
Web Applications 1.0
Working Draft — 23 March 2007

You can take part in this work. Join the working group's discussion
list.
Web designers! We have a FAQ, a forum, and a help mailing list for you!

This version:
http://www.whatwg.org/specs/web-apps/current-work/

Latest version:
http://www.whatwg.org/specs/web-apps/current-work/

Previous versions:
http://www.whatwg.org/specs/web-apps/2006-01-01/
http://www.whatwg.org/specs/web-apps/2005-09-01/
Version history from 2006-03-01 available by interactive Web interface at:
http://html5.org/tools/web-apps-tracker
Version history from 2006-03-01 available by Subversion interface at:
http://svn.whatwg.org/

Editor:
Ian Hickson, Google, ian@hixie.ch

© Copyright 2004-2007 Apple Computer, Inc., Mozilla Foundation, and Opera Software ASA.
You are granted a license to use, reproduce and create derivative works of this document.

Abstract

This specification introduces features to HTML and the DOM that ease the authoring of
Web-based applications. Additions include the context menus, a direct-mode graphics
canvas, inline popup windows, and server-sent events.

Status of this document

This is a work in progress! This document is changing on a daily if not hourly basis in
response to comments and as a general part of its development process. Comments are
very welcome, please send them to whatwg@whatwg.org. Thank you.

Implementors should be aware that this specification is not stable. Implementors who
are not taking part in the discussions are likely to find the specification changing
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out from under them in incompatible ways. Vendors interested in implementing this
specification before it eventually reaches the call for implementations should join the
WHATWG mailing list and take part in the discussions.

This draft may contain namespaces that use the uuid: URI scheme. These are
temporary and will be changed before those parts of the specification are ready to be
implemented in shipping products.

This specification is intended to replace (be the new version of) what was previously the
HTML4, XHTML 1.x, and DOM2 HTML specifications.

Stability

Different parts of this specification are at different levels of maturity.

Known issues are usually marked like this. There are some spec-wide issues that
have not yet been addressed: case-sensitivity is a very poorly handled topic right now
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1. Introduction

This section is non-normative.

The World Wide Web's markup language has always been HTML. HTML was primarily
designed as a language for semantically describing scientific documents, although its
general design and adaptations over the years has enabled it to be used to describe a
number of other types of documents.

The main area that has not been adequately addressed by HTML is a vague subject
referred to as Web Applications. This specification attempts to rectify this, while at the
same time updating the HTML specifications to address issues raised in the past few
years.

1.1. Scope

This section is non-normative.

This specification is limited to providing a semantic-level markup language and
associated semantic-level scripting APIs for authoring accessible pages on the Web
ranging from static documents to dynamic applications.

The scope of this specification does not include addressing presentation concerns
(although default rendering rules for Web browsers are included at the end of this
specification).

The scope of this specification does not include documenting every HTML or DOM
feature supported by Web browsers. Browsers support many features that are
considered to be very bad for accessibility or that are otherwise inappropriate. For
example, the blink element is clearly presentational and authors wishing to cause text
to blink should instead use CSS.

The scope of this specification is not to describe an entire operating system. In particular,
hardware configuration software, image manipulation tools, and applications that users
would be expected to use with high-end workstations on a daily basis are out of scope.
In terms of applications, this specification is targeted specifically at applications that
would be expected to be used by users on an occasional basis, or regularly but from
disparate locations, with low CPU requirements. For instance online purchasing systems,
searching systems, games (especially multiplayer online games), public telephone books
or address books, communications software (e-mail clients, instant messaging clients,
discussion software), document editing software, etc.

For sophisticated cross-platform applications, there already exist several proprietary
solutions (such as Mozilla's XUL and Macromedia's Flash). These solutions are evolving
faster than any standards process could follow, and the requirements are evolving even
faster. These systems are also significantly more complicated to specify, and are orders
of magnitude more difficult to achieve interoperability with, than the solutions described
in this document. Platform-specific solutions for such sophisticated applications (for
example the MacOS X Core APIs) are even further ahead.
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1.2. Structure of this specification

This section is non-normative.

This specification is divided into the following important sections:

The DOM (page 25)
The DOM, or Document Object Model, provides a base for the rest of the
specification.

The Semantics (page 47)
Documents are built from elements. These elements form a tree using the DOM.
Each element also has a predefined meaning, which is explained in this section.
User agent requirements for how to handle each element are also given, along with
rules for authors on how to use the element.

Browsing Contexts (page 269)
HTML documents do not exist in a vacuum — this section defines many of the
features that affect environments that deal with multiple pages, links between pages,
and running scripts.

APIs
The Editing APIs (page 331): HTML documents can provide a number of
mechanisms for users to modify content, which are described in this section.
The Communication APIs (page 359): Applications written in HTML often require
mechanisms to communicate with remote servers, as well as communicating with
other applications from different domains running on the same client.
Miscellaneous APIs (page 381): APIs that could not be placed into other parts of the
specification live here.

The Language Syntax (page 383)
All of these features would be for naught if they couldn't be represented in a
serialised form and sent to other people, and so this section defines the syntax of
HTML, along with rules for how to parse HTML.

There are also a couple of appendices, defining shims for WYSIWYG editors (page
459), rendering rules (page 461) for Web browsers, and listing areas that are out of
scope (page 463) for this specification.

1.2.1. How to read this specification

This specification should be read like all other specifications. First, it should be read
cover-to-cover, multiple times. Then, it should be read backwards at least once. Then it
should be read by picking random sections from the contents list and following all the
cross-references.
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1.3. Conformance requirements

All diagrams, examples, and notes in this specification are non-normative, as are all
sections explicitly marked non-normative. Everything else in this specification is
normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in the
normative parts of this document are to be interpreted as described in RFC2119. For
readability, these words do not appear in all uppercase letters in this specification.
[RFC2119]

This specification describes the conformance criteria for user agents (relevant to
implementors) and documents (relevant to authors and authoring tool implementors).

Note: There is no implied relationship between document conformance
requirements and implementation conformance requirements. User
agents are not free to handle non-conformant documents as they please;
the processing model described in this specification applies to
implementations regardless of the conformity of the input documents.

User agents fall into several (overlapping) categories with different conformance
requirements.

Web browsers and other interactive user agents
Web browsers that support XHTML (page 18) must process elements and attributes
from the HTML namespace (page 455) found in XML documents (page 25) as
described in this specification, so that users can interact with them, unless the
semantics of those elements have been overridden by other specifications.

A conforming XHTML processor would, upon finding an XHTML script (page
220) element in an XML document, execute the script contained in that
element. However, if the element is found within an XSLT transformation sheet
(assuming the UA also supports XSLT), then the processor would instead treat
the script (page 220) element as an opaque element that forms part of the
transform.

Web browsers that support HTML (page 18) must process documents labelled as
text/html as described in this specification, so that users can interact with them.

Non-interactive presentation user agents
User agents that process HTML and XHTML documents purely to render
non-interactive versions of them must comply to the same conformance criteria as
Web browsers, except that they are exempt from requirements regarding user
interaction.

Note: Typical examples of non-interactive presentation user agents
are printers (static UAs) and overhead displays (dynamic UAs). It is
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expected that most static non-interactive presentation user agents
will also opt to lack scripting support (page 16).

A non-interactive but dynamic presentation UA would still execute scripts,
allowing forms to be dynamically submitted, and so forth. However, since the
concept of "focus" is irrelevant when the user cannot interact with the
document, the UA would not need to support any of the focus-related DOM
APIs.

User agents with no scripting support
Implementations that do not support scripting (or which have their scripting features
disabled (page 278)) are exempt from supporting the events and DOM interfaces
mentioned in this specification. For the parts of this specification that are defined in
terms of an events model or in terms of the DOM, such user agents must still act as
if events and the DOM were supported.

Note: Scripting can form an integral part of an application. Web
browsers that do not support scripting, or that have scripting
disabled, might be unable to fully convey the author's intent.

Conformance checkers
Conformance checkers must verify that a document conforms to the applicable
conformance criteria described in this specification. Conformance checkers are
exempt from detecting errors that require interpretation of the author's intent (for
example, while a document is non-conforming if the content of a blockquote

(page 99) element is not a quote, conformance checkers do not have to check that
blockquote (page 99) elements only contain quoted material).

Conformance checkers must check that the input document conforms when
scripting is disabled (page 278), and should also check that the input document
conforms when scripting is enabled (page 278). (This is only a "SHOULD" and not a
"MUST" requirement because it has been proven to be impossible.
[HALTINGPROBLEM])

The term "validation" specifically refers to a subset of conformance
checking that only verifies that a document complies with the
requirements given by an SGML or XML DTD. Conformance checkers
that only perform validation are non-conforming, as there are many
conformance requirements described in this specification that cannot
be checked by SGML or XML DTDs.

To put it another way, there are three types of conformance criteria:

1. Criteria that can be expressed in a DTD.

2. Criteria that cannot be expressed by a DTD, but can still be
checked by a machine.
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3. Criteria that can only be checked by a human.

A conformance checker must check for the first two. A simple
DTD-based validator only checks for the first class of errors and is
therefore not a conforming conformance checker according to this
specification.

Data mining tools
Applications and tools that process HTML and XHTML documents for reasons other
than to either render the documents or check them for conformance should act in
accordance to the semantics of the documents that they process.

A tool that generates document outlines but increases the nesting level for each
paragraph and does not increase the nesting level for each section would not
be conforming.

Authoring tools and markup generators
Authoring tools and markup generators must generate conforming documents.
Conformance criteria that apply to authors also apply to authoring tools, where
appropriate.

Authoring tools are exempt from the strict requirements of using elements only for
their specified purpose, but only to the extent that authoring tools are not yet able to
determine author intent.

For example, it is not conforming to use an address (page 104) element for
arbitrary contact information; that element can only be used for marking up
contact information for the author of the document or section. However, since
an authoring tools is likely unable to determine the difference, an authoring tool
is exempt from that requirement.

Note: In terms of conformance checking, an editor is therefore
required to output documents that conform to the same extent that a
conformance checker will verify.

When an authoring tool is used to edit a non-conforming document, it may preserve
the conformance errors in sections of the document that were not edited during the
editing session (i.e. an editing tool is allowed to round-trip errorneous content).
However, an authoring tool must not claim that the output is conformant if errors
have been so preserved.

Authoring tools are expected to come in two broad varieties: tools that work from
structure or semantic data, and tools that work on a What-You-See-Is-What-You-Get
media-specific editing basis (WYSIWYG).

The former is the preferred mechanism for tools that author HTML, since the
structure in the source information can be used to make informed choices regarding
which HTML elements and attributes are most appropriate.
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However, WYSIWYG tools are legitimate, and this specification makes certain
concessions to WYSIWYG editors (page 459).

All authoring tools, whether WYSIWYG or not, should make a best effort attempt at
enabling users to create well-structured, semantically rich, media-independent
content.

Some conformance requirements are phrased as requirements on elements, attributes,
methods or objects. Such requirements fall into two categories; those describing content
model restrictions, and those describing implementation behaviour. The former category
of requirements are requirements on documents and authoring tools. The second
category are requirements on user agents.

Conformance requirements phrased as algorithms or specific steps may be implemented
in any manner, so long as the end result is equivalent. (In particular, the algorithms
defined in this specification are intended to be easy to follow, and not intended to be
performant.)

User agents may impose implementation-specific limits on otherwise unconstrained
inputs, e.g. to prevent denial of service attacks, to guard against running out of memory,
or to work around platform-specific limitations.

For compatibility with existing content and prior specifications, this specification
describes two authoring formats: one based on XML (referred to as XHTML5), and one
using a custom format (page 391) inspired by SGML (referred to as HTML5).
Implementations may support only one of these two formats, although supporting both is
encouraged.

XHTML (page 18) documents (XML documents (page 25) using elements from the
HTML namespace (page 455)) that use the new features described in this specification
and that are served over the wire (e.g. by HTTP) must be sent using an XML MIME type
such as application/xml or application/xhtml+xml and must not be served as
text/html. [RFC3023]

Such XML documents may contain a DOCTYPE if desired, but this is not required to
conform to this specification.

HTML documents (page 18), if they are served over the wire (e.g. by HTTP) must be
labelled with the text/html MIME type.

The language in this specification assumes that the user agent expands all entity
references, and therefore does not include entity reference nodes in the DOM. If user
agents do include entity reference nodes in the DOM, then user agents must handle
them as if they were fully expanded when implementing this specification. For example, if
a requirement talks about an element's child text nodes, then any text nodes that are
children of an entity reference that is a child of that element would be used as well.

A lot of arrays/lists/collections in this spec assume zero-based indexes but use the
term "indexth" liberally. We should define those to be zero-based and be clearer
about this.
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1.3.1. Dependencies

This specification relies on several other underlying specifications.

XML
Implementations that support XHTML5 must support some version of XML, as well
as its corresponding namespaces specification, because XHTML5 uses an XML
serialisation with namespaces. [XML] [XMLNAMES]

XML Base
User agents must follow the rules given by XML Base to resolve relative URIs in
HTML and XHTML fragments, because that is the mechanism used in this
specification for resolving relative URIs in DOM trees. [XMLBASE]

Note: It is possible for xml:base attributes to be present even in
HTML fragments, as such attributes can be added dynamically using
script.

DOM
Implementations must support some version of DOM Core and DOM Events,
because this specification is defined in terms of the DOM, and some of the features
are defined as extensions to the DOM Core interfaces. [DOM3CORE]
[DOM3EVENTS]

Implementations must support some version of the Window Object, because this
specification extends this interface to provide some of its features. [WINDOW]

ECMAScript
Implementations that use ECMAScript to implement the APIs defined in this
specification must implement them in a manner consistent with the ECMAScript
Bindings for DOM Specifications specification, as this specification uses that
specification's terminology. [EBFD]

This specification does not require support of any particular network transport protocols,
image formats, audio formats, video formats, style sheet language, scripting language, or
any of the DOM and WebAPI specifications beyond those described above. However,
the language described by this specification is biased towards CSS as the styling
language, ECMAScript as the scripting language, and HTTP as the network protocol,
and several features assume that those languages and protocols are in use.

1.3.2. Features defined in other specifications

Some elements are defined in terms of their DOM textContent attribute. This is an
attribute defined on the Node interface in DOM3 Core. [DOM3CORE]

Should textContent be defined differently for dir="" and <bdo>? Should we come up
with an alternative to textContent that handles those and other things, like alt=""?
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The term activation behavior is used as defined in the DOM3 Events specification.

[DOM3EVENTS] At the time of writing, DOM3 Events hadn't yet been updated to

define that phrase.

The terms browsing context and top-level browsing context are used as defined in
the Window Object specification. [WINDOW]

1.3.3. Relationship to HTML 4.01, XHTML 1.1, DOM2 HTML

This section is non-normative.

This specification represents a new version of HTML4 and XHTML1, along with a new
version of the associated DOM2 HTML API. Migration from HTML4 or XHTML1 to the
format and APIs described in this specification should in most cases be straightforward,
as care has been taken to ensure that backwards-compatibility is retained.

This specification will eventually supplant Web Forms 2.0 as well. [WF2]

1.3.4. Relationship to XHTML2

This section is non-normative.

XHTML2 [XHTML2] defines a new HTML vocabulary with better features for hyperlinks,
multimedia content, annotating document edits, rich metadata, declarative interactive
forms, and describing the semantics of human literary works such as poems and
scientific papers.

However, it lacks elements to express the semantics of many of the non-document types
of content often seen on the Web. For instance, forum sites, auction sites, search
engines, online shops, and the like, do not fit the document metaphor well, and are not
covered by XHTML2.

This specification aims to extend HTML so that it is also suitable in these contexts.

XHTML2 and this specification use different namespaces and therefore can both be
implemented in the same XML processor.

1.3.5. Relationship to XUL, WPF/XAML, and other proprietary UI languages

This section is non-normative.

This specification is independent of the various proprietary UI languages that various
vendors provide.
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1.4. Terminology

This specification refers to both HTML and XML attributes and DOM attributes, often in
the same context. When it is not clear which is being referred to, they are referred to as
content attributes for HTML and XML attributes, and DOM attributes for those from the
DOM. Similarly, the term "properties" is used for both ECMAScript object properties and
CSS properties. When these are ambiguous they are qualified as object properties and
CSS properties respectively.

To ease migration from HTML to XHTML, UAs conforming to this specification will place
elements in HTML in the http://www.w3.org/1999/xhtml namespace, at least for
the purposes of the DOM and CSS. The term "elements in the HTML namespace", or
"HTML elements" for short, when used in this specification, thus refers to both HTML
and XHTML elements.

Unless otherwise stated, all elements defined or mentioned in this specification are in the
http://www.w3.org/1999/xhtml namespace, and all attributes defined or
mentioned in this specification have no namespace (they are in the per-element
partition).

The term HTML documents (page 25) is sometimes used in contrast with XML
documents (page 25) to mean specifically documents that were parsed using an HTML
parser (page 392) (as opposed to using an XML parser or created purely through the
DOM).

Generally, when the specification states that a feature applies to HTML or XHTML, it also
includes the other. When a feature specifically only applies to one of the two languages,
it is called out by explicitly stating that it does not apply to the other format, as in "for
HTML, ... (this does not apply to XHTML)".

This specification uses the term document to refer to any use of HTML, ranging from
short static documents to long essays or reports with rich multimedia, as well as to
fully-fledged interactive applications.

For readability, the term URI is used to refer to both ASCII URIs and Unicode IRIs, as
those terms are defined by [RFC3986] and [RFC3987] respectively. On the rare
occasions where IRIs are not allowed but ASCII URIs are, this is called out explicitly.

The term root element, when not qualified to explicitly refer to the document's root
element, means the furthest ancestor element node of whatever node is being
discussed, or the node itself is there is none. When the node is a part of the document,
then that is indeed the document's root element. However, if the node is not currently
part of the document tree, the root element will be an orphaned node.

An element is said to have been inserted into a document when its root element (page
21) changes and is now the document's root element (page 21).

The term tree order means a pre-order, depth-first traversal of DOM nodes involved
(through the parentNode/childNodes relationship).
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When it is stated that some element or attribute is ignored, or treated as some other
value, or handled as if it was something else, this refers only to the processing of the
node after it is in the DOM. A user agent must not mutate the DOM in such situations.

When an XML name, such as an attribute or element name, is referred to in the form
prefix:localName, as in xml:id or svg:rect, it refers to a name with the local
name localName and the namespace given by the prefix, as defined by the following
table:

xml

http://www.w3.org/XML/1998/namespace

html

http://www.w3.org/1999/xhtml

svg

http://www.w3.org/2000/svg

For simplicity, terms such as shown, displayed, and visible might sometimes be used
when referring to the way a document is rendered to the user. These terms are not
meant to imply a visual medium; they must be considered to apply to other media in
equivalent ways.

Various DOM interfaces are defined in this specification using pseudo-IDL. This looks
like OMG IDL but isn't. For instance, method overloading is used, and types from the
W3C DOM specifications are used without qualification. Language-specific bindings for
these abstract interface definitions must be derived in the way consistent with W3C DOM
specifications. Some interface-specific binding information for ECMAScript is included in
this specification.

The current situation with IDL blocks is pitiful. IDL is totally inadequate to properly
represent what objects have to look like in JS; IDL can't say if a member is
enumerable, what the indexing behaviour is, what the stringification behaviour is, what
behaviour setting a member whose type is a particular interface should be (e.g.
setting of document.location or element.className), what constructor an object
implementing an interface should claim to have, how overloads work, etc. I think we
should make the IDL blocks non-normative, and/or replace them with something else
that is better for JS while still being clear on how it applies to other languages.
However, we do need to have something that says what types the methods take as
arguments, since we have to raise exceptions if they are wrong.

The construction "a Foo object", where Foo is actually an interface, is sometimes used
instead of the more accurate "an object implementing the interface Foo".

A DOM attribute is said to be getting when its value is being retrieved (e.g. by author
script), and is said to be setting when a new value is assigned to it.

If a DOM object is said to be live, then that means that any attributes returning that
object must always return the same object (not a new object each time), and the
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attributes and methods on that object must operate on the actual underlying data, not a
snapshot of the data.

The terms fire and dispatch are used interchangeably in the context of events, as in the
DOM Events specifications. [DOM3EVENTS]

The term text node refers to any Text node, including CDATASection nodes (any
Node with node type 3 or 4).

Some of the algorithms in this specification, for historical reasons, require the user agent
to pause until some condition has been met. While a user agent is paused, it must
ensure that no scripts execute (e.g. no event handlers, no timers, etc). User agents
should remain responsive to user input while paused, however.

1.4.1. HTML vs XHTML

This section is non-normative.

This specification defines an abstract language for describing documents and
applications, and some APIs for interacting with in-memory representations of resources
that use this language.

The in-memory representation is known as "DOM5 HTML", or "the DOM" for short.

There are various concrete syntaxes that can be used to transmit resources that use this
abstract language, two of which are defined in this specification.

The first such concrete syntax is "HTML5". This is the format recommended for most
authors. It is compatible with all legacy Web browsers. If a document is transmitted with
the MIME type text/html, then it will be processed as an "HTML5" document by Web
browsers.

The second concrete syntax uses XML, and is known as "XHTML5". When a document
is transmitted with an XML MIME type, such as application/xhtml+xml, then it is
processed by an XML processor by Web browsers, and treated as an "XHTML5"
document. Generally speaking, authors are discouraged from trying to use XML on the
Web, because XML has much stricter syntax rules than the "HTML5" variant described
above, and is relatively newer and therefore less mature.

The "DOM5 HTML", "HTML5", and "XHTML5" representations cannot all represent the
same content. For example, namespaces cannot be represented using "HTML5", but
they are supported in "DOM5 HTML" and "XHTML5". Similarly, documents that use the
noscript (page 225) feature can be represented using "HTML5", but cannot be
represented with "XHTML5" and "DOM5 HTML". Comments that contain the string "-->"
can be represented in "DOM5 HTML" but not in "HTML5" and "XHTML5". And so forth.
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2. The Document Object Model

The Document Object Model (DOM) is a representation — a model — of a document
and its content. [DOM3CORE] The DOM is not just an API; the conformance criteria of
HTML implementations are defined, in this specification, in terms of operations on the
DOM.

This specification defines the language represented in the DOM by features together
called DOM5 HTML. DOM5 HTML consists of DOM Core Document nodes and DOM
Core Element nodes, along with text nodes and other content.

Elements in the DOM represent things; that is, they have intrinsic meaning, also known
as semantics.

For example, a p (page 112) element represents a paragraph.

In addition, documents and elements in the DOM host APIs that extend the DOM Core
APIs, providing new features to application developers using DOM5 HTML.

2.1. Documents

Every XML and HTML document in an HTML UA is represented by a Document object.
[DOM3CORE]

Document objects are assumed to be XML documents unless they are flagged as
being HTML documents when they are created. Whether a document is an HTML
document (page 25) or an XML document (page 25) affects the behaviour of certain
APIs, as well as a few CSS rendering rules. [CSS21]

Note: A Document object created by the createDocument() API on the
DOMImplementation object is initially an XML document (page 25), but
can be made into an HTML document (page 25) by calling
document.open() (page 38) on it.

All Document objects (in user agents implementing this specification) must also
implement the HTMLDocument (page 26) interface, available using binding-specific
methods. (This is the case whether or not the document in question is an HTML
document (page 25) or indeed whether it contains any HTML elements (page 21) at all.)
Document objects must also implement the document-level interface of any other
namespaces found in the document that the UA supports. For example, if an HTML
implementation also supports SVG, then the Document object must implement
HTMLDocument (page 26) and SVGDocument.

Note: Because the HTMLDocument (page 26) interface is now obtained
using binding-specific casting methods instead of simply being the
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primary interface of the document object, it is no longer defined as
inheriting from Document.

interface HTMLDocument {

// Resource metadata management (page 27)
readonly attribute Location location (page 306);
readonly attribute DOMString URL (page 27);

attribute DOMString domain (page 27);
readonly attribute DOMString referrer (page 27);

attribute DOMString cookie (page 27);

// DOM tree accessors (page 35)
attribute DOMString title (page 36);
attribute HTMLElement (page 28) body (page 36);

readonly attribute HTMLCollection (page 31) images (page 36);
readonly attribute HTMLCollection (page 31) links (page 37);
readonly attribute HTMLCollection (page 31) forms (page 37);
readonly attribute HTMLCollection (page 31) anchors (page 37);
NodeList getElementsByName (page 37)(in DOMString elementName);
NodeList getElementsByClassName (page 37)(in DOMString[] classNames);

// Dynamic markup insertion (page 38)
attribute DOMString innerHTML (page 38);

void open (page 38)();
void open (page 38)(in DOMString type);
void open (page 38)(in DOMString type, in DOMString replace);
void open (page 38)(in DOMString url, in DOMString name, in DOMString

features);

void open (page 38)(in DOMString url, in DOMString name, in DOMString
features, in bool replace);

void close (page 40)();
void write (page 38)(in DOMString text);
void writeln (page 38)(in DOMString text);

// Interaction (page 79)
readonly attribute Element activeElement (page 80);
readonly attribute boolean hasFocus (page 80);

// Commands (page 261)
readonly attribute HTMLCollection (page 31) commands (page 263);

// Editing (page 331)
attribute boolean designMode (page 334);

boolean execCommand (page 351)(in DOMString commandID);
boolean execCommand (page 351)(in DOMString commandID, in boolean doShowUI);
boolean execCommand (page 351)(in DOMString commandID, in boolean doShowUI,

in DOMString value);

Selection (page 354) getSelection (page 354)();

// Cross-document messaging (page 379)
void postMessage (page 379)(in DOMString message);

};
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Note: This specification requires that implementations also implement
some version of the Window object specification, so all HTMLDocument
(page 26) objects also implement the DocumentWindow object and thus
the DocumentView object.

Since the HTMLDocument (page 26) interface holds methods and attributes related to a
number of disparate features, the members of this interface are described in various
different sections.

2.1.1. Resource metadata management

The URL attribute must return the document's address.

The domain attribute must be initialised to the document's domain upon the creation of
the Document object. On getting, the attribute must return its current value. On setting, if
the new value is an allowed value (as defined below), the attribute's value must be
changed to the new value. If the new value is not an allowed value, then a security
exception (page 280) must be raised instead.

A new value is an allowed value for the document.domain (page 27) attribute if it is
equal to the attribute's current value, or if the new value, prefixed by a U+002E FULL
STOP ("."), exactly matches the end of the current value.

Note: The domain (page 27) attribute is used to enable pages on different
hosts of a domain to access each others' DOMs.

The referrer attribute must return either the URI of the page which navigated (page
269) the browsing context (page 20) to the current document (if any), or the empty string
(if there is no such originating page, or if the UA has been configured not to report
referrers).

Note: In the case of HTTP, the referrer (page 27) DOM attribute will
match the Referer (sic) header that was sent when fetching the current
page.

