 
suffix trie of the reverse complement of the text.

A

A

T

G

C

T



FMD-index
• The FMD-index (Li 2012) has both the text and its 

reverse complement in the same FM-index. 

• This saves time, as we often search for both pattern 
and its reverse complement. 

• Bidirectional search: the reverse range for the 
pattern is the lexicographic range for the reverse 
complement of the pattern. 

• Used in e.g. BWA-MEM (Li 2013) to find maximal 
exact matches.



Kmer Counting



Why kmer counting?

• Kmers are easy to understand. 

• Determining the kmers and their frequencies in a 
sequence collection is a common task in 
bioinformatics. 

• Kmers are used for e.g. error correction, indexing, 
de Bruijn graph construction, genome size / read 
coverage estimation…



Kmer counting with FM-index

• With an FM-index, the hard part is already done. 

• The counting algorithm is reasonably fast and easy 
to parallelize. 

• Uses existing data structures and requires very little 
additional code. 

• Particularly fast with repetitive sequence collections.



[0…10]

$
[0…0]

A
[1…1]

G
[7…7]

A
[2…2]

C
[5…5]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

The nodes at depth k are the distinct kmers in the text. 
We can list them and determine their frequencies by 

traversing the trie.



Basic algorithm
function traverse(k): 

S.push(ε, [0…|BWT| –1]) 
while S ≠ ∅: 

(X, [sp…ep]) ← S.pop() 
if [sp…ep] = ∅: 

continue
if |X| = k: 

report(X, [sp…ep]) 
if |X| < k: 

for c ∈ ∑: 
S.push(cX, LF([sp…ep], c))

Multithreading: 

• Use traverse(k’) for k’ < k to 
generate seed sequences. 

• Traverse the resulting 
subtrees in separate threads.



Time complexity

log|∑| n

O(log n)

Dense part: Most 
kmers exist, O(1) / kmer.
Interesting part: Much 
branching, most kmers 
missing.

Sparse part: Unary 
paths, O(k) / kmer. 
Better to use other 
algorithms.



All-Against-All Comparison 
of Sequence Collections



All-against-all comparison

• We have two FM-indexes containing e.g. assembled 
genomes, unitigs, or reads. 

• Traverse both trees at the same time. 

• List the kmers that are specific to / frequent in one of 
the collections and missing from / rare in the other? 

• Cox, Jakobi, Rosone, Schulz-Trieglaff: Comparing 
DNA sequence collections by direct comparison of 
compressed text indexes. WABI 2012.



Basic algorithm
function compare(A, B): 

S.push(ε, [0…|A| –1], [0…|B| –1]) 
while S ≠ ∅: 

(X, [spA…epA], [spB…epB]) ← S.pop() 
if [spA…epA] = ∅ and [spB…epB] = ∅: 

continue
if report_condition(X, [spA…epA], [spB…epB]): 

report(X, [spA…epA], [spB…epB]) 
if expand_condition(X, [spA…epA], [spB…epB]): 

for c ∈ ∑: 
S.push(cX, 

A.LF([spA…epA], c), 
B.LF([spB…epB], c))



Population BWT

• We have a massive collection of reads in multiple 
FM-indexes distributed over several servers. 

• If we want to query the population BWT with another 
sequence collection, we extract kmers from the 
query sequences and query the servers with them. 

• The intermediate results can take terabytes. 

• Ideally we would want to filter the results on the 
servers.



Another approach

• Build an FM-index for the query sequences and 
submit it to the servers. 

• Write and submit functions report_condition(), 
report(), and expand_condition(). 

• Because the collection is in multiple FM-indexes, we 
also need function reduce() (as in MapReduce) to 
merge the results for the same substring. 

• What would be possible with this approach?



BWT Merging



Large-scale BWT construction
• Data structure construction is a major bottleneck. 

• We must sort n suffixes quickly using less than n bits 
of memory. 

• There is no such thing as large amounts of fast disk 
space in high-performance computing. 

• Distributing the work over multiple nodes is possible, 
but everyone else wants to use the nodes as well. 

• The construction algorithms should be incremental to 
avoid redundant work over time.



Hypothetical suffixes
C $
G AC$
T AGAC$
T AGCATAGAC$
C ATAGAC$
A C$
G CATAGAC$
A GAC$
A GCATAGAC$
A TAGAC$
$ TAGCATAGAC$

          $
        AC$
      AGAC$
 AGCATAGAC$
    ATAGAC$
         C$
   CATAGAC$
       GAC$
  GCATAGAC$
     TAGAC$
TAGCATAGAC$

LF(10, C)

Interpretation: LF(i, c) = C[c] + BWT.rank(i, c) suffixes 
are strictly before the hypothetical suffix.