The cookie attribute must, on getting, return the same string as the value of the
Cookie HTTP header it would include if fetching the resource indicated by the
document's address over HTTP, as per RFC 2109 section 4.3.4. [RFC2109]

On setting, the cookie (page 27) attribute must cause the user agent to act as it would
when processing cookies if it had just attempted to fetch the document's address over
HTTP, and had received a response with a Set-Cookie header whose value was the
specified value, as per RFC 2109 sections 4.3.1, 4.3.2, and 4.3.3. [RFC2109]
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2.2. Elements

The nodes representing HTML elements (page 21) in the DOM must implement, and
expose to scripts, the interfaces listed for them in the relevant sections of this
specification. This includes XHTML (page 18) elements in XML documents (page 25),
even when those documents are in another context (e.g. inside an XSLT transform).

The basic interface, from which all the HTML elements (page 21)' interfaces inherit, and
which must be used by elements that have no additional requirements, is the
HTMLElement (page 28) interface.

interface HTMLElement : Element {

// DOM tree accessors (page 35)
NodeList getElementsByClassName (page 38)(in DOMString[] classNames);

// Dynamic markup insertion (page 38)
attribute DOMString innerHTML (page 38);

// Metadata attributes

attribute DOMString id (page 73);
attribute DOMString title (page 74);
attribute DOMString lang (page 74);
attribute DOMString dir (page 75);
attribute DOMString className (page 75);

readonly attribute DOMTokenList (page 34) classList (page 75);

// Interaction (page 79)
attribute long tabindex (page 81);

void click (page 79)();
void focus (page 80)();
void blur (page 80)();

// Commands (page 261)
attribute HTMLMenuElement contextMenu (page 260);

// Editing (page 331)
attribute boolean draggable (page 344);
attribute DOMString contenteditable (page 331);

// event handler DOM attributes (page 282)
attribute EventListener onabort (page 282);
attribute EventListener onbeforeunload (page 282);
attribute EventListener onblur (page 283);
attribute EventListener onchange (page 283);
attribute EventListener onclick (page 283);
attribute EventListener oncontextmenu (page 283);
attribute EventListener ondblclick (page 283);
attribute EventListener ondrag (page 283);
attribute EventListener ondragend (page 283);
attribute EventListener ondragenter (page 283);
attribute EventListener ondragleave (page 283);
attribute EventListener ondragover (page 283);
attribute EventListener ondragstart (page 283);
attribute EventListener ondrop (page 283);
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attribute EventListener onerror (page 284);
attribute EventListener onfocus (page 284);
attribute EventListener onkeydown (page 284);
attribute EventListener onkeypress (page 284);
attribute EventListener onkeyup (page 284);
attribute EventListener onload (page 284);
attribute EventListener onmessage (page 284);
attribute EventListener onmousedown (page 284);
attribute EventListener onmousemove (page 284);
attribute EventListener onmouseout (page 284);
attribute EventListener onmouseover (page 284);
attribute EventListener onmouseup (page 284);
attribute EventListener onmousewheel (page 285);
attribute EventListener onresize (page 285);
attribute EventListener onscroll (page 285);
attribute EventListener onselect (page 285);
attribute EventListener onsubmit (page 285);
attribute EventListener onunload (page 285);

};

As with the HTMLDocument (page 26) interface, the HTMLElement (page 28) interface
holds methods and attributes related to a number of disparate features, and the
members of this interface are therefore described in various different sections of this
specification.

2.2.1. Reflecting content attributes in DOM attributes

Some DOM attributes are defined to reflect a particular content attribute. This means
that on getting, the DOM attribute returns the current value of the content attribute, and
on setting, the DOM attribute changes the value of the content attribute to the given
value.

If a reflecting DOM attribute is a DOMString attribute defined to contain a URI, then on
getting, the DOM attribute must return the value of the content attribute, resolved to an
absolute URI, and on setting, must set the content attribute to the specified literal value.
If the content attribute is absent, the DOM attribute must return the default value, if the
content attribute has one, or else the empty string.

If a reflecting DOM attribute is a DOMString attribute that is not defined to contain a
URI, then the getting and setting must be done in a transparent, case-sensitive manner,
except if the content attribute is defined to only allow a specific set of values. In this latter
case, the attribute's value must first be converted to lowercase before being returned. If
the content attribute is absent, the DOM attribute must return the default value, if the
content attribute has one, or else the empty string.

If a reflecting DOM attribute is a boolean attribute, then the DOM attribute must return
true if the attribute is set, and false if it is absent. On setting, the content attribute must
be removed if the DOM attribute is set to false, and must be set to have the same value
as its name if the DOM attribute is set to true. (This corresponds to the rules for boolean
content attributes (page 48).)
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If a reflecting DOM attribute is a signed integer type (long) then the content attribute
must be parsed according to the rules for parsing signed integers (page 49) first. If that
fails, or if the attribute is absent, the default value must be returned instead, or 0 if there
is no default value. On setting, the given value must be converted to a string
representing the number as a valid integer (page 49) in base ten and then that string
must be used as the new content attribute value.

If a reflecting DOM attribute is an unsigned integer type (unsigned long) then the
content attribute must be parsed according to the rules for parsing unsigned integers
(page 48) first. If that fails, or if the attribute is absent, the default value must be returned
instead, or 0 if there is no default value. On setting, the given value must be converted to
a string representing the number as a valid non-negative integer (page 48) in base ten
and then that string must be used as the new content attribute value.

If a reflecting DOM attribute is of the type DOMTokenList (page 34), then on getting it
must return a DOMTokenList (page 34) object whose underlying string is the element's
corresponding content attribute. When the DOMTokenList (page 34) object mutates its
underlying string, the attribute must itself be immediately mutated. When the attribute is
absent, then the string represented by the DOMTokenList (page 34) object is the empty
string; when the object mutates this empty string, the user agent must first add the
corresponding content attribute, and then mutate that attribute instead. DOMTokenList
(page 34) attributes are always read-only. The same DOMTokenList (page 34) object
must be returned every time for each attribute.

If a reflecting DOM attribute has the type HTMLElement (page 28), or an interface that
descends from HTMLElement (page 28), then, on getting, it must run the following
algorithm (stopping at the first point where a value is returned):

1. If the corresponding content attribute is absent, then the DOM attribute must return
null.

2. Let candidate be the element that the document.getElementById() method
would find if it was passed as its argument the current value of the corresponding
content attribute.

3. If candidate is null, or if it is not type-compatible with the DOM attribute, then the
DOM attribute must return null.

4. Otherwise, it must return candidate.

On setting, if the given element has an id (page 73) attribute, then the content attribute
must be set to the value of that id (page 73) attribute. Otherwise, the DOM attribute
must be set to the empty string.
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2.3. Common DOM interfaces

2.3.1. Collections

The HTMLCollection (page 31), HTMLFormControlsCollection (page 32), and
HTMLOptionsCollection (page 33) interfaces represent various lists of DOM nodes.
Collectively, objects implementing these interfaces are called collections.

When a collection (page 31) is created, a filter and a root are associated with the
collection.

For example, when the HTMLCollection (page 31) object for the
document.images (page 36) attribute is created, it is associated with a filter that
selects only img (page 154) elements, and rooted at the root of the document.

The collection then represents a live (page 22) view of the subtree rooted at the
collection's root, containing only nodes that match the given filter. The view is linear. In
the absence of specific requirements to the contrary, the nodes within the collection must
be sorted in tree order (page 21).

Note: The rows (page 203) list is not in tree order.

An attribute that returns a collection must return the same object every time it is
retrieved.

2.3.1.1. HTMLCollection

The HTMLCollection (page 31) interface represents a generic collection of elements.

interface HTMLCollection {

readonly attribute unsigned long length (page 31);
Element item (page 31)(in unsigned long index);
Element namedItem (page 31)(in DOMString name);

};

The length attribute must return the number of nodes represented by the collection.

The item(index) method must return the indexth node in the collection. If there is no
indexth node in the collection, then the method must return null.

The namedItem(key) method must return the first node in the collection that matches
the following requirements:

• It is an a (page 122), applet, area (page 195), form, img (page 154), or object
(page 160) element with a name attribute equal to key, or,

• It is an HTML element of any kind with an id (page 73) attribute equal to key.
(Non-HTML elements, even if they have IDs, are not searched for the purposes of
namedItem() (page 31).)
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If no such elements are found, then the method must return null.

In ECMAScript implementations, objects that implement the HTMLCollection (page
31) interface must also have a [[Get]] method that, when invoked with a property name
that is a number, acts like the item() (page 31) method would when invoked with that
argument, and when invoked with a property name that is a string, acts like the
namedItem() (page 31) method would when invoked with that argument.

2.3.1.2. HTMLFormControlsCollection

The HTMLFormControlsCollection (page 32) interface represents a collection of
form controls.

interface HTMLFormControlsCollection {

readonly attribute unsigned long length (page 32);
HTMLElement (page 28) item (page 32)(in unsigned long index);
Object namedItem (page 32)(in DOMString name);

};

The length attribute must return the number of nodes represented by the collection.

The item(index) method must return the indexth node in the collection. If there is no
indexth node in the collection, then the method must return null.

The namedItem(key) method must act according to the following algorithm:

1. If, at the time the method is called, there is exactly one node in the collection that
has either an id (page 73) attribute or a name attribute equal to key, then return that
node and stop the algorithm.

2. Otherwise, if there are no nodes in the collection that have either an id (page 73)
attribute or a name attribute equal to key, then return null and stop the algorithm.

3. Otherwise, create a NodeList object representing a live view of the
HTMLFormControlsCollection (page 32) object, further filtered so that the only
nodes in the NodeList object are those that have either an id (page 73) attribute
or a name attribute equal to key. The nodes in the NodeList object must be sorted
in tree order (page 21).

4. Return that NodeList object.

In the ECMAScript DOM binding, objects implementing the
HTMLFormControlsCollection (page 32) interface must support being dereferenced
using the square bracket notation, such that dereferencing with an integer index is
equivalent to invoking the item() (page 32) method with that index, and such that
dereferencing with a string index is equivalent to invoking the namedItem() (page 32)
method with that index.
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2.3.1.3. HTMLOptionsCollection

The HTMLOptionsCollection (page 33) interface represents a list of option
elements.

interface HTMLOptionsCollection {

attribute unsigned long length (page 33);
HTMLOptionElement item (page 33)(in unsigned long index);
Object namedItem (page 33)(in DOMString name);

};

On getting, the length attribute must return the number of nodes represented by the
collection.

On setting, the behaviour depends on whether the new value is equal to, greater than, or
less than the number of nodes represented by the collection at that time. If the number is
the same, then setting the attribute must do nothing. If the new value is greater, then n
new option elements with no attributes and no child nodes must be appended to the
select element on which the HTMLOptionsCollection (page 33) is rooted, where n
is the difference between the two numbers (new value minus old value). If the new value
is lower, then the last n nodes in the collection must be removed from their parent nodes,
where n is the difference between the two numbers (old value minus new value).

Note: Setting length (page 33) never removes or adds any optgroup
elements, and never adds new children to existing optgroup elements
(though it can remove children from them).

The item(index) method must return the indexth node in the collection. If there is no
indexth node in the collection, then the method must return null.

The namedItem(key) method must act according to the following algorithm:

1. If, at the time the method is called, there is exactly one node in the collection that
has either an id (page 73) attribute or a name attribute equal to key, then return that
node and stop the algorithm.

2. Otherwise, if there are no nodes in the collection that have either an id (page 73)
attribute or a name attribute equal to key, then return null and stop the algorithm.

3. Otherwise, create a NodeList object representing a live view of the
HTMLOptionsCollection (page 33) object, further filtered so that the only nodes
in the NodeList object are those that have either an id (page 73) attribute or a
name attribute equal to key. The nodes in the NodeList object must be sorted in
tree order (page 21).

4. Return that NodeList object.

In the ECMAScript DOM binding, objects implementing the HTMLOptionsCollection

(page 33) interface must support being dereferenced using the square bracket notation,
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such that dereferencing with an integer index is equivalent to invoking the item() (page
33) method with that index, and such that dereferencing with a string index is equivalent
to invoking the namedItem() (page 33) method with that index.

We may want to add add() and remove() methods here too because IE
implements HTMLSelectElement and HTMLOptionsCollection on the same object,
and so people use them almost interchangeably in the wild.

2.3.2. DOMTokenList

The DOMTokenList (page 34) interface represents an interface to an underlying string
that consists of an unordered set of space-separated tokens (page 63).

Which string underlies a particular DOMTokenList (page 34) object is defined when the
object is created. It might be a content attribute (e.g. the string that underlies the
classList (page 75) object is the class (page 75) attribute), or it might be an
anonymous string (e.g. when a DOMTokenList (page 34) object is passed to an
author-implemented callback in the datagrid (page 229) APIs).

interface DOMTokenList {

boolean has (page 34)(in DOMString token);
void add (page 35)(in DOMString token);
void remove(in DOMString token);

};

The has(token) method must run the following algorithm:

1. If the token argument contains any spaces, then raise an
INVALID_CHARACTER_ERR exception and stop the algorithm.

2. Otherwise, split the underlying string on spaces (page 63) to get the list of tokens in
the object's underlying string.

3. If the token indicated by token is one of the tokens in the object's underlying string
then return true and stop this algorithm.

4. Otherwise, return false.

The add(token) method must run the following algorithm:

1. If the token argument contains any spaces, then raise an
INVALID_CHARACTER_ERR exception and stop the algorithm.

2. Otherwise, split the underlying string on spaces (page 63) to get the list of tokens in
the object's underlying string.

3. If the given token is already one of the tokens in the DOMTokenList (page 34)
object's underlying string then stop the algorithm.
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4. Otherwise, if the last character of the DOMTokenList (page 34) object's underlying
string is not a space character (page 47), then append a U+0020 SPACE character
to the end of that string.

5. Append the value of token to the end of the DOMTokenList (page 34) object's
underlying string.

The remove(token) method must run the following algorithm:

1. If the token argument contains any spaces (page 47), then raise an
INVALID_CHARACTER_ERR exception and stop the algorithm.

2. Otherwise, remove the given token from the underlying string (page 63).

In the ECMAScript DOM binding, objects implementing the DOMTokenList (page 34)
interface must stringify to the object's underlying string representation.

2.3.3. DOM feature strings

DOM3 Core defines mechanisms for checking for interface support, and for obtaining
implementations of interfaces, using feature strings. [DOM3CORE]

A DOM application can use the hasFeature(feature, version) method of the
DOMImplementation interface with parameter values "HTML" and "5.0" (respectively)
to determine whether or not this module is supported by the implementation. In addition
to the feature string "HTML", the feature string "XHTML" (with version string "5.0") can be
used to check if the implementation supports XHTML. User agents should respond with
a true value when the hasFeature (page 35) method is queried with these values.
Authors are cautioned, however, that UAs returning true might not be perfectly
compliant, and that UAs returning false might well have support for features in this
specification; in general, therefore, use of this method is discouraged.

The values "HTML" and "XHTML" (both with version "5.0") should also be supported in
the context of the getFeature() and isSupported() methods, as defined by DOM3
Core.

Note: The interfaces defined in this specification are not always supersets
of the interfaces defined in DOM2 HTML; some features that were formerly
deprecated, poorly supported, rarely used or considered unnecessary
have been removed. Therefore it is not guarenteed that an implementation
that supports "HTML" "5.0" also supports "HTML" "2.0".

2.4. DOM tree accessors

The html element of a document is the document's root element, if there is one and it's
an html (page 81) element, or null otherwise.
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The head element of a document is the first head (page 82) element that is a child of
the html element (page 35), if there is one, or null otherwise.

The title element of a document is the first title (page 82) element that is a child of
the head element (page 36), if there is one, or null otherwise.

The title attribute must, on getting, return a concatenation of the data of all the child
text nodes (page 23) of the title element (page 36), in tree order, or the empty string if
the title element (page 36) is null.

On setting, the following algorithm must be run:

1. If the head element (page 36) is null, then the attribute must do nothing. Stop the
algorithm here.

2. If the title element (page 36) is null, then a new title (page 82) element must
be created and appended to the head element (page 36).

3. The children of the title element (page 36) (if any) must all be removed.

4. A single Text node whose data is the new value being assigned must be appended
to the title element (page 36).

The body element of a document is the first child of the html element (page 35) that is
either a body (page 96) element or a frameset element. If there is no such element, it
is null. If the body element is null, then when the specification requires that events be
fired at "the body element", they must instead be fired at the Document object.

The body attribute, on getting, must return the body element (page 36) of the document
(either a body (page 96) element, a frameset element, or null). On setting, the
following algorithm must be followed:

1. If the new value is not a body (page 96) or frameset element, then raise a
HIERARCHY_REQUEST_ERR exception and abort these steps.

2. Otherwise, if the new value is the same as the body element (page 36), do nothing.
Abort these steps.

3. Otherwise, if the body element (page 36) is not null, then replace that element with
the new value in the DOM, as if the root element's replaceChild() method had
been called with the new value and the incumbent body element (page 36) as its
two arguments respectively, then abort these steps.

4. Otherwise, the the body element (page 36) is null. Append the new value to the root
element.

The images attribute must return an HTMLCollection (page 31) rooted at the
Document node, whose filter matches only img (page 154) elements.

36



The links attribute must return an HTMLCollection (page 31) rooted at the
Document node, whose filter matches only a (page 122) elements with href (page
286) attributes and area (page 195) elements with href (page 286) attributes.

The forms attribute must return an HTMLCollection (page 31) rooted at the
Document node, whose filter matches only form elements.

The anchors attribute must return an HTMLCollection (page 31) rooted at the
Document node, whose filter matches only a (page 122) elements with name attributes.

The getElementsByName(name) method a string name, and must return a live
NodeList containing all the a (page 122), applet, button, form, iframe (page
157), img (page 154), input, map (page 194), meta (page 88), object (page 160),
select, and textarea elements in that document that have a name attribute whose
value is equal to the name argument.

The getElementsByClassName(classNames) method takes an array of strings
representing classes. When called, the method must return a live NodeList object
containing all the elements in the document that have all the classes specified in that
array. If the array is empty, then the method must return an empty NodeList.

HTML, XHTML, SVG and MathML elements define which classes they are in by having
an attribute in the per-element partition with the name class containing a
space-separated list of classes to which the element belongs. Other specifications may
also allow elements in their namespaces to be labelled as being in specific classes. UAs
must not assume that all attributes of the name class for elements in any namespace
work in this way, however, and must not assume that such attributes, when used as
global attributes, label other elements as being in specific classes.

Given the following XHTML fragment:

<div id="example">
<p id="p1" class="aaa bbb"/>
<p id="p2" class="aaa ccc"/>
<p id="p3" class="bbb ccc"/>

</div>

A call to
document.getElementById('example').getElementsByClassName('aaa')

would return a NodeList with the two paragraphs p1 and p2 in it.

A call to getElementsByClassName(['ccc', 'bbb']) would only return one
node, however, namely p3. A call to
document.getElementById('example').getElementsByClassName('ccc

bbb') would return the same thing.

A call to getElementsByClassName(['aaa bbb']) would return no nodes;
none of the elements above are in the "aaa bbb" class.
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A call to getElementsByClassName(['']) would also return no nodes, since
none of the nodes are in the "" class (indeed, in HTML, it is impossible to specify
that an element is in the "" class).

The getElementsByClassName() method on the HTMLElement (page 28) interface
must return the nodes that the HTMLDocument (page 26)
getElementsByClassName() (page 37) method would return, excluding any
elements that are not descendants of the HTMLElement (page 28) object on which the
method was invoked.

2.5. Dynamic markup insertion

The document.write() (page 38) family of methods and the innerHTML (page 38)
family of DOM attributes enable script authors to dynamically insert markup into the
document.

Because these APIs interact with the parser, their behaviour varies depending on
whether they are used with HTML documents (page 25) (and the HTML parser (page
392)) or XHTML in XML documents (page 25) (and the XML parser). The following table
cross-references the various versions of these APIs.

document.write() innerHTML

For documents that are
HTML documents (page

25)

document.write() in HTML
(page 40)

innerHTML in HTML
(page 40)

For documents that are
XML documents (page 25)

document.write() in XML
(page 44)

innerHTML in XML
(page 44)

Regardless of the parsing mode, the document.writeln(s) method must call the
document.write() (page 38) method with the same argument s, and then call the
document.write() (page 38) method with, as its argument, a string consisting of a
single line feed character (U+000A).

2.5.1. Controlling the input stream

The open() method comes in several variants with different numbers of arguments.

When called with two or fewer arguments, the method must act as follows:

1. Let type be the value of the first argument, if there is one, or "text/html"
otherwise.

2. Let replace be true if there is a second argument and it has the value "replace", and
false otherwise.

3. If the document has an active parser that isn't a script-created parser (page 39), and
the insertion point (page 400) associated with that parser's input stream (page 394)

bz argues that innerHTML
should be called
something else on XML
documents and XML
elements. Is the sanity
worth the migration pain?

▶
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is not undefined (that is, it does point to somewhere in the input stream), then the
method does nothing. Abort these steps.

Note: This basically causes document.open() (page 38) to be
ignored when it's called in an inline script found during the parsing of
data sent over the network, while still letting it have an effect when
called asynchronously or on a document that is itself being spoon-fed
using these APIs.

4. Otherwise, if the document has an active parser, then stop that parser, and throw

away any pending content in the input stream. what about if it doesn't, because

it's either like a text/plain, or Atom, or PDF, or XHTML, or image document, or

something?

5. Remove all child nodes of the document.

6. Create a new HTML parser (page 392) and associate it with the document. This is a
script-created parser (meaning that it can be closed by the document.open()

(page 38) and document.close() (page 40) methods, and that the tokeniser will
wait for an explicit call to document.close() (page 40) before emitting an
end-of-file token).

7. Mark the document as being an HTML document (page 25) (it might already be
so-marked).

8. If type does not have the value "text/html", then act as if the tokeniser had
emitted a pre (page 116) element start tag, then set the HTML parser (page 392)'s
tokenisation (page 400) stage's content model flag (page 400) to PLAINTEXT.

9. If replace is false, then: remove all the entries in the browsing context (page 20)'s
session history (page 302) after the current entry (page 303) in its Document's
History (page 303) object, add a new entry whose address is the same as the
current entry (page 303)'s at the end of the list, and then advance to that page as if
the history.forward() (page 305) method had been invoked.

10. Finally, set the insertion point (page 400) to point at just before the end of the input
stream (page 394) (which at this point will be empty).

We shouldn't hard-code text/plain there. We should do it some other way, e.g.
hand off to the section on content-sniffing and handling of incoming data streams, the
part that defines how this all works when stuff comes over the network.

When called with three or more arguments, the open() (page 38) method on the
HTMLDocument (page 26) object must call the open() (page 327) method on the
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WindowHTML (page 301) interface of the object returned by the defaultView attribute
of the DocumentView interface of the HTMLDocument (page 26) object, with the same
arguments as the original call to the open() (page 38) method. If the defaultView

attribute of the DocumentView interface of the HTMLDocument (page 26) object is null,
then the method must raise an INVALID_ACCESS_ERR exception.

The close() method must do nothing if there is no script-created parser (page 39)
associated with the document. If there is such a parser, then, when the method is called,
the user agent must insert an explicit "EOF" character (page 400) at the insertion point
(page 400) of the parser's input stream (page 394).

2.5.2. Dynamic markup insertion in HTML

In HTML, the document.write(s) method must act as follows:

1. If the insertion point (page 400) is undefined, the open() (page 38) method must
be called (with no arguments) on the document object. The insertion point (page
400) will point at just before the end of the (empty) input stream (page 394).

2. The string s must be inserted into the input stream (page 394) just before the
insertion point (page 400).

3. If there is a script that will execute as soon as the parser resumes (page 224), then
the method must now return without further processing of the input stream (page
394).

4. Otherwise, the tokeniser must process the characters that were inserted, one at a
time, processing resulting tokens as they are emitted, and stopping when the
tokeniser reaches the insertion point or when the processing of the tokeniser is
aborted by the tree construction stage (this can happen if a script (page 220) start
tag token is emitted by the tokeniser).

Note: If the document.write() (page 40) method was called from
script executing inline (i.e. executing because the parser parsed a set
of script (page 220) tags), then this is a reentrant invocation of the
parser (page 393).

5. Finally, the method must return.

In HTML, the innerHTML DOM attribute of all HTMLElement (page 28) and
HTMLDocument (page 26) nodes returns a serialisation of the node's children using the
HTML syntax. On setting, it replaces the node's children with new nodes that result from
parsing the given value. The formal definitions follow.

On getting, the innerHTML (page 40) DOM attribute must return the result of running
the following algorithm:

1. Let s be a string, and initialise it to the empty string.
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2. For each child node child, in tree order (page 21), append the appropriate string
from the following list to s:

↪ If the child node is an Element

Append a U+003C LESS-THAN SIGN (<) character, followed by the
element's tag name (which is all lowercase).

For each attribute that the element has, append a U+0020 SPACE
character, the attribute's name (which again will be all lowercase), a
U+003D EQUALS SIGN (=) character, a U+0022 QUOTATION MARK (")
character, the attribute's value, escaped as described below (page 42),
and a second U+0022 QUOTATION MARK (") character.

While the exact order of attributes is UA-defined, and may depend on
factors such as the order that the attributes were given in the original
markup, the sort order must be stable, such that consecutive calls to
innerHTML (page 40) serialise an element's attributes in the same order.

Append a U+003E GREATER-THAN SIGN (>) character.

If the child node is an Element with a tag name that is one of area (page
195), base (page 83), basefont, bgsound, br (page 113), col (page
205), embed (page 158), frame, hr (page 113), img (page 154), input,
link (page 84), meta (page 88), param (page 164), spacer, or wbr,
then continue on to the next child node at this point.

Otherwise, append the value of the child element's innerHTML (page 40)
DOM attribute (thus recursing into this algorithm for that element), followed
by a U+003C LESS-THAN SIGN (<) character, a U+002F SOLIDUS (/)
character, the element's tag name again (which is again all lowercase), and
finally a U+003E GREATER-THAN SIGN (>) character.

↪ If the child node is a Text or CDATASection node
If one of the ancestors of the child node is a style (page 93), script
(page 220), xmp, iframe (page 157), noembed, noframes, or noscript
(page 225) element, then append the value of the child node's data DOM
attribute literally.

Otherwise, append the value of the child node's data DOM attribute,
escaped as described below (page 42).

↪ If the child node is a Comment

Append the literal string <!-- (U+003C LESS-THAN SIGN, U+0021
EXCLAMATION MARK, U+002D HYPHEN-MINUS, U+002D
HYPHEN-MINUS), followed by the value of the child node's data DOM
attribute, followed by the literal string --> (U+002D HYPHEN-MINUS,
U+002D HYPHEN-MINUS, U+003E GREATER-THAN SIGN).
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↪ If the child node is a DocumentType

Append the literal string <!DOCTYPE (U+003C LESS-THAN SIGN, U+0021
EXCLAMATION MARK, U+0044 LATIN CAPITAL LETTER D, U+004F
LATIN CAPITAL LETTER O, U+0043 LATIN CAPITAL LETTER C, U+0054
LATIN CAPITAL LETTER T, U+0059 LATIN CAPITAL LETTER Y, U+0050
LATIN CAPITAL LETTER P, U+0045 LATIN CAPITAL LETTER E),
followed by a space (U+0020 SPACE), followed by the value of the child
node's name DOM attribute, followed by the literal string > (U+003E
GREATER-THAN SIGN).

Other nodes types (e.g. Attr) cannot occur as children of elements. If they do, the
innerHTML (page 40) attribute must raise an INVALID_STATE_ERR exception.

3. The result of the algorithm is the string s.

Escaping a string (for the purposes of the algorithm above) consists of replacing any
occurances of the "&" character by the string "&amp;", any occurances of the "<"
character by the string "&lt;", any occurances of the ">" character by the string "&gt;",
and any occurances of the """ character by the string "&quot;".

Note: Entity reference nodes are assumed to be expanded (page 18) by
the user agent, and are therefore not covered in the algorithm above.

Note: If the element's contents are not conformant, it is possible that the
roundtripping through innerHTML (page 40) will not work. For instance, if
the element is a textarea element to which a Comment node has been
appended, then assigning innerHTML (page 40) to itself will result in the
comment being displayed in the text field. Similarly, if, as a result of DOM
manipulation, the element contains a comment that contains the literal
string "-->", then when the result of serialising the element is parsed, the
comment will be truncated at that point and the rest of the comment will
be interpreted as markup. Another example would be making a script
(page 220) element contain a text node with the text string "</script>".

On setting, if the node is a document, the innerHTML (page 40) DOM attribute must run
the following algorithm:

1. Otherwise, if the document has an active parser, then stop that parser, and throw

away any pending content in the input stream. what about if it doesn't, because

it's either like a text/plain, or Atom, or PDF, or XHTML, or image document, or

something?
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2. The user agent must remove the children nodes of the Document whose
innerHTML (page 40) attribute is being set.

3. The user agent must create a new HTML parser (page 392), in its initial state, and
associate it with the Document node.

4. The user agent must place into the input stream (page 394) for the HTML parser
(page 392) just created the string being assigned into the innerHTML (page 40)
attribute.

5. The user agent must start the parser and let it run until it has consumed all the
characters just inserted into the input stream. (The Document node will have been
populated with elements and a load event will have fired on its body element (page
36).)

Otherwise, if the node is an element, then setting the innerHTML (page 40) DOM
attribute must cause the following algorithm to run instead:

1. The user agent must create a new Document node, and mark it as being an HTML
document (page 25).

The user agent must create a new HTML parser (page 392), and associate it with
the just created Document node.

Note: Parts marked innerHTML case in algorithms in the parser
section are parts that only occur if the parser was created for the
purposes of handling the setting of an element's innerHTML (page 40)
attribute. The algorithms have been annotated with such markings for
informational purposes only; such markings have no normative
weight. If it is possible for a condition described as an innerHTML
case (page 43) to occur even when the parser wasn't created for the
purposes of handling an element's innerHTML (page 40) attribute,
then that is an error in the specification.

2. The user agent must set the HTML parser (page 392)'s tokenisation (page 400)
stage's content model flag (page 400) according to the name of the element whose
innerHTML (page 40) attribute is being set, as follows:

↪ If it is a title (page 82) or textarea element
Set the content model flag (page 400) to RCDATA.

↪ If it is a style (page 93), script (page 220), xmp, iframe (page 157),
noembed, noframes, or noscript (page 225) element

Set the content model flag (page 400) to CDATA.

↪ If it is a plaintext element
Set the content model flag (page 400) to PLAINTEXT.
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↪ Otherwise
Set the content model flag (page 400) to PCDATA.

3. The user agent must switch the HTML parser (page 392)'s tree construction (page
413) stage to the main phase (page 416).

4. Let root be a new html (page 81) element with no attributes.

5. The user agent must append the element root to the Document node created
above.

6. The user agent must set up the parser's stack of open elements (page 416) so that
it contains just the single element root.

7. The user agent must reset the parser's insertion mode appropriately (page 421).

8. The user agent must set the parser's form element pointer (page 420) to the
nearest node to the element whose innerHTML (page 40) attribute is being set that
is a form element (going straight up the ancestor chain, and including the element
itself, if it is a form element), or, if there is no such form element, to null.

9. The user agent must place into the input stream (page 394) for the HTML parser
(page 392) just created the string being assigned into the innerHTML (page 40)
attribute.

10. The user agent must start the parser and let it run until it has consumed all the
characters just inserted into the input stream.

11. The user agent must remove the children of the element whose innerHTML (page
40) attribute is being set.

12. The user agent must move all the child nodes of the root element to the element
whose innerHTML (page 40) attribute is being set, preserving their order.

2.5.3. Dynamic markup insertion in XML

In an XML context, the document.write(s) method must raise an
INVALID_ACCESS_ERR exception.

The innerHTML attributes, on the other hand, in an XML context, are usable.

On getting, the innerHTML (page 44) DOM attribute on HTMLElement (page 28)s and
HTMLDocument (page 26)s, in an XML context, must return a namespace-well-formed
XML representation of the element or document. User agents may adjust prefixes and
namespace declarations in the serialisation (and indeed might be forced to do so in
some cases to obtain namespace-well-formed XML). [XML] [XMLNS]

On setting, if the node is a document, the innerHTML (page 40) DOM attribute on must
run the following algorithm:
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1. The user agent must remove the children nodes of the Document whose
innerHTML (page 44) attribute is being set.

2. The user agent must create a new XML parser.

3. If the innerHTML (page 44) attribute is being set on an element, the user agent
must feed the parser just created the string corresponding to the start tag of that
element, declaring all the namespace prefixes that are in scope on that element in
the DOM, as well as declaring the default namespace (if any) that is in scope on that
element in the DOM.

4. The user agent must feed the parser just created the string being assigned into the
innerHTML (page 40) attribute.

5. If the innerHTML (page 44) attribute is being set on an element, the user agent
must feed the parser the string corresponding to the end tag of that element.

6. If the parser found a well-formedness error, the attribute's setter must raise a
SYNTAX_ERR exception and abort these steps.

7. Otherwise, the user agent must take the children of the document, if the attribute is
being set on a Document node, or of the document's root element, if the attribute is
being set on an Element node, and append them to the node whose innerHTML

(page 40) attribute is being set, preserving their order.

2.6. APIs in HTML documents

For HTML documents (page 25), and for HTML elements (page 21) in HTML documents
(page 25), certain APIs defined in DOM3 Core become case-insensitive or
case-changing, as sometimes defined in DOM3 Core, and as summarised or required
below. [DOM3CORE].

This does not apply to XML documents (page 25) or to elements that are not in the
HTML namespace (page 455) despite being in HTML documents (page 25).

Element.tagName, Node.nodeName, and Node.localName

These attributes return tag names in all uppercase, regardless of the case with
which they were created.

Document.createElement()

The canonical form of HTML markup is all-lowercase; thus, this method will
lowercase the argument before creating the requisite element. Also, the element
created must be in the HTML namespace (page 455).

Note: This doesn't apply to Document.createElementNS(). Thus, it
is possible, by passing this last method a tag name in the wrong case,
to create an element that claims to have the tag name of an HTML
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element, but doesn't support its interfaces, because it really has
another tag name not accessible from the DOM APIs.

Element.setAttributeNode()

When an Attr node is set on an HTML element (page 21), it must have its name
lowercased before the element is affected.

Note: This doesn't apply to Document.setAttributeNodeNS().

Element.setAttribute()

When an attribute is set on an HTML element (page 21), the name argument must
be lowercased before the element is affected.

Note: This doesn't apply to Document.setAttributeNS().

Document.getElementsByTagName() and Element.getElementsByTagName()

These methods (but not their namespaced counterparts) must compare the given
argument case-insensitively when looking at HTML elements (page 21), and
case-sensitively otherwise.

Note: Thus, in an HTML document with nodes in multiple
namespaces, these methods will be both case-sensitive and
case-insensitive at the same time.

Document.renameNode()

If the new namespace is the HTML namespace (page 455), then the new qualified
name must be lowercased before the rename takes place.
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3. Semantics and structure of HTML elements

3.1. [TBW] Introduction

This section is non-normative.

An introduction to marking up a document.

3.2. Common microsyntaxes

There are various places in HTML that accept particular data types, such as dates or
numbers. This section describes what the conformance criteria for content in those
formats is, and how to parse them.

Need to go through the whole spec and make sure all the attribute values are clearly
defined either in terms of microsyntaxes or in terms of other specs, or as "Text" or
some such.

3.2.1. Common parser idioms

The space characters, for the purposes of this specification, are U+0020 SPACE,
U+0009 CHARACTER TABULATION (tab), U+000A LINE FEED (LF), U+000B LINE
TABULATION, U+000C FORM FEED (FF), and U+000D CARRIAGE RETURN (CR).

Some of the micro-parsers described below follow the pattern of having an input variable
that holds the string being parsed, and having a position variable pointing at the next
character to parse in input.

For parsers based on this pattern, a step that requires the user agent to collect a
sequence of characters means that the following algorithm must be run, with
characters being the set of characters that can be collected:

1. Let input and position be the same variables as those of the same name in the
algorithm that invoked these steps.

2. Let result be the empty string.

3. While position doesn't point past the end of input and the character at position is one
of the characters, append that character to the end of result and advance position to
the next character in input.

4. Return result.

The step skip whitespace means that the user agent must collect a sequence of
characters (page 47) that are space characters (page 47). The step skip Zs characters
means that the user agent must collect a sequence of characters (page 47) that are in

47



the Unicode character class Zs. In both cases, the collected characters are not used.
[UNICODE]

3.2.2. Boolean attributes

A number of attributes in HTML5 are boolean attributes. The presence of a boolean
attribute on an element represents the true value, and the absence of the attribute
represents the false value.

If the attribute is present, its value must either be the empty string or the attribute's
canonical name, exactly, with no leading or trailing whitespace, and in lowercase.

3.2.3. Numbers

3.2.3.1. Unsigned integers

A string is a valid non-negative integer if it consists of one of more characters in the
range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

The rules for parsing non-negative integers are as given in the following algorithm.
When invoked, the steps must be followed in the order given, aborting at the first step
that returns a value. This algorithm will either return zero, a positive integer, or an error.
Leading spaces are ignored. Trailing spaces and indeed any trailing garbage characters
are ignored.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 0.

4. Skip whitespace. (page 47)

5. If position is past the end of input, return an error.

6. If the next character is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE
(9), then return an error.

7. If the next character is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9):

1. Multiply value by ten.

2. Add the value of the current character (0..9) to value.

3. Advance position to the next character.

4. If position is not past the end of input, return to the top of step 7 in the overall
algorithm (that's the step within which these substeps find themselves).

8. Return value.
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3.2.3.2. Signed integers

A string is a valid integer if it consists of one of more characters in the range U+0030
DIGIT ZERO (0) to U+0039 DIGIT NINE (9), optionally prefixed with a U+002D
HYPHEN-MINUS ("-") character.

The rules for parsing integers are similar to the rules for non-negative integers, and
are as given in the following algorithm. When invoked, the steps must be followed in the
order given, aborting at the first step that returns a value. This algorithm will either return
an integer or an error. Leading spaces are ignored. Trailing spaces and trailing garbage
characters are ignored.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 0.

4. Let sign have the value "positive".

5. Skip whitespace. (page 47)

6. If position is past the end of input, return an error.

7. If the character indicated by position (the first character) is a U+002D
HYPHEN-MINUS ("-") character:

1. Let sign be "negative".

2. Advance position to the next character.

3. If position is past the end of input, return an error.

8. If the next character is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE
(9), then return an error.

9. If the next character is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9):

1. Multiply value by ten.

2. Add the value of the current character (0..9) to value.

3. Advance position to the next character.

4. If position is not past the end of input, return to the top of step 9 in the overall
algorithm (that's the step within which these substeps find themselves).

10. If sign is "positive", return value, otherwise return 0-value.

3.2.3.3. Real numbers

A string is a valid floating point number if it consists of one of more characters in the
range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), optionally with a single
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U+002E FULL STOP (".") character somewhere (either before these numbers, in
between two numbers, or after the numbers), all optionally prefixed with a U+002D
HYPHEN-MINUS ("-") character.

The rules for parsing floating point number values are as given in the following
algorithm. As with the previous algorithms, when this one is invoked, the steps must be
followed in the order given, aborting at the first step that returns a value. This algorithm
will either return a number or an error. Leading spaces are ignored. Trailing spaces and
garbage characters are ignored.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 0.

4. Let sign have the value "positive".

5. Skip whitespace. (page 47)

6. If position is past the end of input, return an error.

7. If the character indicated by position (the first character) is a U+002D
HYPHEN-MINUS ("-") character:

1. Let sign be "negative".

2. Advance position to the next character.

3. If position is past the end of input, return an error.

8. If the next character is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE
(9) or U+002E FULL STOP ("."), then return an error.

9. If the next character is U+002E FULL STOP ("."), but either that is the last character
or the character after that one is not one of U+0030 DIGIT ZERO (0) .. U+0039
DIGIT NINE (9), then return an error.

10. If the next character is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9):

1. Multiply value by ten.

2. Add the value of the current character (0..9) to value.

3. Advance position to the next character.

4. If position is past the end of input, then if sign is "positive", return value,
otherwise return 0-value.

5. Otherwise return to the top of step 10 in the overall algorithm (that's the step
within which these substeps find themselves).
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11. Otherwise, if the next character is not a U+002E FULL STOP ("."), then if sign is
"positive", return value, otherwise return 0-value.

12. The next character is a U+002E FULL STOP ("."). Advance position to the character
after that.

13. Let divisor be 1.

14. If the next character is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9):

1. Multiply divisor by ten.

2. Add the value of the current character (0..9) divided by divisor, to value.

3. Advance position to the next character.

4. If position is past the end of input, then if sign is "positive", return value,
otherwise return 0-value.

5. Otherwise return to the top of step 14 in the overall algorithm (that's the step
within which these substeps find themselves).

15. Otherwise, if sign is "positive", return value, otherwise return 0-value.

3.2.3.4. Ratios

Note: The algorithms described in this section are used by the progress
(page 139) and meter (page 135) elements.

A valid denominator punctuation character is one of the characters from the table
below. There is a value associated with each denominator punctuation character,
as shown in the table below.

Denominator Punctuation Character Value

U+0025 PERCENT SIGN % 100

U+066A ARABIC PERCENT SIGN ٪ 100

U+FE6A SMALL PERCENT SIGN ﹪ 100

U+FF05 FULLWIDTH PERCENT SIGN ％ 100

U+2030 PER MILLE SIGN ‰ 1000

U+2031 PER TEN THOUSAND SIGN ‱ 10000

The steps for finding one or two numbers of a ratio in a string are as follows:

1. If the string is empty, then return nothing and abort these steps.

2. Find a number (page 52) in the string according to the algorithm below, starting at
the start of the string.
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3. If the sub-algorithm in step 2 returned nothing or returned an error condition, return
nothing and abort these steps.

4. Set number1 to the number returned by the sub-algorithm in step 2.

5. Starting with the character immediately after the last one examined by the
sub-algorithm in step 2, skip any characters in the string that are in the Unicode
character class Zs (this might match zero characters). [UNICODE]

6. If there are still further characters in the string, and the next character in the string is
a valid denominator punctuation character (page 51), set denominator to that
character.

7. If the string contains any other characters in the range U+0030 DIGIT ZERO to
U+0039 DIGIT NINE, but denominator was given a value in the step 6, return
nothing and abort these steps.

8. Otherwise, if denominator was given a value in step 6, return number1 and
denominator and abort these steps.

9. Find a number (page 52) in the string again, starting immediately after the last
character that was examined by the sub-algorithm in step 2.

10. If the sub-algorithm in step 9 returned nothing or an error condition, return nothing
and abort these steps.

11. Set number2 to the number returned by the sub-algorithm in step 9.

12. If there are still further characters in the string, and the next character in the string is
a valid denominator punctuation character (page 51), return nothing and abort these
steps.

13. If the string contains any other characters in the range U+0030 DIGIT ZERO to
U+0039 DIGIT NINE, return nothing and abort these steps.

14. Otherwise, return number1 and number2.

The algorithm to find a number is as follows. It is given a string and a starting position,
and returns either nothing, a number, or an error condition.

1. Starting at the given starting position, ignore all characters in the given string until
the first character that is either a U+002E FULL STOP or one of the ten characters
in the range U+0030 DIGIT ZERO to U+0039 DIGIT NINE.

2. If there are no such characters, return nothing and abort these steps.

3. Starting with the character matched in step 1, collect all the consecutive characters
that are either a U+002E FULL STOP or one of the ten characters in the range
U+0030 DIGIT ZERO to U+0039 DIGIT NINE, and assign this string of one or more
characters to string.
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4. If string contains more than one U+002E FULL STOP character then return an error
condition and abort these steps.

5. Parse string according to the rules for parsing floating point number values (page
50), to obtain number. This step cannot fail (string is guarenteed to be a valid
floating point number (page 49)).

6. Return number.

3.2.3.5. [TBW] Percentages and dimensions

valid non-negative percentages, rules for parsing dimension values (only used
by height/width on img, embed, object — maybe they should do the same as canvas,
then this wouldn't even be needed)

3.2.3.6. Lists of integers

A valid list of integers is a number of valid integers (page 49) separated by U+002C
COMMA characters, with no other characters (e.g. no space characters (page 47)). In
addition, there might be restrictions on the number of integers that can be given, or on
the range of values allowed.

The rules for parsing a list of integers are as follows:

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let numbers be an initially empty list of integers. This list will be the result of this
algorithm.

4. If there is a character in the string input at position position, and it is either U+002C
COMMA character or a U+0020 SPACE character, then advance position to the
next character in input, or to beyond the end of the string if there are no more
characters.

5. If position points to beyond the end of input, return numbers and abort.

6. If the character in the string input at position position is a U+002C COMMA
character or a U+0020 SPACE character, return to step 4.

7. Let negated be false.

8. Let value be 0.

9. Let multiple be 1.

10. Let started be false.

11. Let finished be false.
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12. Let bogus be false.

13. Parser: If the character in the string input at position position is:

↪ A U+002D HYPHEN-MINUS character
Follow these substeps:

1. If finished is true, skip to the next step in the overall set of steps.

2. If started is true or if bogus is true, let negated be false.

3. Otherwise, if started is false and if bogus is false, let negated be true.

4. Let started be true.

↪ A character in the range U+0030 DIGIT ZERO .. U+0039 DIGIT NINE
Follow these substeps:

1. If finished is true, skip to the next step in the overall set of steps.

2. Let n be the value of the digit, interpreted in base ten, multiplied by
multiple.

3. Add n to value.

4. If value is greater than zero, multiply multiple by ten.

5. Let started be true.

↪ A U+002C COMMA character
↪ A U+0020 SPACE character

Follow these substeps:

1. If started is false, return the numbers list and abort.

2. If negated is true, then negate value.

3. Append value to the numbers list.

4. Jump to step 4 in the overall set of steps.

↪ A U+002E FULL STOP character
Follow these substeps:

1. Let finished be true.

↪ Any other character
Follow these substeps:

1. If finished is true, skip to the next step in the overall set of steps.

2. Let negated be false.
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3. Let bogus be true.

4. If started is true, then return the numbers list, and abort. (The value in
value is not appended to the list first; it is dropped.)

14. Advance position to the next character in input, or to beyond the end of the string if
there are no more characters.

15. If position points to a character (and not to beyond the end of input), jump to the big
Parser step above.

16. If negated is true, then negate value.

17. If started is true, then append value to the numbers list, return that list, and abort.

18. Return the numbers list and abort.

3.2.4. Dates and times

In the algorithms below, the number of days in month month of year year is: 31 if
month is 1, 3, 5, 7, 8, 10, or 12; 30 if month is 4, 6, 9, or 11; 29 if month is 2 and year is a
number divisible by 400, or if year is a number divisible by 4 but not by 100; and 28
otherwise. This takes into account leap years in the Gregorian calendar. [GREGORIAN]

3.2.4.1. Specific moments in time

A string is a valid datetime if it has four digits (representing the year), a literal hyphen,
two digits (representing the month), a literal hyphen, two digits (representing the day),
optionally some spaces, either a literal T or a space, optionally some more spaces, two
digits (for the hour), a colon, two digits (the minutes), optionally the seconds (which, if
included, must consist of another colon, two digits (the integer part of the seconds), and
optionally a decimal point followed by one or more digits (for the fractional part of the
seconds)), optionally some spaces, and finally either a literal Z (indicating the time zone
is UTC), or, a plus sign or a minus sign followed by two digits, a colon, and two digits (for
the sign, the hours and minutes of the timezone offset respectively); with the month-day
combination being a valid date in the given year according to the Gregorian calendar, the
hour values (h) being in the range 0 ≤ h ≤ 23, the minute values (m) in the range
0 ≤ m ≤ 59, and the second value (s) being in the range 0 ≤ h < 60. [GREGORIAN]

The digits must be characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9), the hyphens must be a U+002D HYPHEN-MINUS characters, the T must be a
U+0054 LATIN CAPITAL LETTER T, the colons must be U+003A COLON characters,
the decimal point must be a U+002E FULL STOP, the Z must be a U+005A LATIN
CAPITAL LETTER Z, the plus sign must be a U+002B PLUS SIGN, and the minus
U+002D (same as the hyphen).

The following are some examples of dates written as valid datetimes (page 55).

"0037-12-13 00:00 Z"
Midnight UTC on the birthday of Nero (the Roman Emperor).
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"1979-10-14T12:00:00.001-04:00"
One millisecond after noon on October 14th 1979, in the time zone in use on
the east coast of North America during daylight saving time.

"8592-01-01 T 02:09 +02:09"
Midnight UTC on the 1st of January, 8592. The time zone associated with that
time is two hours and nine minutes ahead of UTC.

Several things are notable about these dates:

• Years with fewer than four digits have to be zero-padded. The date "37-12-13"
would not be a valid date.

• To unambiguously identify a moment in time prior to the introduction of the
Gregorian calendar, the date has to be first converted to the Gregorian
calendar from the calendar in use at the time (e.g. from the Julian calendar).
The date of Nero's birth is the 15th of December 37, in the Julian Calendar,
which is the 13th of December 37 in the Gregorian Calendar.

• The time and timezone components are not optional.

• Dates before the year 0 or after the year 9999 can't be represented as a
datetime in this version of HTML.

• Time zones differ based on daylight savings time.

Note: Conformance checkers can use the algorithm below to determine if
a datetime is a valid datetime or not.

To parse a string as a datetime value, a user agent must apply the following algorithm
to the string. This will either return a time in UTC, with associated timezone information
for round tripping or display purposes, or nothing, indicating the value is not a valid
datetime (page 55). If at any point the algorithm says that it "fails", this means that it
returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9). If the collected sequence is not exactly four characters
long, then fail. Otherwise, interpret the resulting sequence as a base ten integer. Let
that number be the year.

4. If position is beyond the end of input or if the character at position is not a U+002D
HYPHEN-MINUS character, then fail. Otherwise, move position forwards one
character.

5. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters
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long, then fail. Otherwise, interpret the resulting sequence as a base ten integer. Let
that number be the month.

6. If month is not a number in the range 1 ≤ month ≤ 12, then fail.

7. Let maxday be the number of days in month month of year year (page 55).

8. If position is beyond the end of input or if the character at position is not a U+002D
HYPHEN-MINUS character, then fail. Otherwise, move position forwards one
character.

9. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters
long, then fail. Otherwise, interpret the resulting sequence as a base ten integer. Let
that number be the day.

10. If day is not a number in the range 1 ≤ month ≤ maxday, then fail.

11. Collect a sequence of characters (page 47) that are either U+0054 LATIN CAPITAL
LETTER T characters or space characters (page 47). If the collected sequence is
zero characters long, or if it contains more than one U+0054 LATIN CAPITAL
LETTER T character, then fail.

12. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters
long, then fail. Otherwise, interpret the resulting sequence as a base ten integer. Let
that number be the hour.

13. If hour is not a number in the range 0 ≤ hour ≤ 23, then fail.

14. If position is beyond the end of input or if the character at position is not a U+003A
COLON character, then fail. Otherwise, move position forwards one character.

15. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9). If the collected sequence is not exactly two characters
long, then fail. Otherwise, interpret the resulting sequence as a base ten integer. Let
that number be the minute.

16. If minute is not a number in the range 0 ≤ minute ≤ 59, then fail.

17. Let second be a string with the value "0".

18. If position is beyond the end of input, then fail.

19. If the character at position is a U+003A COLON, then:

1. Advance position to the next character in input.

2. If position is beyond the end of input, or at the last character in input, or if the
next two characters in input starting at position are not two characters both in
the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then fail.
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3. Collect a sequence of characters (page 47) that are either characters in the
range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9) or U+002E FULL
STOP characters. If the collected sequence has more than one U+002E FULL
STOP characters, or if the last character in the sequence is a U+002E FULL
STOP character, then fail. Otherwise, let the collected string be second instead
of its previous value.

20. Interpret second as a base ten number (possibly with a fractional part). Let that
number be second instead of the string version.

21. If second is not a number in the range 0 ≤ hour < 60, then fail. (The values 60 and
61 are not allowed: leap seconds cannot be represented by datetime values.)

22. If position is beyond the end of input, then fail.

23. Skip whitespace. (page 47)

24. If the character at position is a U+005A LATIN CAPITAL LETTER Z, then:

1. Let timezonehours be 0.

2. Let timezoneminutes be 0.

3. Advance position to the next character in input.

25. Otherwise, if the character at position is either a U+002B PLUS SIGN ("+") or a
U+002D HYPHEN-MINUS ("-"), then:

1. If the character at position is a U+002B PLUS SIGN ("+"), let sign be "positive".
Otherwise, it's a U+002D HYPHEN-MINUS ("-"); let sign be "negative".

2. Advance position to the next character in input.

3. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO
(0) to U+0039 DIGIT NINE (9). If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base
ten integer. Let that number be the timezonehours.

4. If timezonehours is not a number in the range 0 ≤ timezonehours ≤ 23, then fail.

5. If sign is "negative", then negate timezonehours.

6. If position is beyond the end of input or if the character at position is not a
U+003A COLON character, then fail. Otherwise, move position forwards one
character.

7. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO
(0) to U+0039 DIGIT NINE (9). If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a base
ten integer. Let that number be the timezoneminutes.
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8. If timezoneminutes is not a number in the range 0 ≤ timezoneminutes ≤ 59, then
fail.

26. If position is not beyond the end of input, then fail.

27. Let time be the moment in time at year year, month month, day day, hours hour,
minute minute, second second, adding timezonehours hours and timezoneminutes
minutes. That moment in time is a moment in the UTC timezone.

28. Let timezone be timezonehours hours and timezoneminutes minutes from UTC.

29. Return time and timezone.

3.2.4.2. Vaguer moments in time

This section defines date or time strings. There are two kinds, date or time strings in
content, and date or time strings in attributes. The only difference is in the handling of
whitespace characters.

To parse a date or time string (page 59), user agents must use the following algorithm. A
date or time string (page 59) is a valid date or time string if the following algorithm, when
run on the string, doesn't say the string is invalid.