 TAGCATAGAC$

$           C
AC$         G
AGAC$       T
AGCATAGAC$  T
ATAGAC$     C
C$          A
CATAGAC$    G

GAC$        A
GCATAGAC$   A
TAGAC$      A
TAGCATAGAC$ $

CTAGCATAGAC$

$            C
AC$          G
AGAC$        T
AGCATAGAC$   T
ATAGAC$      C
C$           A
CATAGAC$     G
CTAGCATAGAC$ $
GAC$         A
GCATAGAC$    A
TAGAC$       A
TAGCATAGAC$  C

Insert C to the 
beginning

1. Replace the $  
at position i with 
the inserted C.

2. Insert $ after 
LF(i, C) suffixes.



$            C
AC$          G
AGAC$        T
AGCATAGAC$   T
ATAGAC$      C
C$           A
CATAGAC$     G
CTAGCATAGAC$ $
GAC$         A
GCATAGAC$    A
TAGAC$       A
TAGCATAGAC$  C

$            C
AC$          G
AGCATCGAC$   T
ATCGAC$      C
C$           A
CATCGAC$     G
CGAC$        T
CTAGCATCGAC$ $
GAC$         C
GCATCGAC$    A
TAGCATCGAC$  C 
TCGAC$       A

$            C
$            C
AC$          G
AC$          G
AGAC$        T
AGCATAGAC$   T
AGCATCGAC$   T
ATAGAC$      C
ATCGAC$      C
C$           A
C$           A
CATAGAC$     G
CATCGAC$     G
CGAC$        T
CTAGCATAGAC$ $
CTAGCATCGAC$ $
GAC$         C
GAC$         A
GCATAGAC$    A
GCATCGAC$    A
TAGAC$       A
TAGCATAGAC$  C 
TAGCATCGAC$  C 
TCGAC$       A

RA 

1 

2 
2 
2 

3 

5 
5 

7 

9 
9 

10 
10 

Merge the BWT of 
TAGCATAGAC$ with the 

BWT of CTAGCATCGAC$, 
assuming that  $ < $.

Rank array RA tells how 
many black suffixes are 
before each red suffix in 

lexicographic order.

We start with RA[0] = 1. 
Once we know RA[i], we 

can set RA[LFred(i)] to 
LFblack(RA[i], BWTred[i])

Because the rank array is 
sorted, we can output it in 

any order.



BWT merging
Jouni Sirén: Burrows-Wheeler transform for terabases. 
DCC 2016. https://github.com/jltsiren/bwt-merge (Also: 
Hon et al, 2007; Sirén, 2009) 

Search: Generate the ranks in any order by e.g. 
traversing the subtrees corresponding to the suffixes. 

Sort: Sort the ranks to build the rank array. This can be 
done in parallel with the other phases. 

Merge: Interleave the source BWTs according to the 
rank array. This can be done almost in-place with two-
level arrays.



[0…10]

A
[1…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

C
[5…6]

A
[1…1]

G
[7…7]

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…8]

A
[2…3]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

T
[9…10]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

Traverse only the subtree 
containing the suffixes.

Divide the sequences among 
multiple search threads.

A
[2…2]

T
[9…9]

A
[4…4]

C
[6…6]

G
[8…8]

A
[3…3]

T
[10…10]

G
[7…7]

A
[1…1]

C
[5…5]

$
[0…0]



Search algorithm
function search(A, B, nA, nB): 

S.push(nA, [0…nB –1]) 
while S ≠ ∅: 

(r, [sp…ep]) ← S.pop() 
if [sp…ep] = ∅: 

continue
report(r, ep + 1 – sp) 
for c ∈ ∑: 

S.push(A.LF(r, c), B.LF([sp…ep], c))

Insert the nB sequences from FM-index B into index A 
containing nA sequences.



Sorting 1/3

function report(rank, count): 
run_buffer.insert(rank, count) 
if run_buffer.full(): 

sort(run_buffer) 
compress(run_buffer) 
thread_buffer ← merge(run_buffer, thread_buffer) 
if thread_buffer.full(): 

merge(thread_buffer, merge_buffers)

The buffers are thread-specific.



Sorting 2/3

Each level below the root has one merge buffer.

thread_buffer
merge()

thread_buffer

thread_buffer

thread_buffer

thread_buffer

thread_buffer

thread_buffer

thread_buffer

merge()

merge()

merge()

merge()

merge()

file



Sorting 3/3 + merging

Multithreaded merging would help with a faster disk.

file

file

file

file

file

file

file

file

priority 
queue interleave() BWTA⋃B

BWTA

BWTB

Thread 1: 
merging

Thread 2: 
interleaving



Benchmark: Population BWT

• We use 32 threads, 128 MB run buffers, 256 MB 
thread buffers, and 6 levels of merge buffers. 

• Input: 16 FM-indexes partitioned by last two bases; 
53.0G distinct sequences, 4.88 Tbp, 561.5 GB. 

• Output: 2 FM-indexes partitioned by the last base. 

• Switch from 3+5-bit run-length encoding to another 
byte-level code that can handle long runs.



Merging: *A, *C / *G, *T

281 GB 
281 GB

239 GB 
239 GB

225 GB 
226 GB

181 GB 
180 GB

81.3 hours 
221 GB memory 

297 GB disk

83.0 hours 
219 GB memory 

300 GB disk

SGA
format

BWT-merge
format

Input Merged

7 Mbp/s, <n bits of memory, 2n bits of working space.



BWT construction

• Use RopeBWT to build indexes for subcollections. 
(In-memory implementation of Bauer et al: 
Lightweight algorithms for constructing and inverting 
the BWT of string collections. TCS, 2013) 

• Slightly faster than merging, and we often have 
enough memory to run 2 or 3 processes in parallel. 

• We can build BWT for terabytes of short reads at 
~5 MB/s in <n bits of memory and 2n bits of working 
space.



Conclusions



• FM-index works with lexicographic ranges of suffixes 
but encodes the reverse prefix trie of the text. 

• Many algorithms can be understood as traversals of 
the trie. 

• We can compare sequence collections and merge 
FM-indexes by traversing the reverse prefix tries. 

• These algorithms are fast and space-efficient and 
require very little additional code or data structures.