The algorithm may return nothing (in which case the string will be invalid), or it may
return a date, a time, a date and a time, or a date and a time and and a timezone. Even if
the algorithm returns one or more values, the string can still be invalid.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let results be the collection of results that are to be returned (one or more of a date,
a time, and a timezone), initially empty. If the algorithm aborts at any point, then
whatever is currently in results must be returned as the result of the algorithm.

4. For the "in content" variant: skip Zs characters (page 47); for the "in attributes"
variant: skip whitespace (page 47).

5. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9). If the collected sequence is empty, then the string is
invalid; abort these steps.

6. Let the sequence of characters collected in the last step be s.

7. If position is past the end of input, the string is invalid; abort these steps.

8. If the character at position is not a U+003A COLON character, then:

1. If the character at position is not a U+002D HYPHEN-MINUS ("-") character
either, then the string is invalid, abort these steps.
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2. If the sequence s is not exactly four digits long, then the string is invalid. (This
does not stop the algorithm, however.)

3. Interpret the sequence of characters collected in step 5 as a base ten integer,
and let that number be year.

4. Advance position past the U+002D HYPHEN-MINUS ("-") character.

5. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO
(0) to U+0039 DIGIT NINE (9). If the collected sequence is empty, then the
string is invalid; abort these steps.

6. If the sequence collected in the last step is not exactly two digits long, then the
string is invalid.

7. Interpret the sequence of characters collected two steps ago as a base ten
integer, and let that number be month.

8. If month is not a number in the range 1 ≤ month ≤ 12, then the string is invalid,
abort these steps.

9. Let maxday be the number of days in month month of year year (page 55).

10. If position is past the end of input, or if the character at position is not a U+002D
HYPHEN-MINUS ("-") character, then the string is invalid, abort these steps.
Otherwise, advance position to the next character.

11. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO
(0) to U+0039 DIGIT NINE (9). If the collected sequence is empty, then the
string is invalid; abort these steps.

12. If the sequence collected in the last step is not exactly two digits long, then the
string is invalid.

13. Interpret the sequence of characters collected two steps ago as a base ten
integer, and let that number be day.

14. If day is not a number in the range 1 ≤ day ≤ maxday, then the string is invalid,
abort these steps.

15. Add the date represented by year, month, and day to the results.

16. For the "in content" variant: skip Zs characters (page 47); for the "in attributes"
variant: skip whitespace (page 47).

17. If the character at position is a U+0054 LATIN CAPITAL LETTER T, then move
position forwards one character.

18. For the "in content" variant: skip Zs characters (page 47); for the "in attributes"
variant: skip whitespace (page 47).
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19. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO
(0) to U+0039 DIGIT NINE (9). If the collected sequence is empty, then the
string is invalid; abort these steps.

20. Let s be the sequence of characters collected in the last step.

9. If s is not exactly two digits long, then the string is invalid.

10. Interpret the sequence of characters collected two steps ago as a base ten integer,
and let that number be hour.

11. If hour is not a number in the range 0 ≤ hour ≤ 23, then the string is invalid, abort
these steps.

12. If position is past the end of input, or if the character at position is not a U+003A
COLON character, then the string is invalid, abort these steps. Otherwise, advance
position to the next character.

13. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9). If the collected sequence is empty, then the string is
invalid; abort these steps.

14. If the sequence collected in the last step is not exactly two digits long, then the string
is invalid.

15. Interpret the sequence of characters collected two steps ago as a base ten integer,
and let that number be minute.

16. If minute is not a number in the range 0 ≤ minute ≤ 59, then the string is invalid,
abort these steps.

17. Let second be 0. It may be changed to another value in the next step.

18. If position is not past the end of input and the character at position is a U+003A
COLON character, then:

1. Collect a sequence of characters (page 47) that are either characters in the
range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9) or are U+002E
FULL STOP. If the collected sequence is empty, or contains more than one
U+002E FULL STOP character, then the string is invalid; abort these steps.

2. If the first character in the sequence collected in the last step is not in the range
U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then the string is invalid.

3. Interpret the sequence of characters collected two steps ago as a base ten
number (possibly with a fractional part), and let that number be second.

4. If second is not a number in the range 0 ≤ minute < 60, then the string is invalid,
abort these steps.

19. Add the time represented by hour, minute, and second to the results.
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20. If results has both a date and a time, then:

1. For the "in content" variant: skip Zs characters (page 47); for the "in attributes"
variant: skip whitespace (page 47).

2. If position is past the end of input, then skip to the next step in the overall set of
steps.

3. Otherwise, if the character at position is a U+005A LATIN CAPITAL LETTER Z,
then:

1. Add the timezone corresponding to UTC (zero offset) to the results.

2. Advance position to the next character in input.

3. Skip to the next step in the overall set of steps.

4. Otherwise, if the character at position is either a U+002B PLUS SIGN ("+") or a
U+002D HYPHEN-MINUS ("-"), then:

1. If the character at position is a U+002B PLUS SIGN ("+"), let sign be
"positive". Otherwise, it's a U+002D HYPHEN-MINUS ("-"); let sign be
"negative".

2. Advance position to the next character in input.

3. Collect a sequence of characters (page 47) in the range U+0030 DIGIT
ZERO (0) to U+0039 DIGIT NINE (9). If the collected sequence is not
exactly two characters long, then the string is invalid.

4. Interpret the sequence collected in the last step as a base ten number, and
let that number be timezonehours.

5. If timezonehours is not a number in the range 0 ≤ timezonehours ≤ 23, then
the string is invalid; abort these steps.

6. If sign is "negative", then negate timezonehours.

7. If position is beyond the end of input or if the character at position is not a
U+003A COLON character, then the string is invalid; abort these steps.
Otherwise, move position forwards one character.

8. Collect a sequence of characters (page 47) in the range U+0030 DIGIT
ZERO (0) to U+0039 DIGIT NINE (9). If the collected sequence is not
exactly two characters long, then the string is invalid.

9. Interpret the sequence collected in the last step as a base ten number, and
let that number be timezoneminutes.

10. If timezoneminutes is not a number in the range 0 ≤ timezoneminutes ≤ 59,
then the string is invalid; abort these steps.
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11. Add the timezone corresponding to an offset of timezonehours hours and
timezoneminutes minutes to the results.

12. Skip to the next step in the overall set of steps.

5. Otherwise, the string is invalid; abort these steps.

21. For the "in content" variant: skip Zs characters (page 47); for the "in attributes"
variant: skip whitespace (page 47).

22. If position is not past the end of input, then the string is invalid.

23. Abort these steps (the string is parsed).

3.2.5. Tokens

A set of space-separated tokens is a set of zero or more words separated by one or
more space characters (page 47), where words consist of any string of one or more
characters, none of which are space characters (page 47).

A string containing a set of space-separated tokens (page 63) may have leading or
trailing space characters (page 47).

An unordered set of space-separated tokens is a set of space-separated tokens
(page 63) where none of the words are duplicated.

An ordered set of unique space-separated tokens is a set of space-separated tokens
(page 63) where none of the words are duplicated but where the order of the tokens is
meaningful.

When a user agent has to split a string on spaces, it must use the following algorithm:

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let tokens be a list of tokens, initially empty.

4. Skip whitespace (page 47)

5. While position is not past the end of input:

1. Collect a sequence of characters (page 47) that are not space characters (page
47).

2. Add the string collected in the previous step to tokens.

3. Skip whitespace (page 47)

6. Return tokens.

When a user agent has to remove a token from a string, it must use the following
algorithm:

63



1. Let input be the string being modified.

2. Let token be the token being removed. It will not contain any space characters
(page 47).

3. Let output be the output string, initially empty.

4. Let position be a pointer into input, initially pointing at the start of the string.

5. If position is beyond the end of input, set the string being modified to output, and
abort these steps.

6. If the character at position is a space character (page 47):

1. Append the character at position to the end of output.

2. Increment position so it points at the next character in input.

3. Return to step 5 in the overall set of steps.

7. Otherwise, the character at position is the first character of a token. Collect a
sequence of characters (page 47) that are not space characters (page 47), and let
that be s.

8. If s is exactly equal to token, then:

1. Skip whitespace (page 47) (in input).

2. Remove any space characters (page 47) currently at the end of output.

3. If position is not past the end of input, and output is not the empty string,
append a single U+0020 SPACE character at the end of output.

9. Otherwise, append s to the end of output.

10. Return to step 6 in the overall set of steps.

Note: This causes any occurrences of the token to be removed from the
string, and any spaces that were surrounding the token to be collapsed to
a single space, except at the start and end of the string, where such
spaces are removed.

3.2.6. Keywords and enumerated attributes

Some attributes are defined as taking one of a finite set of keywords. Such attributes are
called enumerated attributes. The keywords are each defined to map to a particular
state (several keywords might map to the same state, in which case some of the
keywords are synonyms of each other; additionally, some of the keywords can be said to
be non-conforming, and are only in the specification for historical reasons). In addition,
two default states can be given. The first is the invalid value default, the second is the
missing value default.
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If an enumerated attribute is specified, the attribute's value must be one of the given
keywords that are not said to be non-conforming, with no leading or trailing whitespace.
The keyword may use any mix of uppercase and lowercase letters.

When the attribute is specified, if its value case-insensitively matches one of the given
keywords then that keyword's state is the state that the attribute represents. If the
attribute value matches none of the given keywords, but the attribute has an invalid value
default, then the attribute represents that state. Otherwise, if the attribute value matches
none of the keywords but there is a missing value default state defined, then that is the
state represented by the attribute. Otherwise, there is no default, and invalid values must
simply be ignored.

When the attribute is not specified, if there is a missing value default state defined, then
that is the state represented by the (missing) attribute. Otherwise, the absence of the
attribute means that there is no state represented.

Note: The empty string can be one of the keywords in some cases. For
example the contenteditable (page 331) attribute has two states: true,
matching the true keyword and the empty string, false, matching false
and all other keywords (it's the invalid value default). It could further be
thought of as having a third state inherit, which would be the default when
the attribute is not specified at all (the missing value default), but for
various reasons that isn't the way this specification actually defines it.

3.2.7. References

A valid hashed ID reference to an element of type type is a string consisting of a
U+0023 NUMBER SIGN (#) character followed by a string which exactly matches the
value of the id (page 73) attribute of an element in the document with type type.

The rules for parsing a hashed ID reference to an element of type type are as follows:

1. If the string being parsed does not contain a U+0023 NUMBER SIGN character, or if
the first such character in the string is the last character in the string, then return null
and abort these steps.

2. Let s be the string from the character immediately after the first U+0023 NUMBER
SIGN character in the string being parsed up to the end of that string.

3. Return the first element of type type that has an id (page 73) or name attribute
whose value case-insensitively matches s.
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3.3. Documents and document fragments

3.3.1. Semantics

Elements, attributes, and attribute values in HTML are defined (by this specification) to
have certain meanings (semantics). For example, the ol (page 116) element represents
an ordered list, and the lang attribute represents the language of the content.

Authors must only use elements, attributes, and attribute values for their appropriate
semantic purposes.

For example, the following document is non-conforming, despite being syntactically
correct:

<!DOCTYPE html>
<html lang="en-GB">
<head> <title> Demonstration </title> </head>
<body>
<table>
<tr> <td> My favourite animal is the cat. </td> </tr>
<tr>
<td>
—<a href="http://example.org/~ernest/"><cite>Ernest</cite></a>,
in an essay from 1992

</td>
</tr>

</table>
</body>

</html>

...because the data placed in the cells is clearly not tabular data. A corrected
version of this document might be:

<!DOCTYPE html>
<html lang="en-GB">
<head> <title> Demonstration </title> </head>
<body>
<blockquote>
<p> My favourite animal is the cat. </p>

</blockquote>
<p>
—<a href="http://example.org/~ernest/"><cite>Ernest</cite></a>,
in an essay from 1992

</p>
</body>

</html>

This next document fragment, intended to represent the heading of a corporate site,
is similarly non-conforming because the second line is not intended to be a heading
of a subsection, but merely a subheading or subtitle (a subordinate heading for the
same section).

<body>
<h1>ABC Company</h1>
<h2>Leading the way in widget design since 1432</h2>
...
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The header (page 102) element should be used in these kinds of situations:

<body>
<header>
<h1>ABC Company</h1>
<h2>Leading the way in widget design since 1432</h2>

</header>
...

Through scripting and using other mechanisms, the values of attributes, text, and indeed
the entire structure of the document may change dynamically while a user agent is
processing it. The semantics of a document at an instant in time are those represented
by the state of the document at that instant in time, and the semantics of a document can
therefore change over time. User agents must update their presentation of the document
as this occurs.

HTML has a progress (page 139) element that describes a progress bar. If its
"value" attribute is dynamically updated by a script, the UA would update the
rendering to show the progress changing.

3.3.2. Structure

All the elements in this specification have a defined content model, which describes what
nodes are allowed inside the elements, and thus what the structure of an HTML
document or fragment must look like. Authors must only put elements inside an element
if that element allows them to be there according to its content model.

Note: As noted in the conformance and terminology sections, for the
purposes of determining if an element matches its content model or not,
CDATASection nodes in the DOM are treated as equivalent to Text nodes
(page 23), and entity reference nodes are treated as if they were expanded
in place (page 18).

The space characters (page 47) are always allowed between elements. User agents
represent these characters between elements in the source markup as text nodes in the
DOM. Empty text nodes (page 23) and text nodes (page 23) consisting of just
sequences of those characters are considered inter-element whitespace.

Inter-element whitespace (page 67), comment nodes, and processing instruction nodes
must be ignored when establishing whether an element matches its content model or
not, and must be ignored when following algorithms that define document and element
semantics.

An element A is said to be preceeded or followed by a second element B if A and B
have the same parent node and there are no other element nodes or text nodes (other
than inter-element whitespace (page 67)) between them.

Authors must only use elements in the HTML namespace (page 21) in the contexts
where they are allowed, as defined for each element. For XML compound documents,
these contexts could be inside elements from other namespaces, if those elements are
defined as providing the relevant contexts.

67



The SVG specification defines the SVG foreignObject element as allowing
foreign namespaces to be included, thus allowing compound documents to be
created by inserting subdocument content under that element. This specification
defines the XHTML html (page 81) element as being allowed where subdocument
fragments are allowed in a compound document. Together, these two definitions
mean that placing an XHTML html (page 81) element as a child of an SVG
foreignObject element is conforming.

3.3.3. Kinds of elements

Each element in HTML falls into zero or more categories that group elements with similar
characteristics together. This specification uses the following categories:

• Metadata elements (page 82)
• Sectioning elements (page 96)
• Block-level elements (page 68)
• Strictly inline-level content (page 69)
• Structured inline-level elements (page 69)
• Interactive elements (page 71)
• Form control elements

Some elements have unique requirements and do not fit into any particular category.

In addition, some elements represent various common concepts; for example, some
elements represent paragraphs.

3.3.3.1. Block-level elements

Block-level elements are used for structural grouping of page content.

There are several kinds of block-level elements:

• Some can only contain other block-level elements: blockquote (page 99),
section (page 97), article (page 98), header (page 102).

• Some can only contain inline-level content (page 69): p (page 112), h1 (page
101)-h6 (page 101), address (page 104).

• Some can contain either block-level elements or inline-level content (page 69) (but
not both): nav (page 98), aside (page 100), footer (page 103), div (page 267).

• Finally, some have very specific content models: ul (page 117), ol (page 116), dl
(page 119), table (page 201), script (page 220).

There are also elements that seem to be block-level but aren't, such as body (page 96),
li (page 118), dt (page 121), dd (page 122), and td (page 210). These elements are
allowed only in specific places, not simply anywhere that block-level elements are
allowed.

Some block-level elements play multiple roles. For instance, the script (page 220)
elements is allowed inside head (page 82) elements and can also be used as
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inline-level content (page 69). Similarly, the ul (page 117), ol (page 116), dl (page
119), table (page 201), and blockquote (page 99) elements play dual roles as both
block-level and inline-level elements.

3.3.3.2. Inline-level content

Inline-level content consists of text and various elements to annotate the text, as well as
some embedded content (page 69) (such as images or sound clips).

Inline-level content comes in various types:

Strictly inline-level content
Text, embedded content (page 69), and elements that annotate the text without
introducing structural grouping. For example: a (page 122), meter (page 135), img
(page 154). Elements used in contexts allowing only strictly inline-level content must
not have any descendants that are anything other than strictly inline-level content.

Structured inline-level elements
Block-level elements that can also be used as inline-level content. For example: ol
(page 116), blockquote (page 99), table (page 201).

Some elements are defined to have as a content model significant inline content. This
means that at least one descendant of the element must be significant text (page 69) or
embedded content (page 69).

Unless an element's content model explicitly states that it must contain significant inline
content (page 69), simply having no text nodes (page 23) and no elements satisfies an
element whose content model is some kind of inline content.

Significant text, for the purposes of determining the presence of significant inline
content (page 69), consists of any character other than those falling in the Unicode
categories Zs, Zl, Zp, Cc, and Cf. [UNICODE]

The following three paragraphs are non-conforming because their content model is
not satisfied (they all count as empty).

<p></p>
<p><em>&#x00A0;</em></p>
<p>
<ol>
<li></li>

</ol>
</p>

Embedded content consists of elements that introduce content from other resources
into the document, for example img (page 154). Embedded content elements can have
fallback content: content that is to be used when the external resource cannot be used
(e.g. because it is of an unsupported format). The element definitions state what the
fallback is, if any.
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3.3.3.3. Transparent content models

Some elements are described as transparent; they have "transparent" as their content
model. Some elements are described as semi-transparent; this means that part of their
content model is "transparent" but that is not the only part of the content model that must
be satisfied.

When a content model includes a part that is "transparent", those parts must only contain
content that would still be conformant if all transparent and semi-transparent elements in
the tree were replaced, in their parent element, by the children in the "transparent" part of
their content model, retaining order.

When a transparent or semi-transparent element has no parent, then the part of its
content model that is "transparent" must instead be treated as zero or more block-level
elements (page 68), or inline-level content (page 69) (but not both).

3.3.3.4. Determining if a particular element contains block-level elements or inline-level
content

Some elements are defined to have content models that allow either block-level
elements (page 68) or inline-level content (page 69), but not both. For example, the
aside (page 100) and li (page 118) elements.

To establish whether such an element is being used as a block-level container or as an
inline-level container, for example in order to determine if a document conforms to these
requirements, user agents must look at the element's child nodes. If any of the child
nodes are not allowed in block-level contexts, then the element is being used for
inline-level content (page 69). If all the child nodes are allowed in a block-level context,
then the element is being used for block-level elements (page 68).

Whenever this search would examine a transparent (page 70) element, the element's
own child nodes must be examined instead, potentially recursing further if any of those
are themselves transparent.

For instance, in the following (non-conforming) XML fragment, the li (page 118)
element is being used as an inline-level element container, because the meta

(page 88) element is not allowed in a block-level context. (It doesn't matter, for the
purposes of determining whether it is an inline-level or block-level context, that the
meta (page 88) element is not allowed in inline-level contexts either.)

<ol>
<li>
<p> Hello World </p>
<meta title="this is an invalid example"/>

</li>
</ol>

In the following fragment, the aside (page 100) element is being used as a
block-level container, because even though all the elements it contains could be
considered inline-level elements, there are no nodes that can only be considered
inline-level.
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<aside>
<ol>
<li> ... </li>

</ol>
<ul>
<li> ... </li>

</ul>
</aside>

On the other hand, in the following similar fragment, the aside (page 100) element
is an inline-level container, because the text ("Foo") can only be considered
inline-level.

<aside>
<ol>
<li> ... </li>

</ol>
Foo

</aside>

3.3.3.5. Interactive elements

Parts of this section should eventually be moved to DOM3 Events.

Certain elements in HTML can be activated, for instance a (page 122) elements,
button elements, or input elements when their type attribute is set to radio.
Activation of those elements can happen in various (UA-defined) ways, for instance via
the mouse or keyboard.

When activation is performed via some method other than clicking the pointing device,
the default action of the event that triggers the activation must, instead of being
activating the element directly, be to fire a click event (page 285) on the same
element.

The default action of this click event, or of the real click event if the element was
activated by clicking a pointing device, must be to fire a further DOMActivate event at
the same element, whose own default action is to go through all the elements the
DOMActivate event bubbled through (starting at the target node and going towards the
Document node), looking for an element with an activation behavior (page 20); the first
element, in reverse tree order, to have one, must have its activation behavior executed.

Note: The above doesn't happen for arbitrary synthetic events dispatched
by author script. However, the click() (page 79) method can be used to
make it happen programmatically.

For certain form controls, this process is complicated further by changes that must
happen around the click event. [WF2]

Note: Most interactive elements have content models that disallow
nesting interactive elements.
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3.3.3.6. Paragraphs

A paragraph is typically a block of text with one or more sentences that discuss a
particular topic, as in typography, but can also be used for more general thematic
grouping. For instance, an address is also a paragraph, as is a part of a form, a byline, or
a stanza in a poem.

Paragraphs can be represented by several elements. The address (page 104) element
always represents a paragraph of contact information for its section, the aside (page
100), nav (page 98), footer (page 103), li (page 118), and dd (page 122) elements
represent paragraphs with various specific semantics when they are used as inline-level
content containers (page 70), the figure (page 153) element represents a paragraph
in the form of embedded content (page 69), and the p (page 112) element represents all
the other kinds of paragraphs, for which there are no dedicated elements.

3.4. Global attributes

The following attributes are common to and may be specified on all HTML elements
(page 21) (even those not defined in this specification):

Global attributes:
class (page 75)
contenteditable (page 331)
contextmenu (page 259)
dir (page 75)
draggable (page 344)
id (page 73)
lang (page 74)
tabindex (page 80)
title (page 73)

In addition, the following event handler content attributes (page 282) may be specified
on any HTML element:

• onabort (page 282)
• onbeforeunload (page 282)
• onblur (page 283)
• onchange (page 283)
• onclick (page 283)
• oncontextmenu (page 283)
• ondblclick (page 283)
• ondrag (page 283)
• ondragend (page 283)
• ondragenter (page 283)
• ondragleave (page 283)
• ondragover (page 283)
• ondragstart (page 283)
• ondrop (page 283)

72



• onerror (page 284)
• onfocus (page 284)
• onkeydown (page 284)
• onkeypress (page 284)
• onkeyup (page 284)
• onload (page 284)
• onmessage (page 284)
• onmousedown (page 284)
• onmousemove (page 284)
• onmouseout (page 284)
• onmouseover (page 284)
• onmouseup (page 284)
• onmousewheel (page 285)
• onresize (page 285)
• onscroll (page 285)
• onselect (page 285)
• onsubmit (page 285)
• onunload (page 285)

3.4.1. The id attribute

The id (page 73) attribute represents its element's unique identifier. The value must be
unique in the subtree within which the element finds itself and must contain at least one
character.

If the value is not the empty string, user agents must associate the element with the
given value (exactly) for the purposes of ID matching within the subtree the element finds
itself (e.g. for selectors in CSS or for the getElementById() method in the DOM).

Identifiers are opaque strings. Particular meanings should not be derived from the value
of the id (page 73) attribute.

This specification doesn't preclude an element having multiple IDs, if other mechanisms
(e.g. DOM Core methods) can set an element's ID in a way that doesn't conflict with the
id (page 73) attribute.

The id DOM attribute must reflect (page 29) the id (page 73) content attribute.

3.4.2. The title attribute

The title (page 73) attribute represents advisory information for the element, such as
would be appropriate for a tooltip. On a link, this could be the title or a description of the
target resource; on an image, it could be the image credit or a description of the image;
on a paragraph, it could be a footnote or commentary on the text; on a citation, it could
be further information about the source; and so forth. The value is text.

If this attribute is omitted from an element, then it implies that the title (page 73)
attribute of the nearest ancestor with a title (page 73) attribute set is also relevant to
this element. Setting the attribute overrides this, explicitly stating that the advisory
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information of any ancestors is not relevant to this element. Setting the attribute to the
empty string indicates that the element has no advisory information.

Some elements, such as link (page 84) and dfn (page 130), define additional
semantics for the title (page 73) attribute beyond the semantics described above.

The title DOM attribute must reflect (page 29) the title (page 73) content attribute.

3.4.3. The lang (HTML only) and xml:lang (XML only) attributes

The lang (page 74) attribute specifies the primary language for the element's contents
and for any of the element's attributes that contain text. Its value must be a valid RFC
3066 language code, or the empty string. [RFC3066]

The xml:lang (page 74) attribute is defined in XML. [XML]

If these attributes are omitted from an element, then it implies that the language of this
element is the same as the language of the parent element. Setting the attribute to the
empty string indicates that the primary language is unknown.

The lang (page 74) attribute may only be used on elements of HTML documents (page
25). Authors must not use the lang (page 74) attribute in XML documents (page 25).

The xml:lang (page 74) attribute may only be used on elements of XML documents
(page 25). Authors must not use the xml:lang (page 74) attribute in HTML documents
(page 25).

To determine the language of a node, user agents must look at the nearest ancestor
element (including the element itself if the node is an element) that has a lang (page
74) or xml:lang (page 74) attribute set. That specifies the language of the node.

If both the xml:lang (page 74) attribute and the lang (page 74) attribute are set on an
element, user agents must use the xml:lang (page 74) attribute, and the lang (page
74) attribute must be ignored (page 22) for the purposes of determining the element's
language.

If no explicit language is given for the root element (page 21), then language information
from a higher-level protocol (such as HTTP), if any, must be used as the final fallback
language. In the absence of any language information, the default value is unknown (the
empty string).

User agents may use the element's language to determine proper processing or
rendering (e.g. in the selection of appropriate fonts or pronounciations, or for dictionary
selection).

The lang DOM attribute must reflect (page 29) the lang (page 74) content attribute.
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3.4.4. The dir attribute

The dir (page 75) attribute specifies the element's text directionality. The attribute is an
enumerated attribute (page 64) with the keyword ltr mapping to the state ltr, and the
keyword rtl mapping to the state rtl. The attribute has no defaults.

If the attribute has the state ltr, the element's directionality is left-to-right. If the attribute
has the state rtl, the element's directionality is right-to-left. Otherwise, the element's
directionality is the same as its parent.

The processing of this attribute depends on the presentation layer. For example, CSS
2.1 defines a mapping from this attribute to the CSS 'direction' and 'unicode-bidi'
properties, and defines rendering in terms of those properties.

The dir DOM attribute must reflect (page 29) the dir (page 75) content attribute.

3.4.5. Classes

Every HTML element may have a class attribute specified.

The attribute, if specified, must have a value that is an unordered set of space-separated
tokens (page 63) representing the various classes that the element belongs to.

The classes that an HTML element has assigned to it consists of all the classes returned
when the value of the class (page 75) attribute is split on spaces (page 63).

Note: Assinging classes to an element affects class matching in selectors
in CSS, the getElementsByClassName() (page 37) method in the DOM,
and other such features.

Authors may use any value in the class (page 75) attribute, but are encouraged to use
the predefined values defined in this specification where appropriate.

Classes that are not defined in this specification can be defined as extensions (page 78),
as described below.

Authors should bear in mind that using the class (page 75) attribute does not convey
any additional meaning to the element unless the classes used have been defined by
this specification or registered in the Wiki. There is no semantic difference between an
element with a class attribute and one without. Authors that use classes that are not so
defined should make sure, therefore, that their documents make as much sense once all
class (page 75) attributes have been removed as they do with the attributes present.
User agents should not derive particular meanings from class (page 75) attribute
values that are neither defined by this specification nor registered in the Wiki.

The className and classList DOM attributes must both reflect (page 29) the class

(page 75) content attribute.
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3.4.5.1. Predefined class names

The following table summarises the class names that are defined by this specification.
This table is non-normative; the actual definitions for the class names are given in the
next few sections.

Class name Applicable elements Brief description

copyright

(page 76)
p (page 112), span (page
146)

Indicates that the element contains the
copyright for the document.

error (page
77)

p (page 112), section
(page 97), span (page
146), strong (page 128)

Indicates that the element contains an
error message, e.g. in an error message
to the user in an interactive application,
or an error notification in the report of a
conformance checker.

example

(page 77)
aside (page 100), figure
(page 153), p (page 112),
section (page 97), span
(page 146)

Indicates that the element contains some
sample material or a worked example
illustrating the neighboring content.

issue (page
77)

aside (page 100), p (page
112), span (page 146)

Indicates that the element contains a
point in dispute or a problem with the
neighboring content that needs resolving.
(Thus, this is typically only found in
works-in-progress or drafts, not in
completed documents.)

note (page
77)

aside (page 100), p (page
112), span (page 146)

Indicates that the element contains an
explanatory note or clarification.

search (page
77)

aside (page 100), body
(page 96), form, p (page
112), section (page 97),
span (page 146)

Indicates that the element's primary
purpose is to provide the user with an
interface to perform a search (e.g. of the
site's pages or of a database).

warning

(page 78)
article (page 98), aside
(page 100), body (page
96), figure (page 153), p
(page 112), section (page
97), span (page 146),
strong (page 128)

Indicates that the element contains a
warning or admonition.

3.4.5.1.1. CLASS NAME "COPYRIGHT"

The copyright (page 76) class name indicates that the element contains the copyright
for the document.

It must only be used on the following elements: p (page 112), span (page 146)
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3.4.5.1.2. CLASS NAME "ERROR"

The error (page 77) class name indicates that the element contains an error message,
e.g. in an error message to the user in an interactive application, or an error notification
in the report of a conformance checker.

It must only be used on the following elements: p (page 112), section (page 97), span
(page 146), strong (page 128)

It cannot be used on the body (page 96) element; if the whole document is an error
message then the appropriate metadata should be included at the network layer (e.g.
with HTTP using the 4xx and 5xx status codes).

3.4.5.1.3. CLASS NAME "EXAMPLE"

The example (page 77) class name indicates that the element contains some sample
material or a worked example illustrating the neighboring content.

It must only be used on the following elements: aside (page 100), figure (page 153),
p (page 112), span (page 146)

3.4.5.1.4. CLASS NAME "ISSUE"

The issue (page 77) class name indicates that the element contains a point in dispute
or a problem with the neighboring content that needs resolving. (Thus, this is typically
only found in works-in-progress or drafts, not in completed documents.)

It must only be used on the following elements: aside (page 100), p (page 112), span
(page 146)

3.4.5.1.5. CLASS NAME "NOTE"

The note (page 77) class name indicates that the element contains an explanatory note
or clarification.

It must only be used on the following elements: aside (page 100), p (page 112), span
(page 146)

3.4.5.1.6. CLASS NAME "SEARCH"

The search (page 77) class name indicates that the element's primary purpose is to
provide the user with an interface to perform a search (e.g. of the site's pages or of a
database).

It must only be used on the following elements: aside (page 100), body (page 96),
form, p (page 112), section (page 97), span (page 146)
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3.4.5.1.7. CLASS NAME "WARNING"

The warning (page 78) class name indicates that the element contains a warning or
admonition.

It must only be used on the following elements: article (page 98), aside (page 100),
body (page 96), figure (page 153), p (page 112), section (page 97), span (page
146), strong (page 128)

3.4.5.2. Other classes

Extensions to the predefined set of class keywords may be registered in the
WHATWG Wiki ClassExtensions page.

Anyone is free to edit the WHATWG Wiki ClassExtensions page at any time to add a
type. New classes must be specified with the following information:

Keyword
The actual class name being defined. The class name should not be confusingly
similar to any other defined class name (e.g. differing only in case).

Applicable elements
A list of HTML elements to which the class applies, or one of the following values:

Metadata elements
Meaning any element described as being a metadata element (page 82).

Sectioning elements
Meaning any element described as being a sectioning element (page 96).

Block-level elements
Meaning any element described as being a block-level element (page 68), but
only when that element is actually being used (page 70) as a block-level
element, and not, say, as a structured inline-level element.

Strictly inline-level elements
Meaning any element described as being strictly inline-level content (page 69).

Structured inline-level elements
Meaning any element described as being a structured inline-level element
(page 69).

Interactive
Meaning any element described as being an interactive element (page 71).

Embedded content elements
Meaning any element described as being embedded content (page 69).

All elements
Meaning any element.

A document must not use a class defined in the Wiki on an element other than the
elements that the Wiki says that class name is allowed on.

Brief description
A short description of what the keyword's meaning is.
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Link to more details
A link to a more detailed description of the keyword's semantics and requirements. It
could be another page on the Wiki, or a link to an external page.

Synonyms
A list of other keyword values that have exactly the same processing requirements.
Authors should not use the values defined to be synonyms, they are only intended
to allow user agents to support legacy content.

Status
One of the following:

Proposal
The keyword has not received wide peer review and approval. Someone has
proposed it and is using it.

Accepted
The keyword has received wide peer review and approval. It has a specification
that unambiguously defines how to handle pages that use the keyword,
including when they use them in incorrect ways. Pages should use the keyword
to mark up the semantic that it describes.

Unendorsed
The keyword has received wide peer review and it has been found wanting.
Existing pages are using this keyword, but new pages should avoid it. The "brief
description" and "link to more details" entries will give details of what authors
should use instead.

If a keyword is added with the "proposal" status and found to be redundant with
existing values, it should be removed and listed as a synonym for the existing value.

Conformance checkers must use the information given on the WHATWG Wiki
ClassExtensions page to establish if a value not explicitly defined in this specification is
defined, and if so, whether it is being used on the right elements. When an author uses a
new class name not defined by either this specification or the Wiki page, conformance
checkers may offer to add the value to the Wiki, with the details described above, with
the "proposal" status.

This specification does not define how new values will get approved. It is expected that
the Wiki will have a community that addresses this.

3.5. Interaction

3.5.1. Activation

The click() method must fire a click event (page 285) at the element, whose default
action is the firing of a further DOMActivate event at the same element, whose own
default action is to go through all the elements the DOMActivate event bubbled through
(starting at the target node and going towards the Document node), looking for an
element with an activation behavior (page 20); the first element, in reverse tree order, to
have one, must have its activation behavior executed.
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3.5.2. Focus

When an element is focused, key events received by the document must be targeted at
that element. There is always an element focused; in the absence of other elements
being focused, the document's root element is it.

Which element within a document currently has focus is independent of whether or not
the document itself has the system focus.

Some focusable elements might take part in sequential focus navigation.

3.5.2.1. [WIP] Focus management

The focus() and blur() methods must focus and unfocus the element respectively, if
the element is focusable.

Some elements, most notably area (page 195), can correspond to more than one
distinct focusable area. When such an element is focused using the focus() (page 80)
method, the first such region in tree order is the one that must be focused.

Well that clearly needs more.

The activeElement attribute must return the element in the document that has focus.
If no element specifically has focus, this must return the root element.

The hasFocus attribute must return true if the document, one of its nested browsing
contexts (page 20), or any element in the document or its browsing contexts currently
has the system focus.

3.5.2.2. Sequential focus navigation

The tabindex attribute specifies the relative order of elements for the purposes of
sequential focus navigation. The name "tab index" comes from the common use of the
"tab" key to navigate through the focusable elements. The term "tabbing" refers to
moving forward through the focusable elements.

The tabindex (page 80) attribute, if specified, must have a value that is a valid integer
(page 49).

If the attribute is specified, it must be parsed using the rules for parsing integers (page
49). If parsing the value returns an error, the attribute is ignored for the purposes of focus
management (as if it wasn't specified).

A positive integer or zero specifies the index of the element in the current scope's tab
order. Elements with the same index are sorted in tree order (page 21) for the purposes
of tabbing.

A negative integer specifies that the element should be removed from the tab order. If
the element does normally take focus, it may still be focused using other means (e.g. it
could be focused by a click).

This section on the
tabindex attribute needs
to be checked for
backwards-compatibility.

▶
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If the attribute is absent (or invalid), then the user agent must treat the element as if it
had the value 0 or the value -1, based on platform conventions.

For example, a user agent might default textarea elements to 0, and button

elements to -1, making text fields part of the tabbing cycle but buttons not.

When an element that does not normally take focus (i.e. whose default value would be
-1) has the tabindex (page 80) attribute specified with a positive value, then it should
be added to the tab order and should be made focusable. When focused, the element
matches the CSS :focus pseudo-class and key events are dispatched on that element
in response to keyboard input.

The tabIndex DOM attribute reflects the value of the tabIndex (page 80) content
attribute. If the attribute is not present (or has an invalid value) then the DOM attribute
must return the UA's default value for that element, which will be either 0 (for elements in
the tab order) or -1 (for elements not in the tab order).

3.6. The root element

3.6.1. The html element

Contexts in which this element may be used:
As the root element of a document.
Wherever a subdocument fragment is allowed in a compound document.

Content model:
A head (page 82) element followed by a body (page 96) element.

Element-specific attributes:
None (but see prose).

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The html (page 81) element represents the root of an HTML document.

Though it has absolutely no effect and no meaning, the html (page 81) element, in
HTML documents (page 25), may have an xmlns attribute specified, if, and only if, it has
the exact value "http://www.w3.org/1999/xhtml". This does not apply to XML
documents (page 25).

Note: In HTML, the xmlns attribute has absolutely no effect. It is basically
a talisman. It is allowed merely to make migration to and from XHTML
mildly easier. When parsed by an HTML parser (page 392), the attribute
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ends up in the null namespace, not the "http://www.w3.org/2000/
xmlns/" namespace like namespace declaration attributes in XML do.

Note: In XML, an xmlns attribute is part of the namespace declaration
mechanism, and an element cannot actually have an xmlns attribute in the
null namespace specified.

3.7. Document metadata

Document metadata is represented by metadata elements in the document's head
(page 82) element.

3.7.1. The head element

Contexts in which this element may be used:
As the first element in an html (page 81) element.

Content model:
In any order, optionally one meta (page 88) element with a charset (page 93)
attribute, exactly one title (page 82) element, optionally one base (page 83)
element, and zero or more other metadata elements (page 82) (in particular,
link (page 84), meta (page 88), style (page 93), and script (page 220)).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The head (page 82) element collects the document's metadata.

3.7.2. The title element

Metadata element (page 82).

Contexts in which this element may be used:
In a head (page 82) element containing no other title (page 82) elements.

Content model:
Text (for details, see prose).

Element-specific attributes:
None.
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Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The title (page 82) element represents the document's title or name. Authors should
use titles that identify their documents even when they are used out of context, for
example in a user's history or bookmarks, or in search results. The document's title is
often different from its first header, since the first header does not have to stand alone
when taken out of context.

Here are some examples of appropriate titles, contrasted with the top-level headers
that might be used on those same pages.

<title>Introduction to The Mating Rituals of Bees</title>
...

<h1>Introduction</h1>
<p>This companion guide to the highly successful
<cite>Introduction to Medieval Bee-Keeping</cite> book is...

The next page might be a part of the same site. Note how the title describes the
subject matter unambiguously, while the first header assumes the reader knowns
what the context is and therefore won't wonder if the dances are Salsa or Waltz:

<title>Dances used during bee mating rituals</title>
...

<h1>The Dances</h1>

The title (page 82) element must not contain any elements.

The string to use as the document's title is given by the document.title (page 36)
DOM attribute. User agents should use the document's title when referring to the
document in their user interface.

3.7.3. The base element

Metadata element (page 82).

Contexts in which this element may be used:
In a head (page 82) element, after the meta (page 88) element with the
charset (page 93) attribute, if any, but before any other elements, and only if
there are no other base (page 83) elements in the document.

Content model:
Empty.
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Element-specific attributes:
href (page 84) (HTML only)
target (page 84)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLBaseElement : HTMLElement (page 28) {

attribute DOMString href (page 84);
attribute DOMString target (page 84);

};

The base (page 83) element allows authors to specify the document's base URI for the
purposes of resolving relative URIs, and the name of the default browsing context (page
20) for the purposes of following hyperlinks (page 287).

There must be no more than one base (page 83) element per document.

The href content attribute, if specified, must contain a URI (or IRI).

Authors must not use the href attribute on the base (page 83) element in XML
documents (page 25). Authors should instead use the xml:base attribute. [XMLBASE]

User agents must use the value of the href attribute on the first base (page 83)
element with an href attribute in the document as the document entity's base URI for
the purposes of section 5.1.1 of RFC 2396 ("Establishing a Base URI": "Base URI within
Document Content"). [RFC2396] Note that this base URI from RFC 2396 is referred to by
the algorithm given in XML Base, which is a normative part of this specification (page
19).

If the base URI given by this attribute is a relative URI, it must be resolved relative to the
higher-level base URIs (i.e. the base URI from the encapsulating entity or the URI used
to retrieve the entity) to obtain an absolute base URI.

The target attribute, if specified, must contain a valid browsing context name (page
328). User agents use this name when following hyperlinks (page 287).

The href and target DOM attributes must reflect (page 29) the content attributes of
the same name.

3.7.4. The link element

Metadata element (page 82).
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Contexts in which this element may be used:
In a head (page 82) element.

Content model:
Empty.

Element-specific attributes:
href (page 85) (required)
rel (page 85) (required)
media (page 86)
hreflang (page 87)
type (page 87)
Also, the title (page 87) attribute has special semantics on this element.

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLLinkElement : HTMLElement (page 28) {

attribute boolean disabled (page 88);
attribute DOMString href (page 87);
attribute DOMString rel (page 87);

readonly attribute DOMTokenList relList (page 88);
attribute DOMString media (page 87);
attribute DOMString hreflang (page 87);
attribute DOMString type (page 87);

};

The LinkStyle interface must also be implemented by this element, the styling
processing model (page 95) defines how. [CSSOM]

The link (page 84) element allows authors to indicate explicit relationships between
their document and other resources.

The destination of the link is given by the href attribute, which must be present and
must contain a URI (or IRI). If the href (page 85) attribute is absent, then the element
does not define a link.

The type of link indicated (the relationship) is given by the value of the rel attribute,
which must be present, and must have a value that is an unordered set of
space-separated tokens (page 63). The allowed values and their meanings (page 289)
are defined in a later section. If the rel (page 85) attribute is absent, or if the value used
is not allowed according to the definitions in this specification, then the element does not
define a link.
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Two categories of links can be created using the link (page 84) element. Links to
external resources are links to resources that are to be used to augment the current
document, and hyperlink links are links to other documents (page 286). The link types
section (page 289) defines whether a particular link type is an external resource or a
hyperlink. One element can create multiple links (of which some might be external
resource links and some might be hyperlinks). User agents should process the links on a
per-link basis, not a per-element basis.

The exact behaviour for links to external resources depends on the exact relationship, as
defined for the relevant link type. Some of the attributes control whether or not the
external resource is to be applied (as defined below). For external resources that are
represented in the DOM (for example, style sheets), the DOM representation must be
made available even if the resource is not applied. (However, user agents may opt to
only fetch such resources when they are needed, instead of pro-actively downloading all
the external resources that are not applied.)

Interactive user agents should provide users with a means to follow the hyperlinks (page
287) created using the link (page 84) element, somewhere within their user interface.
The exact interface is not defined by this specification, but it should include the following
information (obtained from the element's attributes, again as defined below), in some
form or another (possibly simplified), for each hyperlink created with each link (page
84) element in the document:

• The relationship between this document and the resource (given by the rel (page
85) attribute)

• The title of the resource (given by the title (page 87) attribute).

• The URI of the resource (given by the href (page 85) attribute).

• The language of the resource (given by the hreflang (page 87) attribute).

• The optimum media for the resource (given by the media (page 86) attribute).

User agents may also include other information, such as the type of the resource (as
given by the type (page 87) attribute).

The media attribute says which media the resource applies to. The value must be a
valid media query. [MQ]

If the link is a hyperlink (page 86) then the media (page 86) attribute is purely advisory,
and describes for which media the document in question was designed.

However, if the link is an external resource link (page 86), then the media (page 86)
attribute is prescriptive. The user agent must only apply the external resource to views
while their state match the listed media.

The default, if the media (page 86) attribute is omitted, is all, meaning that by default
links apply to all media.
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The hreflang attribute on the link (page 84) element has the same semantics as the
hreflang attribute on hyperlink elements (page 287).

The type attribute gives the MIME type of the linked resource. It is purely advisory. The
value must be a valid MIME type, optionally with parameters. [RFC2046]

For external resource links (page 86), user agents may use the type given in this
attribute to decide whether or not to consider using the resource at all. If the UA does not
support the given MIME type for the given link relationship, then the UA may opt not to
download and apply the resource.

User agents must not consider the type (page 87) attribute authoritative — upon
fetching the resource, user agents must only use the Content-Type information
associated with the resource (page 277) to determine its type, not metadata included in
the link to the resource.

If the attribute is omitted, then the UA must fetch the resource to determine its type and
thus determine if it supports (and can apply) that external resource.

If a document contains three style sheet links labelled as follows:

<link rel="stylesheet" href="A" type="text/css">
<link rel="stylesheet" href="B" type="text/plain">
<link rel="stylesheet" href="C">

...then a compliant UA that supported only CSS style sheets would fetch the A and
C files, and skip the B file (since text/plain is not the MIME type for CSS style
sheets). For these two files, it would then check the actual types returned by the UA.
For those that are sent as text/css, it would apply the styles, but for those
labelled as text/plain, or any other type, it would not.

The title attribute gives the title of the link. With one exception, it is purely advisory.
The value is text. The exception is for style sheet links, where the title (page 87)
attribute defines alternative style sheet sets (page 96).

Note: The title (page 87) attribute on link (page 84) elements differs
from the global title (page 73) attribute of most other elements in that a
link without a title does not inherit the title of the parent element: it merely
has no title.

Some versions of HTTP defined a Link: header, to be processed like a series of link
(page 84) elements. When processing links, those must be taken into consideration as
well. For the purposes of ordering, links defined by HTTP headers must be assumed to
come before any links in the document, in the order that they were given in the HTTP
entity header. Relative URIs in these headers must be resolved according to the rules
given in HTTP, not relative to base URIs set by the document (e.g. using a base (page
83) element or xml:base attributes). [RFC2616] [RFC2068]

The DOM attributes href, rel, media, hreflang, and type each must reflect (page
29) the respective content attributes of the same name.
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The DOM attribute relList must reflect (page 29) the rel (page 85) content attribute.

The DOM attribute disabled only applies to style sheet links. When the link (page
84) element defines a style sheet link, then the disabled (page 88) attribute behaves
as defined for the alternative style sheets DOM (page 96). For all other link (page 84)
elements it always return false and does nothing on setting.

3.7.5. The meta element

Metadata element (page 82).

Contexts in which this element may be used:
In a head (page 82) element.

Content model:
Empty.

Element-specific attributes:
name (page 89)
http-equiv (page 91)
content (page 89)
charset (page 93) (HTML (page 25) only)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLMetaElement : HTMLElement (page 28) {

attribute DOMString content (page 89);
attribute DOMString name (page 89);
attribute DOMString httpEquiv (page 89);

};

The meta (page 88) element represents various kinds of metadata that cannot be
expressed using the title (page 82), base (page 83), link (page 84), style (page
93), and script (page 220) elements.

The meta (page 88) element can represent document-level metadata with the name

(page 89) attribute, pragma directives with the http-equiv (page 91) attribute, and the
file's character encoding declaration when an HTML document is serialised to string form
(e.g. for transmission over the network or for disk storage) with the charset (page 93)
attribute.

Exactly one of the name (page 89), http-equiv (page 91), and charset (page 93)
attributes must be specified.

If either name (page 89) or http-equiv (page 91) is specified, then the content

(page 89) attribute must also be specified. Otherwise, it must be omitted.
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The charset (page 93) attribute may only be specified in HTML documents (page 18),
it must not be used in XML documents (page 18). If the charset (page 93) attribute is
specified, the element must be the first element in the head element (page 36) of the
file.

The content attribute gives the value of the document metadata or pragma directive
when the element is used for those purposes. The allowed values depend on the exact
context, as described in subsequent sections of this specification.

If a meta (page 88) element has a name attribute, it sets document metadata. Document
metadata is expressed in terms of name/value pairs, the name (page 89) attribute on the
meta (page 88) element giving the name, and the content (page 89) attribute on the
same element giving the value. The name specifies what aspect of metadata is being
set; valid names and the meaning of their values are described in the following sections.
If a meta (page 88) element has no content (page 89) attribute, then the value part of
the metadata name/value pair is the empty string.

The DOM attributes name and content must reflect (page 29) the respective content
attributes of the same name. The DOM attribute httpEquiv must reflect the content
attribute http-equiv (page 91).

3.7.5.1. Standard metadata names

This specification defines a few names for the name (page 89) attribute of the meta

(page 88) element.

generator
The value must be a free-form string that identifies the software used to generate
the document. This value must not be used on hand-authored pages. WYSIWYG
editors have additional constraints (page 459) on the value used with this metadata
name.

dns
The value must be an ordered set of unique space-separated tokens (page 63),
each word of which is a host name. The list allows authors to provide a list of host
names that the user is expected to subsequently need. User agents may, according
to user preferences and prevailing network conditions, pre-emptively resolve the
given DNS names (extracting the names from the value using the rules for splitting a
string on spaces (page 63)), thus precaching the DNS information for those hosts
and potentially reducing the time between page loads for subsequent user
interactions. Higher priority should be given to host names given earlier in the list.

3.7.5.2. Other metadata names

Extensions to the predefined set of metadata names may be registered in the
WHATWG Wiki MetaExtensions page.

Anyone is free to edit the WHATWG Wiki MetaExtensions page at any time to add a
type. These new names must be specified with the following information:
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Keyword
The actual name being defined. The name should not be confusingly similar to any
other defined name (e.g. differing only in case).

Brief description
A short description of what the metadata name's meaning is, including the format
the value is required to be in.

Link to more details
A link to a more detailed description of the metadata name's semantics and
requirements. It could be another page on the Wiki, or a link to an external page.

Synonyms
A list of other names that have exactly the same processing requirements. Authors
should not use the names defined to be synonyms, they are only intended to allow
user agents to support legacy content.

Status
One of the following:

Proposal
The name has not received wide peer review and approval. Someone has
proposed it and is using it.

Accepted
The name has received wide peer review and approval. It has a specification
that unambiguously defines how to handle pages that use the name, including
when they use it in incorrect ways.

Unendorsed
The metadata name has received wide peer review and it has been found
wanting. Existing pages are using this keyword, but new pages should avoid it.
The "brief description" and "link to more details" entries will give details of what
authors should use instead, if anything.

If a metadata name is added with the "proposal" status and found to be redundant
with existing values, it should be removed and listed as a synonym for the existing
value.

Conformance checkers must use the information given on the WHATWG Wiki
MetaExtensions page to establish if a value not explicitly defined in this specification is
allowed or not. When an author uses a new type not defined by either this specification
or the Wiki page, conformance checkers should offer to add the value to the Wiki, with
the details described above, with the "proposal" status.

This specification does not define how new values will get approved. It is expected that
the Wiki will have a community that addresses this.

Metadata names whose values are to be URIs must not be proposed or accepted. Links
must be represented using the link (page 84) element, not the meta (page 88)
element.
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3.7.5.3. Pragma directives

When the http-equiv attribute is specified on a meta (page 88) element, the element
is a pragma directive.

The http-equiv attribute is an enumerated attribute (page 64). The following table lists
the keywords defined for this attribute. The states given in the first cell of the the rows
with keywords give the states to which those keywords map.

State Keywords

Refresh (page 91) refresh

Default style (page 93) default-style

When a meta (page 88) element is inserted into the document, if its http-equiv (page
91) attribute is present and represents one of the above states, then the user agent must
run the algorithm appropriate for that state, as described in the following list:

Refresh state

1. If another meta (page 88) element in the Refresh state (page 91) has already
been successfully processed (i.e. when it was inserted the user agent
processed it and reached the last step of this list of steps), then abort these
steps.

2. If the meta (page 88) element has no content (page 89) attribute, or if that
attribute's value is the empty string, then abort these steps.

3. Let input be the value of the element's content (page 89) attribute.

4. Let position point at the first character of input.

5. Skip whitespace (page 47).

6. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO
to U+0039 DIGIT NINE, and parse the resulting string using the rules for
parsing non-negative integers (page 48). If the sequence of characters
collected is the empty string, then no number will have been parsed; abort
these steps. Otherwise, let time be the parsed number.

7. Collect a sequence of characters (page 47) in the range U+0030 DIGIT ZERO
to U+0039 DIGIT NINE and U+002E FULL STOP ("."). Ignore any collected
characters.

8. Skip whitespace (page 47).

9. Let url be the address of the current page.

10. If the character in input pointed to by position is a U+003B SEMICOLON (";"),
then advance position to the next character. Otherwise, jump to the last step.
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11. Skip whitespace (page 47).

12. If the character in input pointed to by position is one of U+0055 LATIN CAPITAL
LETTER U or U+0075 LATIN SMALL LETTER U, then advance position to the
next character. Otherwise, jump to the last step.

13. If the character in input pointed to by position is one of U+0052 LATIN CAPITAL
LETTER R or U+0072 LATIN SMALL LETTER R, then advance position to the
next character. Otherwise, jump to the last step.

14. If the character in input pointed to by position is one of U+004C LATIN
CAPITAL LETTER L or U+006C LATIN SMALL LETTER L, then advance
position to the next character. Otherwise, jump to the last step.

15. Skip whitespace (page 47).

16. If the character in input pointed to by position is a U+003D EQUALS SIGN ("="),
then advance position to the next character. Otherwise, jump to the last step.

17. Skip whitespace (page 47).

18. Let url be equal to the substring of input from the character at position to the
end of the string.

19. Strip any trailing space characters (page 47) from the end of url.

20. Strip any U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF), and
U+000D CARRIAGE RETURN (CR) characters from url.

21. Resolve the url value to an absolute URI using the base URI of the meta (page
88) element.

22. Set a timer so that in time seconds, if the user has not canceled the redirect, the
user agent navigates (page 269) to url, with replacement enabled (page 271).

For meta (page 88) elements in the Refresh state (page 91), the content (page
89) attribute must have a value consisting either of:

• just a valid non-negative integer (page 48), or

• a valid non-negative integer (page 48), followed by a U+003B SEMICOLON (;),
followed by one or more space characters (page 47), followed by either a
U+0055 LATIN CAPITAL LETTER U or a U+0075 LATIN SMALL LETTER U, a
U+0052 LATIN CAPITAL LETTER R or a U+0072 LATIN SMALL LETTER R, a
U+004C LATIN CAPITAL LETTER L or a U+006C LATIN SMALL LETTER L, a
U+003D EQUALS SIGN (=), and then a valid URI (or IRI).

In the former case, the integer represents a number of seconds before the page is to
be reloaded; in the latter case the integer represents a number of seconds before
the page is to be replaced by the page at the given URI.

92



Default style state

1. ...

3.7.5.4. Specifying and establishing the document's character encoding

The meta (page 88) element may also be used to provide UAs with character encoding
information for HTML (page 18) files, by setting the charset attribute to the name of a
character encoding. This is called a character encoding declaration.

The following restrictions apply to character encoding declarations:

• When serialised (page 383), the charset (page 93) attribute and its value must be
contained completely in the first 512 bytes of the file.

• The attribute value must be serialised without the use of character entity references
of any kind.

• The value must be a valid character encoding name. [IANACHARSET]

• The character encoding name given must be the name of the character encoding
used to serialise the file.

• The character encoding used must be a superset of US-ASCII (specifically,
ANSI_X3.4-1968) for bytes in the range 0x09 - 0x0D, 0x20, 0x21, 0x22, 0x26, 0x27,
0x2C - 0x3F, 0x41 - 0x5A, and 0x61 - 0x7A.

If the encoding is one of UTF-8, UTF-16BE, UTF-16LE, UTF-32BE, or UTF-32LE, then
authors can use a BOM at the start of the file to indicate the character encoding.

In XHTML, the XML declaration should be used for inline character encoding information,
if necessary.

Authors should avoid including inline character encoding information. Character
encoding information should instead be included at the transport level (e.g. using the
HTTP Content-Type header).

3.7.6. The style element

Metadata element (page 82).

Contexts in which this element may be used:
In a head (page 82) element.
At the start of article (page 98), aside (page 100), div (page 267), and
section (page 97) elements.

Content model:
Depends on the value of the type (page 94) attribute.
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Element-specific attributes:
media (page 94)
type (page 94)
scoped (page 94)
Also, the title (page 94) attribute has special semantics on this element.

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLStyleElement : HTMLElement (page 28) {

attribute boolean disabled (page 95);
attribute DOMString media (page 95);
attribute DOMString type (page 95);
attribute boolean scoped (page 95);

};

The LinkStyle interface must also be implemented by this element, the styling
processing model (page 95) defines how. [CSSOM]

The style (page 93) element allows authors to embed style information in their
documents. The style (page 93) element is one of several inputs to the styling
processing model (page 95).

If the type attribute is given, it must contain a valid MIME type, optionally with
parameters, that designates a styling language. [RFC2046] If the attribute is absent, the
type defaults to text/css. [RFC2138]

When examining types to determine if they support the language, user agents must not
ignore unknown MIME parameters — types with unknown parameters must be assumed
to be unsupported.

The media attribute says which media the styles apply to. The value must be a valid
media query. [MQ] User agents must only apply the styles to views while their state
match the listed media. [DOM3VIEWS]

The default, if the media (page 94) attribute is omitted, is all, meaning that by default
styles apply to all media.

The scoped attribute is a boolean attribute (page 48). If the attribute is present, then the
user agent must only apply the specified style information to the style (page 93)
element's parent element (if any), and that element's child nodes. Otherwise, the
specified styles must, if applied, be applied to the entire document.

The title attribute on style (page 93) elements defines alternative style sheet sets
(page 96). If the style (page 93) element has no title (page 94) attribute, then it has
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no title; the title (page 73) attribute of ancestors does not apply to the style (page
93) element.

Note: The title (page 94) attribute on style (page 93) elements, like the
title (page 87) attribute on link (page 84) elements, differs from the
global title (page 73) attribute in that a style (page 93) block without a
title does not inherit the title of the parent element: it merely has no title.

All descendant elements must be processed, according to their semantics, before the
style (page 93) element itself is evaluated. For styling languages that consist of pure
text, user agents must evaluate style (page 93) elements by passing the
concatenation of the contents of all the text nodes (page 23) that are direct children of
the style (page 93) element (not any other nodes such as comments or elements), in
tree order (page 21), to the style system. For XML-based styling languages, user agents
must pass all the children nodes of the style (page 93) element to the style system.

Note: This specification does not specify a style system, but CSS is
expected to be supported by most Web browsers. [CSS21]

The media, type and scoped DOM attributes must reflect (page 29) the respective
content attributes of the same name.

The DOM disabled attribute behaves as defined for the alternative style sheets DOM
(page 96).

3.7.7. Styling

The link (page 84) and style (page 93) elements can provide styling information for
the user agent to use when rendering the document. The DOM Styling specification
specifies what styling information is to be used by the user agent and how it is to be
used. [CSSOM]

The style (page 93) and link (page 84) elements implement the LinkStyle

interface. [CSSOM]

For style (page 93) elements, if the user agent does not support the specified styling
language, then the sheet attribute of the element's LinkStyle interface must return
null. Similarly, link (page 84) elements that do not represent external resource links
that contribute to the styling processing model (page 297) (i.e. that do not have a
stylesheet (page 297) keyword in their rel (page 85) attribute), and link (page 84)
elements whose specified resource has not yet been downloaded, or is not in a
supported styling language, must have their LinkStyle interface's sheet attribute
return null.

Otherwise, the LinkStyle interface's sheet attribute must return a StyleSheet

object with the attributes implemented as follows: [CSSOM]
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The content type (type DOM attribute)
The content type must be the same as the style's specified type. For style (page
93) elements, this is the same as the type (page 94) content attribute's value, or
text/css if that is omitted. For link (page 84) elements, this is the Content-Type
metadata of the specified resource (page 277).

The location (href DOM attribute)
For link (page 84) elements, the location must be the URI given by the element's
href (page 85) content attribute. For style (page 93) elements, there is no
location.

The intended destination media for style information (media DOM attribute)
The media must be the same as the value of the element's media content attribute.

The style sheet title (title DOM attribute)
The title must be the same as the value of the element's title content attribute. If
the attribute is absent, then the style sheet does not have a title. The title is used for
defining alternative style sheet sets.

The disabled DOM attribute on link (page 84) and style (page 93) elements must
return false and do nothing on setting, if the sheet attribute of their LinkStyle
interface is null. Otherwise, it must return the value of the StyleSheet interface's
disabled attribute on getting, and forward the new value to that same attribute on
setting.

3.8. Sections

Sectioning elements are elements that divide the page into, for lack of a better word,
sections. This section describes HTML's sectioning elements and elements that support
them.

Some elements are scoped to their nearest ancestor sectioning element. For example,
address (page 104) elements apply just to their section. For such elements x, the
elements that apply to a sectioning element e are all the x elements whose nearest
sectioning element is e.

3.8.1. The body element

Sectioning element (page 96).

Contexts in which this element may be used:
As the second element in an html (page 81) element.

Content model:
Zero or more block-level elements (page 68).
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Element-specific attributes:
None.

Predefined classes that apply to this element:
search (page 77), warning (page 78)

DOM interface:
No difference from HTMLElement (page 28).

The body (page 96) element represents the main content of the document.

The body (page 96) element potentially has a heading. See the section on headings and
sections (page 105) for further details.

In conforming documents, there is only one body (page 96) element. The
document.body (page 36) DOM attribute provides scripts with easy access to a
document's body (page 96) element.

Note: Some DOM operations (for example, parts of the drag and drop
(page 335) model) are defined in terms of "the body element (page 36)".
This refers to a particular element in the DOM, as per the definition of the
term, and not any arbitrary body (page 96) element.

3.8.2. The section element

Sectioning (page 96) block-level element (page 68).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
Zero or more style (page 93) elements, followed by zero or more block-level
elements (page 68).

Element-specific attributes:
None.

Predefined classes that apply to this element:
error (page 77), example (page 77), search (page 77), warning (page 78)

DOM interface:
No difference from HTMLElement (page 28).
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The section (page 97) element represents a generic document or application section.
A section, in this context, is a thematic grouping of content, typically with a header,
possibly with a footer.

Examples of sections would be chapters, the various tabbed pages in a tabbed
dialog box, or the numbered sections of a thesis. A Web site's home page could be
split into sections for an introduction, news items, contact information.

Each section (page 97) element potentially has a heading. See the section on
headings and sections (page 105) for further details.

3.8.3. The nav element

Sectioning (page 96) block-level element (page 68).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
Zero or more block-level elements (page 68), or inline-level content (page 69)
(but not both).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The nav (page 98) element represents a section of a page that links to other pages or to
parts within the page: a section with navigation links.

When used as an inline-level content (page 70) container, the element represents a
paragraph (page 72).

Each nav (page 98) element potentially has a heading. See the section on headings and
sections (page 105) for further details.

3.8.4. The article element

Sectioning (page 96) block-level element (page 68).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
Zero or more style (page 93) elements, followed by zero or more block-level
elements (page 68).
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Element-specific attributes:
None.

Predefined classes that apply to this element:
warning (page 78)

DOM interface:
No difference from HTMLElement (page 28).

The article (page 98) element represents a section of a page that consists of a
composition that forms an independent part of a document, page, or site. This could be a
forum post, a magazine or newspaper article, a Web log entry, a user-submitted
comment, or any other independent item of content.

Note: An article (page 98) element is "independent" in that its contents
could stand alone, for example in syndication. However, the element is
still associated with its ancestors; for instance, contact information that
applies (page 96) to a parent body (page 96) element still covers the
article (page 98) as well.

When article (page 98) elements are nested, the inner article (page 98) elements
represent articles that are in principle related to the contents of the outer article. For
instance, a Web log entry on a site that accepts user-submitted comments could
represent the comments as article (page 98) elements nested within the article

(page 98) element for the Web log entry.

Author information associated with an article (page 98) element (q.v. the address

(page 104) element) does not apply to nested article (page 98) elements.

Each article (page 98) element potentially has a heading. See the section on
headings and sections (page 105) for further details.

3.8.5. The blockquote element

Sectioning (page 96) block-level element (page 68), and structured inline-level element
(page 69).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.
Where structured inline-level elements (page 69) are allowed.

Content model:
Zero or more block-level elements (page 68).
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Element-specific attributes:
cite (page 100)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLQuoteElement : HTMLElement (page 28) {

attribute DOMString cite (page 100);
};

Note: The HTMLQuoteElement (page 100) interface is also used by
the q (page 125) element.

The blockquote (page 99) element represents a section that is quoted from another
source.

Content inside a blockquote (page 99) must be quoted from another source, whose
URI, if it has one, should be cited in the cite attribute.

If the cite (page 100) attribute is present, it must be a URI (or IRI). User agents should
allow users to follow such citation links.

If a blockquote (page 99) element is preceeded or followed (page 67) by a p (page
112) element that contains a single cite (page 125) element and is itself not preceeded
or followed (page 67) by another blockquote (page 99) element and does not itself
have a q (page 125) element descendant, then, the citation given by that cite (page
125) element gives the source of the quotation contained in the blockquote (page 99)
element.

Each blockquote (page 99) element potentially has a heading. See the section on
headings and sections (page 105) for further details.

The cite DOM attribute reflects the element's cite content attribte.

Note: The best way to represent a conversation is not with the cite (page
125) and blockquote (page 99) elements, but with the dialog (page 114)
element.

3.8.6. The aside element

Sectioning (page 96) block-level element (page 68).
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Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
Zero or more style (page 93) elements, followed by either zero or more
block-level elements (page 68), or inline-level content (page 69) (but not both).

Element-specific attributes:
None.

Predefined classes that apply to this element:
example (page 77), issue (page 77), note (page 77), search (page 77),
warning (page 78)

DOM interface:
No difference from HTMLElement (page 28).

The aside (page 100) element represents a section of a page that consists of content
that is tangentially related to the content around the aside (page 100) element, and
which could be considered separate from that content. Such sections are often
represented as sidebars in printed typography.

When used as an inline-level content (page 70) container, the element represents a
paragraph (page 72).

Each aside (page 100) element potentially has a heading. See the section on headings
and sections (page 105) for further details.

3.8.7. The h1, h2, h3, h4, h5, and h6 elements

Block-level elements (page 68).

Contexts in which these elements may be used:
Where block-level elements (page 68) are expected.

Content model:
Significant (page 69) strictly inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

101



These elements define headers for their sections.

The semantics and meaning of these elements are defined in the section on headings
and sections (page 105).

These elements have a rank given by the number in their name. The h1 (page 101)
element is said to have the highest rank, the h6 (page 101) element has the lowest rank,
and two elements with the same name have equal rank.

These elements must not be empty (page 69).

3.8.8. The header element

Block-level element (page 68).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected and there are no header

(page 102) ancestors.

Content model:
Zero or more block-level elements (page 68), including at least one descendant
h1 (page 101), h2 (page 101), h3 (page 101), h4 (page 101), h5 (page 101), or
h6 (page 101) element, but no sectioning element descendants, no header

(page 102) element descendants, and no footer (page 103) element
descendants.

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The header (page 102) element represents the header of a section. Headers may
contain more than just the section's heading — for example it would be reasonable for
the header to include version history information.

header (page 102) elements must not contain any header (page 102) elements,
footer (page 103) elements, or any sectioning elements (such as section (page 97))
as descendants.

header (page 102) elements must have at least one h1 (page 101), h2 (page 101), h3
(page 101), h4 (page 101), h5 (page 101), or h6 (page 101) element as a descendant.

For the purposes of document summaries, outlines, and the like, header (page 102)
elements are equivalent to the highest ranked (page 102) h1 (page 101)-h6 (page 101)
element descendant (the first such element if there are multiple elements with that rank
(page 102)).
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Other heading elements indicate subheadings or subtitles.

Here are some examples of valid headers. In each case, the emphasised text
represents the text that would be used as the header in an application extracting
header data and ignoring subheadings.

<header>
<h1>The reality dysfunction</h1>
<h2>Space is not the only void</h2>

</header>
<header>
<p>Welcome to...</p>
<h1>Voidwars!</h1>

</header>
<header>
<h1>Scalable Vector Graphics (SVG) 1.2</h1>
<h2>W3C Working Draft 27 October 2004</h2>
<dl>
<dt>This version:</dt>
<dd><a href="http://www.w3.org/TR/2004/WD-SVG12-20041027/

">http://www.w3.org/TR/2004/WD-SVG12-20041027/</a></dd>
<dt>Previous version:</dt>
<dd><a href="http://www.w3.org/TR/2004/WD-SVG12-20040510/

">http://www.w3.org/TR/2004/WD-SVG12-20040510/</a></dd>
<dt>Latest version of SVG 1.2:</dt>
<dd><a href="http://www.w3.org/TR/SVG12/">http://www.w3.org/TR/SVG12/

</a></dd>
<dt>Latest SVG Recommendation:</dt>
<dd><a href="http://www.w3.org/TR/SVG/">http://www.w3.org/TR/SVG/

</a></dd>
<dt>Editor:</dt>
<dd>Dean Jackson, W3C, <a href="mailto:dean@w3.org">dean@w3.org</a></dd>
<dt>Authors:</dt>
<dd>See <a href="#authors">Author List</a></dd>

</dl>
<p class="copyright"><a href="http://www.w3.org/Consortium/Legal/

ipr-notic ...
</header>

The section on headings and sections (page 105) defines how header (page 102)
elements are assigned to individual sections.

The rank (page 102) of a header (page 102) element is the same as for an h1 (page
101) element (the highest rank).

3.8.9. The footer element

Block-level element (page 68).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
Either zero or more block-level elements (page 68), but with no h1 (page 101),
h2 (page 101), h3 (page 101), h4 (page 101), h5 (page 101), h6 (page 101),
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header (page 102), or footer (page 103) elements as descendants, and with
no sectioning elements (page 96) as descendants; or, inline-level content (page
69) (but not both).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The footer (page 103) element represents the footer for the section it applies (page
96) to. A footer typically contains information about its section such as who wrote it, links
to related documents, copyright data, and the like.

footer (page 103) elements must not contain any footer (page 103), header (page
102), h1 (page 101), h2 (page 101), h3 (page 101), h4 (page 101), h5 (page 101), or
h6 (page 101) elements, or any of the sectioning elements (such as section (page
97)), as descendants.

When used as an inline-level content (page 70) container, the element represents a
paragraph (page 72).

Contact information for the section given in a footer (page 103) should be marked up
using the address (page 104) element.

3.8.10. The address element

Block-level element (page 68).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
Inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).
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The address (page 104) element represents a paragraph (page 72) of contact
information for the section it applies (page 96) to.

For example, a page at the W3C Web site related to HTML might include the
following contact information:

<ADDRESS>
<A href="../People/Raggett/">Dave Raggett</A>,
<A href="../People/Arnaud/">Arnaud Le Hors</A>,
contact persons for the <A href="Activity">W3C HTML Activity</A>

</ADDRESS>

The address (page 104) element must not be used to represent arbitrary addresses
(e.g. postal addresses), unless those addresses are contact information for the section.
(The p (page 112) element is the appropriate element for marking up such addresses.)

The address (page 104) element must not contain information other than contact
information.

For example, the following is non-conforming use of the address (page 104)
element:

<ADDRESS>Last Modified: 1999/12/24 23:37:50</ADDRESS>

Typically, the address (page 104) element would be included with other information in a
footer (page 103) element.

To determine the contact information for a sectioning element (such as a document's
body (page 96) element, which would give the contact information for the page), UAs
must collect all the address (page 104) elements that apply (page 96) to that sectioning
element and its ancestor sectioning elements. The contact information is the collection of
all the information given by those elements.

Note: Contact information for one sectioning element, e.g. a aside (page
100) element, does not apply to its ancestor elements, e.g. the page's
body (page 96).

3.8.11. Headings and sections

The h1 (page 101)-h6 (page 101) elements and the header (page 102) element are
headings.

The first heading in a sectioning element gives the header for that section. Subsequent
headers of equal or higher rank (page 102) start new (implied) sections, headers of
lower rank (page 102) start subsections that are part of the previous one.

Sectioning elements other than blockquote (page 99) are always considered
subsections of their nearest ancestor sectioning element, regardless of what implied
sections other headings may have created. However, blockquote (page 99) elements
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are associated with implied sections. Effectively, blockquote (page 99) elements act
like sections on the inside, and act opaquely on the outside.

For the following fragment:

<body>
<h1>Foo</h1>
<h2>Bar</h2>
<blockquote>
<h3>Bla</h3>

</blockquote>
<p>Baz</p>
<h2>Quux</h2>
<section>
<h3>Thud</h3>

</section>
<p>Grunt</p>

</body>

...the structure would be:

1. Foo (heading of explicit body (page 96) section)
1. Bar (heading starting implied section)

1. Bla (heading of explicit blockquote (page 99) section)
Baz (paragraph)

2. Quux (heading starting implied section)
3. Thud (heading of explicit section (page 97) section)

Grunt (paragraph)

Notice how the blockquote (page 99) nests inside an implicit section while the
section (page 97) does not (and in fact, ends the earlier implicit section so that a
later paragraph is back at the top level).

Sections may contain headers of any rank (page 102), but authors are strongly
encouraged to either use only h1 (page 101) elements, or to use elements of the
appropriate rank (page 102) for the section's nesting level.

Authors are also encouraged to explictly wrap sections in sectioning elements, instead of
relying on the implicit sections generated by having multiple heading in one sectioning
element.

For example, the following is correct:

<body>
<h4>Apples</h4>
<p>Apples are fruit.</p>
<section>
<h2>Taste</h2>
<p>They taste lovely.</p>
<h6>Sweet</h6>
<p>Red apples are sweeter than green ones.</p>
<h1>Color</h1>
<p>Apples come in various colors.</p>

</section>
</body>
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However, the same document would be more clearly expressed as:

<body>
<h1>Apples</h1>
<p>Apples are fruit.</p>
<section>
<h2>Taste</h2>
<p>They taste lovely.</p>
<section>
<h3>Sweet</h3>
<p>Red apples are sweeter than green ones.</p>

</section>
</section>
<section>
<h2>Color</h2>
<p>Apples come in various colors.</p>

</section>
</body>

Both of the documents above are semantically identical and would produce the
same outline in compliant user agents.

3.8.11.1. Creating an outline

Documents can be viewed as a tree of sections, which defines how each element in the
tree is semantically related to the others, in terms of the overall section structure. This
tree is related to the document tree, but there is not a one-to-one relationship between
elements in the DOM and the document's sections.

The tree of sections should be used when generating document outlines, for example
when generating tables of contents.

To derive the tree of sections from the document tree, a hypothetical tree is used,
consisting of a view of the document tree containing only the h1 (page 101)-h6 (page
101) and header (page 102) elements, and the sectioning elements other than
blockquote (page 99). Descendants of h1 (page 101)-h6 (page 101), header (page
102), and blockquote (page 99) elements must be removed from this view.

The hypothetical tree must be rooted at the root element (page 21) or at a sectioning
element. In particular, while the sections inside blockquote (page 99)s do not
contribute to the document's tree of sections, blockquote (page 99)s can have outlines
of their own.

UAs must take this hypothetical tree (which will become the outline) and mutate it by
walking it depth first in tree order (page 21) and, for each h1 (page 101)-h6 (page 101)
or header (page 102) element that is not the first element of its parent sectioning
element, inserting a new sectioning element, as follows:

↪ If the element is a header (page 102) element, or if it is an h1 (page 101)-h6
(page 101) node of rank (page 102) equal to or higher than the first element in
the parent sectioning element (assuming that is also an h1 (page 101)-h6
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(page 101) node), or if the first element of the parent sectioning element is a
sectioning element:

Insert the new sectioning element as the immediately following sibling of the
parent sectioning element, and move all the elements from the current heading
element up to the end of the parent sectioning element into the new sectioning
element.

↪ Otherwise:
Move the current heading element, and all subsequent siblings up to but
excluding the next sectioning element, header (page 102) element, or h1
(page 101)-h6 (page 101) of equal or higher rank (page 102), whichever
comes first, into the new sectioning element, then insert the new sectioning
element where the current header was.

The outline is then the resulting hypothetical tree. The ranks (page 102) of the headers
become irrelevant at this point: each sectioning element in the hypothetical tree contains
either no or one heading element child. If there is one, then it gives the section's
heading, of there isn't, the section has no heading.

Sections are nested as in the hypothetical tree. If a sectioning element is a child of
another, that means it is a subsection of that other section.

When creating an interactive table of contents, entries should jump the user to the
relevant section element, if it was a real element in the original document, or to the
heading, if the section element was one of those created during the above process.

Selecting the first section of the document therefore always takes the user to the top
of the document, regardless of where the first header in the body (page 96) is to be
found.

The hypothetical tree (before mutations) could be generated by creating a
TreeWalker with the following NodeFilter (described here as an
anonymous ECMAScript function). [DOMTR] [ECMA262]

function (n) {
// This implementation only knows about HTML elements.
// An implementation that supports other languages might be
// different.

// Reject anything that isn't an element.
if (n.nodeType != Node.ELEMENT_NODE)

return NodeFilter.FILTER_REJECT;

// Skip any descendants of headings.
if (n.parentNode && n.parentNode.namespaceURI == 'http://www.w3.org/

1999/xhtml') &&
(n.parentNode.localName == 'h1' || n.parentNode.localName == 'h2'

||
n.parentNode.localName == 'h3' || n.parentNode.localName == 'h4'

||
n.parentNode.localName == 'h5' || n.parentNode.localName == 'h6'

||
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n.parentNode.localName == 'header')
return NodeFilter.FILTER_REJECT;

// Skip any blockquotes.
if (n.namespaceURI == 'http://www.w3.org/1999/xhtml') &&

(n.localName == 'blockquote'))
return NodeFilter.FILTER_REJECT;

// Accept HTML elements in the list given in the prose above.
if ((n.namespaceURI == 'http://www.w3.org/1999/xhtml') &&

(n.localName == 'body' || /*n.localName == 'blockquote' ||*/
n.localName == 'section' || n.localName == 'nav' ||
n.localName == 'article' || n.localName == 'aside' ||
n.localName == 'h1' || n.localName == 'h2' ||
n.localName == 'h3' || n.localName == 'h4' ||
n.localName == 'h5' || n.localName == 'h6' ||
n.localName == 'header'))

return NodeFilter.FILTER_ACCEPT;

// Skip the rest.
return NodeFilter.FILTER_SKIP;

}

3.8.11.2. Determining which heading and section applies to a particular node

Given a particular node, user agents must use the following algorithm, in the given order,
to determine which heading and section the node is most closely associated with. The
processing of this algorithm must stop as soon as the associated section and heading
are established (even if they are established to be nothing).

1. If the node has an ancestor that is a header (page 102) element, then the
associated heading is the most distant such ancestor. The associated section is that
header (page 102)'s associated section (i.e. repeat this algorithm for that header
(page 102)).

2. If the node has an ancestor that is an h1 (page 101)-h6 (page 101) element, then
the associated heading is the most distant such ancestor. The associated section is
that heading's section (i.e. repeat this algorithm for that heading element).

3. If the node is an h1 (page 101)-h6 (page 101) element or a header (page 102)
element, then the associated heading is the element itself. The UA must then
generate the hypothetical section tree (page 107) described in the previous section,
rooted at the nearest section ancestor (or the root element (page 21) if there is no
such ancestor). If the parent of the heading in that hypothetical tree is an element in
the real document tree, then that element is the associated section. Otherwise, there
is no associated section element.

4. If the node is a sectioning element, then the associated section is itself. The UA
must then generate the hypothetical section tree (page 107) described in the
previous section, rooted at the section itself. If the section element, in that
hypothetical tree, has a child element that is an h1 (page 101)-h6 (page 101)
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element or a header (page 102) element, then that element is the associated
heading. Otherwise, there is no associated heading element.

5. If the node is a footer (page 103) or address (page 104) element, then the
associated section is the nearest ancestor sectioning element, if there is one. The
node's associated heading is the same as that sectioning element's associated
heading (i.e. repeat this algorithm for that sectioning element). If there is no ancestor
sectioning element, the element has no associated section nor an associated
heading.

6. Otherwise, the node is just a normal node, and the document has to be examined
more closely to determine its section and heading. Create a view rooted at the
nearest ancestor sectioning element (or the root element (page 21) if there is none)
that has just h1 (page 101)-h6 (page 101) elements, header (page 102) elements,
the node itself, and sectioning elements other than blockquote (page 99)
elements. (Descendants of any of the nodes in this view can be ignored, as can any
node later in the tree than the node in question, as the algorithm below merely walks
backwards up this view.)

7. Let n be an iterator for this view, initialised at the node in question.

8. Let c be the current best candidate heading, initially null, and initially not used. It is
used when top-level heading candidates are to be searched for (see below).

9. Repeat these steps (which effectively goes backwards through the node's previous
siblings) until an answer is found:
1. If n points to a node with no previous sibling, and c is null, then return the

node's parent node as the answer. If the node has no parent node, return null
as the answer.

2. Otherwise, if n points to a node with no previous sibling, return c as the answer.
3. Adjust n so that it points to the previous sibling of the current position.
4. If n is pointing at an h1 (page 101) or header (page 102) element, then return

that element as the answer.
5. If n is pointing at an h2 (page 101)-h6 (page 101) element, and heading

candidates are not being searched for, then return that element as the answer.
6. Otherwise, if n is pointing at an h2 (page 101)-h6 (page 101) element, and

either c is still null, or c is a heading of lower rank (page 102) than this one,
then set c to be this element, and continue going backwards through the
previous siblings.

7. If n is pointing at a sectioning element, then from this point on top-level heading
candidates are being searched for. (Specifically, we are looking for the nearest
top-level header for the current section.) Continue going backwards through the
previous siblings.

10. If the answer from the previous step (the loop) is null, which can only happen if the
node has no preceeding headings and is not contained in a sectioning element, then
there is no associated heading and no associated section.
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11. Otherwise, if the answer from the earlier loop step is a sectioning element, then the
associated section is that element and the associated heading is that sectioning
element's associated heading (i.e. repeat this algorithm for that section).

12. Otherwise, if the answer from that same earlier step is an h1 (page 101)-h6 (page
101) element or a header (page 102) element, then the associated heading is that
element and the associated section is that heading element's associated section
(i.e. repeat this algorithm for that heading).

Note: Not all nodes have an associated header or section. For example, if
a section is implied, as when multiple headers are found in one sectioning
element, then a node in that section has an anonymous associated
section (its section is not represented by a real element), and the
algorithm above does not associate that node with any particular
sectioning element.

For the following fragment:

<body>
<h1>X</h1>
<h2>X</h2>
<blockquote>
<h3>X</h3>

</blockquote>
<p id="a">X</p>
<h4>Text Node A</h4>
<section>
<h5>X</h5>

</section>
<p>Text Node B</p>

</body>

The associations are as follows (not all associations are shown):

Node Associated heading Associated section

<body> <h1> <body>

<h1> <h1> <body>

<h2> <h2> None.

<blockquote> <h2> None.

<h3> <h3> <blockquote>

<p id="a"> <h2> None.

Text Node A <h4> None.

Text Node B <h1> <body>
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3.9. Prose

3.9.1. The p element

Block-level element (page 68).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
Significant (page 69) inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
copyright (page 76), error (page 77), example (page 77), issue (page 77),
note (page 77), search (page 77), warning (page 78)

DOM interface:
No difference from HTMLElement (page 28).

The p (page 112) element represents a paragraph (page 72).

p (page 112) elements can contain a mixture of strictly inline-level content (page 69),
such as text, images, hyperlinks, etc, and structured inline-level elements (page 69),
such as lists, tables, and block quotes. p (page 112) elements must not be empty (page
69).

The following examples are conforming HTML fragments:

<p>The little kitten gently seated himself on a piece of
carpet. Later in his life, this would be referred to as the time the
cat sat on the mat.</p>
<fieldset>
<legend>Personal information</legend>
<p>

<label>Name: <input name="n"></label>
<label><input name="anon" type="checkbox"> Hide from other users</label>

</p>
<p><label>Address: <textarea name="a"></textarea></label></p>

</fieldset>
<p>There was once an example from Femley,<br>
Whose markup was of dubious quality.<br>
The validator complained,<br>
So the author was pained,<br>
To move the error from the markup to the rhyming.</p>

The p (page 112) element should not be used when a more specific element is more
appropriate.

The following example is technically correct:
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<section>
<!-- ... -->
<p>Last modified: 2001-04-23</p>
<p>Author: fred@example.com</p>

</section>

However, it would be better marked-up as:

<section>
<!-- ... -->
<footer>Last modified: 2001-04-23</footer>
<address>Author: fred@example.com</address>

</section>

Or:

<section>
<!-- ... -->
<footer>
<p>Last modified: 2001-04-23</p>
<address>Author: fred@example.com</address>

</footer>
</section>

3.9.2. The hr element

Block-level element (page 68).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
Empty.

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The hr (page 113) element represents a paragraph (page 72)-level thematic break, e.g.
a scene change in a story, or a transition to another topic within a section of a reference
book.

3.9.3. The br element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.
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Content model:
Empty.

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The br (page 113) element represents a line break.

br (page 113) elements must be empty. Any content inside br (page 113) elements
must not be considered part of the surrounding text.

br (page 113) elements must only be used for line breaks that are actually part of the
content, as in poems or addresses.

The following example is correct usage of the br (page 113) element:

<p>P. Sherman<br>
42 Wallaby Way<br>
Sydney</p>

br (page 113) elements must not be used for separating thematic groups in a
paragraph.

The following examples are non-conforming, as they abuse the br (page 113)
element:

<p><a ...>34 comments.</a><br>
<a ...>Add a comment.<a></p>
<p>Name: <input name="name"><br>
Address: <input name="address"></p>

Here are alternatives to the above, which are correct:

<p><a ...>34 comments.</a></p>
<p><a ...>Add a comment.<a></p>
<p>Name: <input name="name"></p>
<p>Address: <input name="address"></p>

3.9.4. The dialog element

Block-level element (page 68).
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Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
Zero or more pairs of dt (page 121) and dd (page 122) elements.

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The dialog (page 114) element represents a conversation.

Each part of the conversation must have an explicit talker (or speaker) given by a dt

(page 121) element, and a discourse (or quote) given by a dd (page 122) element.

This example demonstrates this using an extract from Abbot and Costello's famous
sketch, Who's on first:

<dialog>
<dt>Costello
<dd> Look, you gotta first baseman?
<dt> Abbott
<dd> Certainly.
<dt> Costello
<dd> Who's playing first?
<dt> Abbott
<dd> That's right.
<dt> Costello
<dd> When you pay off the first baseman every month, who gets the money?
<dt> Abbott
<dd> Every dollar of it.

</dialog>

Note: Text in a dt (page 121) element in a dialog (page 114) element is
implicitly the source of the text given in the following dd (page 122)
element, and the contents of the dd (page 122) element are implicitly a
quote from that speaker. There is thus no need to include cite (page
125), q (page 125), or blockquote (page 99) elements in this markup.
Indeed, a q (page 125) element inside a dd (page 122) element in a
conversation would actually imply the person talking were themselves
quoting someone else. See the cite (page 125), q (page 125), and
blockquote (page 99) elements for other ways to cite or quote.
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3.10. Preformatted text

3.10.1. The pre element

Block-level element (page 68), and structured inline-level element (page 69).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.
Where structured inline-level elements (page 69) are allowed.

Content model:
Strictly inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The pre (page 116) element represents a block of preformatted text, in which structure
is represented by typographic conventions rather than by elements.

Some examples of cases where the pre (page 116) element could be used:

• Including an e-mail, with paragraphs indicated by blank lines, lists indicated by lines
prefixed with a bullet, and so on.

• Including fragments of computer code, with structure indicated according to the
conventions of that language.

• Displaying ASCII art.

If, ignoring text nodes (page 23) consisting only of whitespace (page 67), the only child
of a pre (page 116) is a code (page 142) element, then the pre (page 116) element
represents a block of computer code.

If, ignoring text nodes (page 23) consisting only of whitespace (page 67), the only child
of a pre (page 116) is a samp (page 144) element, then the pre (page 116) element
represents a block of computer output.

3.11. Lists

3.11.1. The ol element

Block-level element (page 68), and structured inline-level element (page 69).
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Contexts in which this element may be used:
Where block-level elements (page 68) are expected.
Where structured inline-level elements (page 69) are allowed.

Content model:
Zero or more li (page 118) elements.

Element-specific attributes:
start (page 117)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLOListElement : HTMLElement (page 28) {

attribute long start (page 117);
};

The ol (page 116) element represents an ordered list of items (which are represented
by li (page 118) elements).

The start attribute, if present, must be a valid integer (page 49) giving the ordinal value
of the first list item.

If the start (page 117) attribute is present, user agents must parse it as an integer
(page 49), in order to determine the attribute's value. The default value, used if the
attribute is missing or if the value cannot be converted to a number according to the
referenced algorithm, is 1.

The items of the list are the li (page 118) element child nodes of the ol (page 116)
element, in tree order (page 21).

The first item in the list has the ordinal value given by the ol (page 116) element's
start (page 117) attribute, unless that li (page 118) element has a value (page 119)
attribute with a value that can be successfully parsed, in which case it has the ordinal
value given by that value (page 119) attribute.

Each subsequent item in the list has the ordinal value given by its value (page 119)
attribute, if it has one, or, if it doesn't, the ordinal value of the previous item, plus one.

The start DOM attribute must reflect (page 29) the value of the start (page 117)
content attribute.

3.11.2. The ul element

Block-level element (page 68), and structured inline-level element (page 69).
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Contexts in which this element may be used:
Where block-level elements (page 68) are expected.
Where structured inline-level elements (page 69) are allowed.

Content model:
Zero or more li (page 118) elements.

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The ul (page 117) element represents an unordered list of items (which are represented
by li (page 118) elements).

The items of the list are the li (page 118) element child nodes of the ul (page 117)
element.

3.11.3. The li element

Contexts in which this element may be used:
Inside ol (page 116) elements.
Inside ul (page 117) elements.
Inside menu (page 257) elements.

Content model:
When the element is a child of an ol (page 116) or ul (page 117) element and
the grandchild of an element that is being used as an inline-level content
container (page 70), or, when the element is a child of a menu (page 257)
element: inline-level content (page 69).
Otherwise: zero or more block-level elements (page 68), or inline-level content
(page 69) (but not both).

Element-specific attributes:
If the element is a child of an ol (page 116) element: value (page 119)
If the element is not the child of an ol (page 116) element: None.

Predefined classes that apply to this element:
None.
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DOM interface:

interface HTMLLIElement : HTMLElement (page 28) {

attribute long value (page 119);
};

The li (page 118) element represents a list item. If its parent element is an ol (page
116), ul (page 117), or menu (page 257) element, then the element is an item of the
parent element's list, as defined for those elements. Otherwise, the list item has no
defined list-related relationship to any other li (page 118) element.

When the list item is the child of an ol (page 116) or ul (page 117) element, the content
model of the item depends on the way that parent element was used. If it was used as
structured inline content (i.e. if that element's parent was used as an inline-level content
(page 70) container), then the li (page 118) element must only contain inline-level
content (page 69). Otherwise, the element may be used either for inline content (page
69) or block-level elements (page 68).

When the list item is the child of a menu (page 257) element, the li (page 118) element
must contain only inline-level content (page 69).

When the list item is not the child of an ol (page 116), ul (page 117), or menu (page
257) element, e.g. because it is an orphaned node not in the document, it may contain
either for inline content (page 69) or block-level elements (page 68).

When used as an inline-level content (page 70) container, the list item represents a
single paragraph (page 72).

The value attribute, if present, must be a valid integer (page 49) giving the ordinal value
of the first list item.

If the value (page 119) attribute is present, user agents must parse it as an integer
(page 49), in order to determine the attribute's value. If the attribute's value cannot be
converted to a number, it must be treated as if the attribute was absent. The attribute has
no default value.

The value (page 119) attribute is processed relative to the element's parent ol (page
116) element (q.v.), if there is one. If there is not, the attribute has no effect.

The value DOM attribute must reflect (page 29) the value of the value (page 119)
content attribute.

3.11.4. The dl element

Block-level element (page 68), and structured inline-level element (page 69).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.
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Where structured inline-level elements (page 69) are allowed.

Content model:
Zero or more groups each consisting of one or more dt (page 121) elements
followed by one or mode dd (page 122) elements.

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The dl (page 119) element introduces an unordered association list consisting of zero or
more name-value groups (a description list). Each group must consist of one or more
names (dt (page 121) elements) followed by one or more values (dd (page 122)
elements).

Name-value groups may be terms and definitions, metadata topics and values, or any
other groups of name-value data.

The following are all conforming HTML fragments.

In the following example, one entry ("Authors") is linked to two values ("John" and
"Luke").

<dl>
<dt> Authors
<dd> John
<dd> Luke
<dt> Editor
<dd> Frank

</dl>

In the following example, one definition is linked to two terms.

<dl>
<dt lang="en-US"> <dfn>color</dfn> </dt>
<dt lang="en-GB"> <dfn>colour</dfn> </dt>
<dd> A sensation which (in humans) derives from the ability of
the fine structure of the eye to distinguish three differently
filtered analyses of a view. </dd>

</dl>

The following example illustrates the use of the dl (page 119) element to mark up
metadata of sorts. At the end of the example, one group has two metadata labels
("Authors" and "Editors") and two values ("Robert Rothman" and "Daniel Jackson").
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<dl>
<dt> Last modified time </dt>
<dd> 2004-12-23T23:33Z </dd>
<dt> Recommended update interval </dt>
<dd> 60s </dd>
<dt> Authors </dt>
<dt> Editors </dt>
<dd> Robert Rothman </dd>
<dd> Daniel Jackson </dd>

</dl>

If a dl (page 119) element is empty, it contains no groups.

If a dl (page 119) element contains non-whitespace (page 67) text nodes (page 23), or
elements other than dt (page 121) and dd (page 122), then those elements or text
nodes (page 23) do not form part of any groups in that dl (page 119), and the document
is non-conforming.

If a dl (page 119) element contains only dt (page 121) elements, then it consists of one
group with names but no values, and the document is non-conforming.

If a dl (page 119) element contains only dd (page 122) elements, then it consists of one
group with values but no names, and the document is non-conforming.

Note: The dl (page 119) element is inappropriate for marking up dialogue,
since dialogue is ordered (each speaker/line pair comes after the next).
For an example of how to mark up dialogue, see the dialog (page 114)
element.

3.11.5. The dt element

Contexts in which this element may be used:
Before dd (page 122) or dt (page 121) elements inside dl (page 119) elements.
Before a dd (page 122) element inside a dialog (page 114) element.

Content model:
Strictly inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The dt (page 121) element represents the term, or name, part of a term-description
group in a description list (dl (page 119) element), and the talker, or speaker, part of a
talker-discourse pair in a conversation (dialog (page 114) element).
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Note: The dt (page 121) element itself, when used in a dl (page 119)
element, does not indicate that its contents are a term being defined, but
this can be indicated using the dfn (page 130) element.

3.11.6. The dd element

Contexts in which this element may be used:
After dt (page 121) or dd (page 122) elements inside dl (page 119) elements.
After a dt (page 121) element inside a dialog (page 114) element.

Content model:
When the element is a child of a dl (page 119) element and the grandchild of an
element that is being used as an inline-level content container (page 70):
inline-level content (page 69).
Otherwise: zero or more block-level elements (page 68), or inline-level content
(page 69) (but not both).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The dd (page 122) element represents the description, definition, or value, part of a
term-description group in a description list (dl (page 119) element), and the discourse,
or quote, part in a conversation (dialog (page 114) element).

The content model of a dd (page 122) element depends on the way its parent element is
being used. If the parent element is a dl (page 119) element that is being used as
structured inline content (i.e. if the dl (page 119) element's parent element is being used
as an inline-level content (page 70) container), then the dd (page 122) element must
only contain inline-level content (page 69).

Otherwise, the element may be used either for inline content (page 69) or block-level
elements (page 68).

3.12. Phrase elements

3.12.1. The a element

Interactive (page 71), strictly inline-level content (page 69).
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Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed, if there are no ancestor
interactive elements (page 71).

Content model:
When used in an element whose content model is only strictly inline-level content
(page 69): only significant (page 69) strictly inline-level content (page 69), but
there must be no interactive (page 71) descendants.
Otherwise: any significant (page 69) inline-level content (page 69), but there must
be no interactive (page 71) descendants.

Element-specific attributes:
href (page 286)
target (page 287)
ping (page 287)
rel (page 287)
media (page 287)
hreflang (page 287)
type (page 287)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLAnchorElement : HTMLElement (page 28) {

attribute DOMString href (page 125);
attribute DOMString target (page 125);
attribute DOMString ping (page 125);
attribute DOMString rel (page 125);

readonly attribute DOMTokenList relList (page 125);
attribute DOMString media (page 125);
attribute DOMString hreflang (page 125);
attribute DOMString type (page 125);

};

The Command (page 262) interface must also be implemented by this element.

If the a (page 122) element has an href (page 286) attribute, then it represents a
hyperlink (page 286).

If the a (page 122) element has no href (page 286) attribute, then the element is a
placeholder for where a link might otherwise have been placed, if it had been relevant.

The target (page 287), ping (page 287), rel (page 287), media (page 287),
hreflang (page 287), and type (page 287) attributes must be omitted if the href

(page 286) attribute is not present.
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If a site uses a consistent navigation toolbar on every page, then the link that would
normally link to the page itself could be marked up using an a (page 122) element:

<nav>
<ul>
<li> <a href="/">Home</a> </li>
<li> <a href="/news">News</a> </li>
<li> <a>Examples</a> </li>
<li> <a href="/legal">Legal</a> </li>

</ul>
</nav>

Interactive user agents should allow users to follow hyperlinks (page 287) created using
the a (page 122) element. The href (page 286), target (page 287) and ping (page
287) attributes decide how the link is followed. The rel (page 287), media (page 287),
hreflang (page 287), and type (page 287) attributes may be used to indicate to the
user the likely nature of the target resource before the user follows the link.

The activation behavior (page 20) of a (page 122) elements that represent hyperlinks is
to run the following steps:

1. If the DOMActivate event in question is not trusted (i.e. a click() (page 79)
method call was the reason for the event being dispatched), and the a (page 122)

element's target (page 287) attribute is ... then raise an

INVALID_ACCESS_ERR exception and abort these steps.

2. If the target of the DOMActivate event is an img (page 154) element with an
ismap (page 156) attribute specified, then server-side image map processing must
be performed, as follows:

1. If the DOMActivate event was dispatched as the result of a real
pointing-device-triggered click event on the img (page 154) element, then let
x be the distance in CSS pixels from the left edge of the image to the location of
the click, and let y be the distance in CSS pixels from the top edge of the image
to the location of the click. Otherwise, let x and y be zero.

2. Let the hyperlink suffix be a U+003F QUESTION MARK character, the value
of x expressed as a base-ten integer using ASCII digits (U+0030 DIGIT ZERO
to U+0039 DIGIT NINE), a U+002C COMMA character, and the value of y
expressed as a base-ten integer using ASCII digits.

3. Finally, the user agent must follow the hyperlink (page 287) defined by the a (page
122) element. If the steps above defined a hyperlink suffix (page 124), then take
that into account when following the hyperlink.

Note: One way that a user agent can enable users to follow hyperlinks is
by allowing a (page 122) elements to be clicked, or focussed and activated
by the keyboard. This will cause (page 71) the aforementioned activation
behavior (page 20) to be invoked.

124



The a (page 122) element must not be empty (page 69).

The DOM attributes href, ping, target, rel, media, hreflang, and type, must
each reflect (page 29) the respective content attributes of the same name.

The DOM attribute relList must reflect (page 29) the rel (page 287) content
attribute.

3.12.2. The q element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
When used in an element whose content model is only strictly inline-level content
(page 69): only strictly inline-level content (page 69).
Otherwise: any inline-level content (page 69).

Element-specific attributes:
cite (page 125)

Predefined classes that apply to this element:
None.

DOM interface:
The q (page 125) element uses the HTMLQuoteElement (page 100) interface.

The q (page 125) element represents a part of a paragraph quoted from another source.

Content inside a q (page 125) element must be quoted from another source, whose URI,
if it has one, should be cited in the cite attribute.

If the cite (page 125) attribute is present, it must be a URI (or IRI). User agents should
allow users to follow such citation links.

If a q (page 125) element is contained (directly or indirectly) in a paragraph (page 72)
that contains a single cite (page 125) element and has no other q (page 125) element
descendants, then, the citation given by that cite (page 125) element gives the source
of the quotation contained in the q (page 125) element.

3.12.3. The cite element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.
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Content model:
Strictly inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The cite (page 125) element represents a citation: the source, or reference, for a quote
or statement made in the document.

Note: A citation is not a quote (for which the q (page 125) element is
appropriate).

This is incorrect usage:

<p><cite>This is wrong!</cite>, said Ian.</p>

This is the correct way to do it:

<p><q>This is correct!</q>, said <cite>Ian</cite>.</p>

This is also wrong, because the title and the name are not references or citations:

<p>My favourite book is <cite>The Reality Dysfunction</cite>
by <cite>Peter F. Hamilton</cite>.</p>

This is correct, because even though the source is not quoted, it is cited:

<p>According to <cite>the Wikipedia article on
HTML</cite>, HTML is defined in formal specifications that were
developed and published throughout the 1990s.</p>

Note: The cite (page 125) element can apply to blockquote (page 99)
and q (page 125) elements in certain cases described in the definitions of
those elements.

3.12.4. The em element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.
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Content model:
When used in an element whose content model is only strictly inline-level content
(page 69): only strictly inline-level content (page 69).
Otherwise: any inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The em (page 126) element represents stress emphasis of its contents.

The level of emphasis that a particlar piece of content has is given by its number of
ancestor em (page 126) elements.

The placement of emphasis changes the meaning of the sentence. The element thus
forms an integral part of the content. The precise way in which emphasis is used in this
way depends on the language.

These examples show how changing the emphasis changes the meaning. First, a
general statement of fact, with no emphasis:

<p>Cats are cute animals.</p>

By emphasising the first word, the statement implies that the kind of animal under
discussion is in question (maybe someone is asserting that dogs are cute):

<p><em>Cats</em> are cute animals.</p>

Moving the emphasis to the verb, one highlights that the truth of the entire sentence
is in question (maybe someone is saying cats are not cute):

<p>Cats <em>are</em> cute animals.</p>

By moving it to the adjective, the exact nature of the cats is reasserted (maybe
someone suggested cats were mean animals):

<p>Cats are <em>cute</em> animals.</p>

Similarly, if someone asserted that cats were vegetables, someone correcting this
might emphasise the last word:

<p>Cats are cute <em>animals</em>.</p>
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By emphasising the entire sentence, it becomes clear that the speaker is fighting
hard to get the point across. This kind of emphasis also typically affects the
punctuation, hence the exclamation mark here.

<p><em>Cats are cute animals!</em></p>

Anger mixed with emphasising the cuteness could lead to markup such as:

<p><em>Cats are <em>cute</em> animals!</em></p>

3.12.5. The strong element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
When used in an element whose content model is only strictly inline-level content
(page 69): only strictly inline-level content (page 69).
Otherwise: any inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
error (page 77), warning (page 78)

DOM interface:
No difference from HTMLElement (page 28).

The strong (page 128) element represents strong importance for its contents.

The relative level of importance of a piece of content is given by its number of ancestor
strong (page 128) elements; each strong (page 128) element increases the
importance of its contents.

Changing the importance of a piece of text with the strong (page 128) element does
not change the meaning of the sentence.

Here is an example of a warning notice in a game, with the various parts marked up
according to how important they are:

<p><strong>Warning.</strong> This dungeon is dangerous.
<strong>Avoid the ducks.</strong> Take any gold you find.
<strong><strong>Do not take any of the diamonds</strong>,
they are explosive and <strong>will destroy anything within
ten meters.</strong></strong> You have been warned.</p>

3.12.6. The small element

Strictly inline-level content (page 69).
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Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
When used in an element whose content model is only strictly inline-level content
(page 69): only strictly inline-level content (page 69).
Otherwise: any inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The small (page 128) element represents small print (part of a document often
describing legal restrictions, such as copyrights or other disadvantages), or other side
comments.

Note: The small (page 128) element does not "de-emphasise" or lower
the importance of text emphasised by the em (page 126) element or
marked as important with the strong (page 128) element.

In this example the footer contains contact information and a copyright.

<footer>
<address>
For more details, contact
<a href="mailto:js@example.com">John Smith</a>.

</address>
<p><small>© copyright 2038 Example Corp.</small></p>

</footer>

In this second example, the small (page 128) element is used for a side comment.

<p>Example Corp today announced record profits for the
second quarter <small>(Full Disclosure: Foo News is a subsidiary of
Example Corp)</small>, leading to speculation about a third quarter
merger with Demo Group.</p>

In this last example, the small (page 128) element is marked as being important
small print.

<p><strong><small>Continued use of this service will result in a
kiss.</small></strong></p>
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3.12.7. The m element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
When used in an element whose content model is only strictly inline-level content
(page 69): only strictly inline-level content (page 69).
Otherwise: any inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The m (page 130) element represents a run of text marked or highlighted.

In the following snippet, a paragraph of text refers to a specific part of a code
fragment.

<p>The highlighted part below is where the error lies:</p>
<pre><code>var i: Integer;
begin

i := <m>1.1</m>;
end.</code></pre>

Another example of the m (page 130) element is highlighting parts of a document
that are matching some search string. If someone looked at a document, and the
server knew that the user was searching for the word "kitten", then the server might
return the document with one paragraph modified as follows:

<p>I also have some <m>kitten</m>s who are visiting me
these days. They're really cute. I think they like my garden!</p>

3.12.8. The dfn element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed, if there are no ancestor
dfn (page 130) elements.

Content model:
Strictly inline-level content (page 69), but there must be no descendant dfn
(page 130) elements.
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Element-specific attributes:
None, but the title (page 131) attribute has special semantics on this element.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The dfn (page 130) element represents the defining instance of a term. The paragraph
(page 72), description list group (page 119), or section (page 96) that contains the dfn

(page 130) element contains the definition for the term given by the contents of the dfn

(page 130) element.

dfn (page 130) elements must not be nested.

Defining term: If the dfn (page 130) element has a title attribute, then the exact
value of that attribute is the term being defined. Otherwise, if it contains exactly one
element child node and no child text nodes (page 23), and that child element is an abbr

(page 132) element with a title (page 132) attribute, then the exact value of that
attribute is the term being defined. Otherwise, it is the exact textContent (page 19) of
the dfn (page 130) element that gives the term being defined.

If the title (page 131) attribute of the dfn (page 130) element is present, then it must
only contain the term being defined.

There must only be one dfn (page 130) element per document for each term defined
(i.e. there must not be any duplicate terms (page 131)).

Note: The title (page 73) attribute of ancestor elements does not affect
dfn (page 130) elements.

The dfn (page 130) element enables automatic cross-references. Specifically, any span
(page 146), abbr (page 132), code (page 142), var (page 143), samp (page 144), or i
(page 147) element that has a non-empty title (page 73) attribute whose value
exactly equals the term (page 131) of a dfn (page 130) element in the same document,
or which has no title (page 73) attribute but whose textContent (page 19) exactly
equals the term (page 131) of a dfn (page 130) element in the document, and that has
no interactive elements (page 71) or dfn (page 130) elements either as ancestors or
descendants, and has no other elements as ancestors that are themselves matching
these conditions, should be presented in such a way that the user can jump from the
element to the first dfn (page 130) element giving the defining instance of that term.

131



In the following fragment, the term "GDO" is first defined in the first paragraph, then
used in the second. A compliant UA could provide a link from the abbr (page 132)
element in the second paragraph to the dfn (page 130) element in the first.

<p>The <dfn><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

3.12.9. The abbr element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
Strictly inline-level content (page 69).

Element-specific attributes:
None, but the title (page 132) attribute has special semantics on this element.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The abbr (page 132) element represents an abbreviation or acronym. The title
attribute should be used to provide an expansion of the abbreviation. If present, the
attribute must only contain an expansion of the abbreviation.

The paragraph below contains an abbreviation marked up with the abbr (page 132)
element.

<p>The <abbr title="Web Hypertext Application Technology
Working Group">WHATWG</abbr> is a loose unofficial collaboration of
Web browser manufacturers and interested parties who wish to develop
new technologies designed to allow authors to write and deploy
Applications over the World Wide Web.</p>

The title (page 132) attribute may be omitted if there is a dfn (page 130) element in
the document whose defining term (page 131) is the abbreviation (the textContent

(page 19) of the abbr (page 132) element).

In the example below, the word "Zat" is used as an abbreviation in the second
paragraph. The abbreviation is defined in the first, so the explanatory title (page
132) attribute has been omitted. Because of the way dfn (page 130) elements are
defined, the second abbr (page 132) element in this example would be connected
(in some UA-specific way) to the first.
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<p>The <dfn><abbr>Zat</abbr></dfn>, short for Zat'ni'catel, is a
weapon.</p>
<p>Jack used a <abbr>Zat</abbr> to make the boxes of evidence
disappear.</p>

3.12.10. The time element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
Strictly inline-level content (page 69).

Element-specific attributes:
datetime (page 133)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLTimeElement : HTMLElement (page 28) {

attribute DOMString datetime (page 133);
readonly attribute DOMTimeStamp date (page 134);
readonly attribute DOMTimeStamp time (page 134);
readonly attribute DOMTimeStamp timezone (page 134);

};

The time (page 133) element represents a date and/or a time.

The datetime attribute, if present, must contain a date or time string (page 59) that
identifies the date or time being specified.

If the datetime (page 133) attribute is not present, then the date or time must be
specified in the content of the element, such that parsing the element's textContent
(page 19) according to the rules for parsing date or time strings in content (page 59)
successfully extracts a date or time.

The datetime DOM attribute must reflect (page 29) the datetime (page 133) content
attribute.

User agents, to obtain the date, time, and timezone represented by a time (page 133)
element, must follow the following steps:

1. If the datetime (page 133) attribute is present, then parse it according to the rules
for parsing date or time strings in content (page 59), and let the result be result.

2. Otherwise, parse the element's textContent (page 19) according to the rules for
parsing date or time strings in content (page 59), and let the result be result.
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3. If result is empty (because the parsing failed), then the date (page 133) is unknown,
the time (page 133) is unknown, and the timezone (page 133) is unknown.

4. Otherwise: if result contains a date, then that is the date (page 133); if result
contains a time, then that is the time (page 133); and if result contains a timezone,
then the timezone is the element's timezone (page 133). (A timezone can only be
present if both a date and a time are also present.)

The date DOM attribute must return null if the date (page 133) is unknown, and
otherwise must return the time corresponding to midnight UTC (i.e. the first second) of
the given date (page 133).

The time DOM attribute must return null if the time (page 133) is unknown, and
otherwise must return the time corresponding to the given time (page 133) of
1970-01-01, with the timezone UTC.

The timezone DOM attribute must return null if the timezone (page 133) is unknown,
and otherwise must return the time corresponding to 1970-01-01 00:00 UTC in the given
timezone (page 133), with the timezone set to UTC (i.e. the time corresponding to
1970-01-01 at 00:00 UTC plus the offset corresponding to the timezone).

In the following snippet:

<p>Our first date was <time datetime="2006-09-23">a saturday</time>.</p>

...the time (page 133) element's date (page 134) attribute would have the value
1,158,969,600,000ms, and the time (page 134) and timezone (page 134)
attributes would return null.

In the following snippet:

<p>We stopped talking at <time datetime="2006-09-24 05:00 -7">5am the next
morning</time>.</p>

...the time (page 133) element's date (page 134) attribute would have the value
1,159,056,000,000ms, the time (page 134) attribute would have the value
18,000,000ms, and the timezone (page 134) attribute would return
-25,200,000ms. To obtain the actual time, the three attributes can be added
together, obtaining 1,159,048,800,000, which is the specified date and time in UTC.

Finally, in the following snippet:

<p>Many people get up at <time>08:00</time>.</p>

...the time (page 133) element's date (page 134) attribute would have the value
null, the time (page 134) attribute would have the value 28,800,000ms, and the
timezone (page 134) attribute would return null.

These APIs may be suboptimal. Comments on making them more useful to JS
authors are welcome. The primary use cases for these elements are for marking up
publication dates e.g. in blog entries, and for marking event dates in hCalendar
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markup. Thus the DOM APIs are likely to be used as ways to generate interactive
calendar widgets or some such.

3.12.11. The meter element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
Strictly inline-level content (page 69).

Element-specific attributes:
value (page 136)
min (page 136)
low (page 136)
high (page 136)
max (page 136)
optimum (page 136)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLMeterElement : HTMLElement (page 28) {

attribute long value (page 139);
attribute long min (page 139);
attribute long max (page 139);
attribute long low (page 139);
attribute long high (page 139);
attribute long optimum (page 139);

};

The meter (page 135) element represents a scalar measurement within a known range,
or a fractional value; for example disk usage, the relevance of a query result, or the
fraction of a voting population to have selected a particular candidate.

This is also known as a gauge.

Note: The meter (page 135) element should not be used to indicate
progress (as in a progress bar). For that role, HTML provides a separate
progress (page 139) element.

There are six attributes that determine the semantics of the gauge represented by the
element.
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The min attribute specifies the lower bound of the range, and the max attribute specifies
the upper bound. The value attribute specifies the value to have the gauge indicate as
the "measured" value.

The other three attributes can be used to segment the gauge's range into "low",
"medium", and "high" parts, and to indicate which part of the gauge is the "optimum" part.
The low attribute specifies the range that is considered to be the "low" part, and the
high attribute specifies the range that is considered to be the "high" part. The optimum
attribute gives the position that is "optimum"; if that is higher than the "high" value then
this indicates that the higher the value, the better; if it's lower than the "low" mark then it
indicates that lower values are better, and naturally if it is in between then it indicates
that neither high nor low values are good.

Authoring requirements: The recommended way of giving the value is to include it as
contents of the element, either as two numbers (the higher number represents the
maximum, the other number the current value), or as a percentage or similar (using one
of the characters such as "%"), or as a fraction.

The value (page 136), min (page 136), low (page 136), high (page 136), max (page
136), and optimum (page 136) attributes are all optional. When present, they must have
values that are valid floating point numbers (page 49).

The following examples all represent a measurement of three quarters (of the
maximum of whatever is being measured):

<meter>75%</meter>
<meter>750‰</meter>
<meter>3/4</meter>
<meter>6 blocks used (out of 8 total)</meter>
<meter>max: 100; current: 75</meter>
<meter><object data="graph75.png">0.75</object></meter>
<meter min="0" max="100" value="75"></meter>

User agent requirements: User agents must parse the min (page 136), max (page
136), value (page 136), low (page 136), high (page 136), and optimum (page 136)
attributes using the rules for parsing floating point number values (page 50).

If the value (page 136) attribute has been omitted, the user agent must also process
the textContent (page 19) of the element according to the steps for finding one or two
numbers of a ratio in a string (page 51). These steps will return nothing, one number,
one number with a denominator punctuation character, or two numbers.

User agents must then use all these numbers to obtain values for six points on the
gauge, as follows. (The order in which these are evaluated is important, as some of the
values refer to earlier ones.)

The minimum value
If the min (page 136) attribute is specified and a value could be parsed out of it,
then the minimum value is that value. Otherwise, the minimum value is zero.
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The maximum value
If the max (page 136) attribute is specified and a value could be parsed out of it, the
maximum value is that value.

Otherwise, if the max (page 136) attribute is specified but no value could be parsed
out of it, or if it was not specified, but either or both of the min (page 136) or value
(page 136) attributes were specified, then the maximum value is 1.

Otherwise, none of the max (page 136), min (page 136), and value (page 136)
attributes were specified. If the result of processing the textContent (page 19) of
the element was either nothing or just one number with no denominator punctuation
character, then the maximum value is 1; if the result was one number but it had an
associated denominator punctuation character, then the maximum value is the value
associated with that denominator punctuation character (page 51); and finally, if
there were two numbers parsed out of the textContent (page 19), then the
maximum is the higher of those two numbers.

If the above machinations result in a maximum value less than the minimum value,
then the maximum value is actually the same as the minimum value.

The actual value
If the value (page 136) attribute is specified and a value could be parsed out of it,
then that value is the actual value.

If the value (page 136) attribute is not specified but the max (page 136) attribute is
specified and the result of processing the textContent (page 19) of the element
was one number with no associated denominator punctuation character, then that
number is the actual value.

If neither of the value (page 136) and max (page 136) attributes are specified,
then, if the result of processing the textContent (page 19) of the element was
one number (with or without an associated denominator punctuation character), then
that is the actual value, and if the result of processing the textContent (page 19)
of the element was two numbers, then the actual value is the lower of the two
numbers found.

Otherwise, if none of the above apply, the actual value is zero.

If the above procedure results in an actual value less than the minimum value, then
the actual value is actually the same as the minimum value.

If, on the other hand, the result is an actual value greater than the maximum value,
then the actual value is the maximum value.

The low boundary
If the low (page 136) attribute is specified and a value could be parsed out of it,
then the low boundary is that value. Otherwise, the low boundary is the same as the
minimum value.

137



If the above results in a low boundary that is less than the minimum value, the low
boundary is the minimum value.

The high boundary
If the high (page 136) attribute is specified and a value could be parsed out of it,
then the high boundary is that value. Otherwise, the high boundary is the same as
the maximum value.

If the above results in a high boundary that is higher than the maximum value, the
high boundary is the maximum value.

The optimum point
If the optimum (page 136) attribute is specified and a value could be parsed out of
it, then the optimum point is that value. Otherwise, the optimum point is the midpoint
between the minimum value and the maximum value.

If the optimum point is then less than the minimum value, then the optimum point is
actually the same as the minimum value. Similarly, if the optimum point is greater
than the maximum value, then it is actually the maximum value instead.

All of which should result in the following inequalities all being true:

• minimum value ≤ actual value ≤ maximum value
• minimum value ≤ low boundary ≤ high boundary ≤ maximum value
• minimum value ≤ optimum point ≤ maximum value

UA requirements for regions of the gauge: If the optimum point is equal to the low
boundary or the high boundary, or anywhere in between them, then the region between
the low and high boundaries of the gauge must be treated as the optimum region, and
the low and high parts, if any, must be treated as suboptimal. Otherwise, if the optimum
point is less than the low boundary, then the region between the minimum value and the
low boundary must be treated as the optimum region, the region between the low
boundary and the high boundary must be treated as a suboptimal region, and the region
between the high boundary and the maximum value must be treated as an even less
good region. Finally, if the optimum point is higher than the high boundary, then the
situation is reversed; the region between the high boundary and the maximum value
must be treated as the optimum region, the region between the high boundary and the
low boundary must be treated as a suboptimal region, and the remaining region between
the low boundary and the minimum value must be treated as an even less good region.

UA requirements for showing the gauge: When representing a meter (page 135)
element to the user, the UA should indicate the relative position of the actual value to the
minimum and maximum values, and the relationship between the actual value and the
three regions of the gauge.

The following markup:

<h3>Suggested groups</h3>
<menu type="toolbar">
<a href="?cmd=hsg" onclick="hideSuggestedGroups()">Hide suggested

groups</a>
</menu>
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<ul>
<li>
<p><a href="/group/comp.infosystems.www.authoring.stylesheets/

view">comp.infosystems.www.authoring.stylesheets</a> -
<a href="/group/comp.infosystems.www.authoring.stylesheets/

subscribe">join</a></p>
<p>Group description: <strong>Layout/presentation on the

WWW.</strong></p>
<p><meter value="0.5">Moderate activity,</meter> Usenet, 618

subscribers</p>
</li>
<li>
<p><a href="/group/netscape.public.mozilla.xpinstall/

view">netscape.public.mozilla.xpinstall</a> -
<a href="/group/netscape.public.mozilla.xpinstall/

subscribe">join</a></p>
<p>Group description: <strong>Mozilla XPInstall discussion.</strong></p>
<p><meter value="0.25">Low activity,</meter> Usenet, 22 subscribers</p>

</li>
<li>
<p><a href="/group/mozilla.dev.general/view">mozilla.dev.general</a> -

<a href="/group/mozilla.dev.general/subscribe">join</a></p>
<p><meter value="0.25">Low activity,</meter> Usenet, 66 subscribers</p>

</li>
</ul>

Might be rendered as follows:

The min, max, value, low, high, and optimum DOM attributes must reflect the
elements' content attributes of the same name. When the relevant content attributes are
absent, the DOM attributes must return zero. The value parsed from the textContent

(page 19) never affects the DOM values.

Would be cool to have the value (page 139) DOM attribute update the
textContent (page 19) in-line...

3.12.12. The progress element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.
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Content model:
Strictly inline-level content (page 69).

Element-specific attributes:
value (page 140)
max (page 140)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLProgressElement : HTMLElement (page 28) {

attribute float value (page 142);
attribute float max (page 142);

readonly attribute float position (page 142);
};

The progress (page 139) element represents the completion progress of a task. The
progress is either indeterminate, indicating that progress is being made but that it is not
clear how much more work remains to be done before the task is complete (e.g. because
the task is waiting for a remote host to respond), or the progress is a number in the
range zero to a maximum, giving the fraction of work that has so far been completed.

There are two attributes that determine the current task completion represented by the
element.

The value attribute specifies how much of the task has been completed, and the max
attribute specifies how much work the task requires in total. The units are arbitrary and
not specified.

Instead of using the attributes, authors are recommended to simply include the current
value and the maximum value inline as text inside the element.

Here is a snippet of a Web application that shows the progress of some automated
task:

<section>
<h2>Task Progress</h2>
<p><label>Progress: <progress><span id="p">0</span>%</progress></p>
<script>
var progressBar = document.getElementById('p');
function updateProgress(newValue) {

progressBar.textContent = newValue;
}

</script>
</section>

140



(The updateProgress() method in this example would be called by some other
code on the page to update the actual progress bar as the task progressed.)

Author requirements: The max (page 140) and value (page 140) attributes, when
present, must have values that are valid floating point numbers (page 49). The max

(page 140) attribute, if present, must have a value greater than zero. The value (page
140) attribute, if present, must have a value equal to or greater than zero, and less than
or equal to the value of the max (page 140) attribute, if present.

User agent requirements: User agents must parse the max (page 140) and value

(page 140) attributes' values according to the rules for parsing floating point number
values (page 50).

If the value (page 140) attribute is omitted, then user agents must also parse the
textContent (page 19) of the progress (page 139) element in question using the
steps for finding one or two numbers of a ratio in a string (page 51). These steps will
return nothing, one number, one number with a denominator punctuation character, or
two numbers.

Using the results of this processing, user agents must determine whether the progress
bar is an indeterminate progress bar, or whether it is a determinate progress bar, and in
the latter case, what its current and maximum values are, all as follows:

1. If the max (page 140) attribute is omitted, and the value (page 140) is omitted, and
the results of parsing the textContent (page 19) was nothing, then the progress
bar is an indeterminate progress bar. Abort these steps.

2. Otherwise, it is a determinate progress bar.

3. If the max (page 140) attribute is included, then, if a value could be parsed out of it,
then the maximum value is that value.

4. Otherwise, if the max (page 140) attribute is absent but the value (page 140)
attribute is present, or, if the max (page 140) attribute is present but no value could
be parsed from it, then the maximum is 1.

5. Otherwise, if neither attribute is included, then, if the textContent (page 19)
contained one number with an associated denominator punctuation character, then
the maximum value is the value associated with that denominator punctuation
character; otherwise, if the textContent (page 19) contained two numbers, the
maximum value is the higher of the two values; otherwise, the maximum value is 1.

6. If the value (page 140) attribute is present on the element and a value could be
parsed out of it, that value is the current value of the progress bar. Otherwise, if the
attribute is present but no value could be parsed from it, the current value is zero.

7. Otherwise if the value (page 140) attribute is absent and the max (page 140)
attribute is present, then, if the textContent (page 19) was parsed and found to
contain just one number, with no associated denominator punctuation character,
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then the current value is that number. Otherwise, if the value (page 140) attribute
is absent and the max (page 140) attribute is present then the current value is zero.

8. Otherwise, if neither attribute is present, then the current value is the lower of the
one or two numbers that were found in the textContent (page 19) of the element.

9. If the maximum value is less than or equal to zero, then it is reset to 1.

10. If the current value is less than zero, then it is reset to zero.

11. Finally, if the current value is greater than the maximum value, then the current
value is reset to the maximum value.

UA requirements for showing the progress bar: When representing a progress

(page 139) element to the user, the UA should indicate whether it is a determinate or
indeterminate progress bar, and in the former case, should indicate the relative position
of the current value relative to the maximum value.

The max and value DOM attributes must reflect the elements' content attributes of the
same name. When the relevant content attributes are absent, the DOM attributes must
return zero. The value parsed from the textContent (page 19) never affects the DOM
values.

Would be cool to have the value (page 142) DOM attribute update the
textContent (page 19) in-line...

If the progress bar is an indeterminate progress bar, then the position DOM attribute
must return -1. Otherwise, it must return the result of dividing the current value by the
maximum value.

3.12.13. The code element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
When used in an element whose content model is only strictly inline-level content
(page 69): only strictly inline-level content (page 69).
Otherwise: any inline-level content (page 69).

Element-specific attributes:
None, but the title (page 73) attribute has special semantics on this element
when used with the dfn (page 130) element.

Predefined classes that apply to this element:
None.
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DOM interface:
No difference from HTMLElement (page 28).

The code (page 142) element represents a fragment of computer code. This could be
an XML element name, a filename, a computer program, or any other string that a
computer would recognise.

Note: See the pre (page 116) element for more detais.

The following example shows how a block of code could be marked up using the
pre (page 116) and code (page 142) elements.

<pre><code>var i: Integer;
begin

i := 1;
end.</code></pre>

3.12.14. The var element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
Strictly inline-level content (page 69).

Element-specific attributes:
None, but the title (page 73) attribute has special semantics on this element
when used with the dfn (page 130) element.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The var (page 143) element represents a variable. This could be an actual variable in a
mathematical expression or programming context, or it could just be a term used as a
placeholder in prose.

In the paragraph below, the letter "n" is being used as a variable in prose:

<p>If there are <var>n</var> pipes leading to the ice
cream factory then I expect at <em>least</em> <var>n</var>
flavours of ice cream to be available for purchase!</p>
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3.12.15. The samp element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
When used in an element whose content model is only strictly inline-level content
(page 69): only strictly inline-level content (page 69).
Otherwise: any inline-level content (page 69).

Element-specific attributes:
None, but the title (page 73) attribute has special semantics on this element
when used with the dfn (page 130) element.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The samp (page 144) element represents (sample) output from a program or computing
system.

Note: See the pre (page 116) and kbd (page 144) elements for more
detais.

This example shows the samp (page 144) element being used inline:

<p>The computer said <samp>Too much cheese in tray
two</samp> but I didn't know what that meant.</p>

This second example shows a block of sample output. Nested samp (page 144) and
kbd (page 144) elements allow for the styling of specific elements of the sample
output using a style sheet.

<pre><samp><samp class="prompt">jdoe@mowmow:~$</samp> <kbd>ssh
demo.example.com</kbd>
Last login: Tue Apr 12 09:10:17 2005 from mowmow.example.com on pts/1
Linux demo 2.6.10-grsec+gg3+e+fhs6b+nfs+gr0501+++p3+c4a+gr2b-reslog-v6.189
#1 SMP Tue Feb 1 11:22:36 PST 2005 i686 unknown

<samp class="prompt">jdoe@demo:~$</samp> <samp
class="cursor">_</samp></samp></pre>

3.12.16. The kbd element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

144



Content model:
Strictly inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The kbd (page 144) element represents user input (typically keyboard input, although it
may also be used to represent other input, such as voice commands).

When the kbd (page 144) element is nested inside a samp (page 144) element, it
represents the input as it was echoed by the system.

When the kbd (page 144) element contains a samp (page 144) element, it represents
input based on system output, for example invoking a menu item.

When the kbd (page 144) element is nested inside another kbd (page 144) element, it
represents an actual key or other single unit of input as appropriate for the input
mechanism.

Here the kbd (page 144) element is used to indicate keys to press:

<p>To make George eat an apple, press
<kbd><kbd>Shift</kbd>+<kbd>F3</kbd></kbd></p>

In this second example, the user is told to pick a particular menu item. The outer
kbd (page 144) element marks up a block of input, with the inner kbd (page 144)
elements representing each individual step of the input, and the samp (page 144)
elements inside them indicating that the steps are input based on something being
displayed by the system, in this case menu labels:

<p>To make George eat an apple, select
<kbd><kbd><samp>File</samp></kbd>|<kbd><samp>Eat

Apple...</samp></kbd></kbd>
</p>

3.12.17. The sup and sub elements

Strictly inline-level content (page 69).

Contexts in which these elements may be used:
Where strictly inline-level content (page 69) is allowed.
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Content model:
Strictly inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The sup (page 145) element represents a superscript and the sub (page 145) element
represents a subscript.

These elements must only be used to mark up typographical conventions with specific
meanings, not for typographical presentation for presentation's sake. For example, it
would be inappropriate for the sup (page 145) and sub (page 145) elements to be used
in the name of the LaTeX document preparation system. In general, authors should not
use these elements if the absence of those elements would not change the meaning of
the content.

When the sub (page 145) element is used inside a var (page 143) element, it
represents the subscript that identifies the variable in a family of variables.

<p>The coordinate of the <var>i</var>th point is
(<var>x<sub><var>i</var></sub></var>, <var>y<sub><var>i</var></sub></var>).
For example, the 10th point has coordinate
(<var>x<sub>10</sub></var>, <var>y<sub>10</sub></var>).</p>

In certain languages, superscripts are part of the typographical conventions for some
abbreviations.

<p>The most beautiful women are
<span lang="fr"><abbr>M<sup>lle</sup></abbr> Gwendoline</span> and
<span lang="fr"><abbr>M<sup>me</sup></abbr> Denise</span>.</p>

Mathematical expressions often use subscripts and superscripts.

<var>E</var>=<var>m</var><var>c</var><sup>2</sup>
f(<var>x</var>, <var>n</var>) =
log<sub>4</sub><var>x</var><sup><var>n</var></sup>

3.12.18. The span element

Strictly inline-level content (page 69).
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Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
When used in an element whose content model is only strictly inline-level content
(page 69): only strictly inline-level content (page 69).
Otherwise: any inline-level content (page 69).

Element-specific attributes:
None, but the title (page 73) attribute has special semantics on this element
when used with the dfn (page 130) element.

Predefined classes that apply to this element:
copyright (page 76), error (page 77), example (page 77), issue (page 77),
note (page 77), search (page 77), warning (page 78)

DOM interface:
No difference from HTMLElement (page 28).

The span (page 146) element doesn't mean anything on its own, but can be useful when
used together with other attributes, e.g. class (page 75), lang (page 74), or dir (page
75), or when used in conjunction with the dfn (page 130) element.

3.12.19. The i element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
Strictly inline-level content (page 69).

Element-specific attributes:
None, but the title (page 73) attribute has special semantics on this element
when used with the dfn (page 130) element.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The i (page 147) element represents a span of text in an alternate voice or mood, or
otherwise offset from the normal prose, such as a taxonomic designation, a technical
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term, an idiomatic phrase from another language, a thought, a ship name, or some other
prose whose typical typographic presentation is italicized.

Terms in languages different from the main text should be annotated with lang (page
74) attributes (xml:lang (page 74) in XML).

The examples below show uses of the i (page 147) element:

<p>The <i>felis silvestris catus</i> is cute.</p>
<p>The <i>block-level elements</i> are defined above.</p>
<p>There is a certain <i lang="fr">je ne sais quoi</i> in the air.</p>

In the following example, a dream sequence is marked up using i (page 147)
elements.

<p>Raymond tried to sleep.</p>
<p><i>The ship sailed away on Thursday</i>, he
dreamt. <i>The ship had many people aboard, including a beautiful
princess called Carey. He watched her, day-in, day-out, hoping she
would notice him, but she never did.</i></p>
<p><i>Finally one night he picked up the courage to speak with
her—</i></p>
<p>Raymond woke with a start as the fire alarm rang out.</p>

The i (page 147) element should be used as a last resort when no other element is
more appropriate. In particular, citations should use the cite (page 125) element,
defining instances of terms should use the dfn (page 130) element, stress emphasis
should use the em (page 126) element, importance should be denoted with the strong

(page 128) element, quotes should be marked up with the q (page 125) element, and
small print should use the small (page 128) element.

Note: Style sheets can be used to format i (page 147) elements, just like
any other element can be restyled. Thus, it is not the case that content in
i (page 147) elements will necessarily be italicised.

3.12.20. The b element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
Strictly inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.
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DOM interface:
No difference from HTMLElement (page 28).

The b (page 148) element represents a span of text to be stylistically offset from the
normal prose without conveying any extra importance, such as key words in a document
abstract, product names in a review, or other spans of text whose typical typographic
presentation is boldened.

The following example shows a use of the b (page 148) element to highlight key
words without marking them up as important:

<p>The <b>frobonitor</b> and <b>barbinator</b> components are fried.</p>

The following would be incorrect usage:

<p><b>WARNING!</b> Do not frob the barbinator!</p>

In the previous example, the correct element to use would have been strong

(page 128), not b (page 148).

In the following example, objects in a text adventure are highlighted as being special
by use of the b (page 148) element.

<p>You enter a small room. Your <b>sword</b> glows
brighter. A <b>rat</b> scurries past the corner wall.</p>

The b (page 148) element should be used as a last resort when no other element is
more appropriate. In particular, headers should use the h1 (page 101) to h6 (page 101)
elements, stress emphasis should use the em (page 126) element, importance should be
denoted with the strong (page 128) element, and text marked or highlighted should use
the m (page 130) element.

Note: Style sheets can be used to format b (page 148) elements, just like
any other element can be restyled. Thus, it is not the case that content in
b (page 148) elements will necessarily be boldened.

3.12.21. The bdo element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed.

Content model:
Strictly inline-level content (page 69).
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Element-specific attributes:
None, but the dir (page 75) global attribute is required on this element.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The bdo (page 149) element allows authors to override the Unicode bidi algorithm by
explicitly specifying a direction override. [BIDI]

Authors must specify the dir (page 75) attribute on this element, with the value ltr to
specify a left-to-right override and with the value rtl to specify a right-to-left override.

If the element has the dir (page 75) attribute set to the exact value ltr, then for the
purposes of the bidi algorithm, the user agent must act as if there was a U+202D
LEFT-TO-RIGHT OVERRIDE character at the start of the element, and a U+202C POP
DIRECTIONAL FORMATTING at the end of the element.

If the element has the dir (page 75) attribute set to the exact value rtl, then for the
purposes of the bidi algorithm, the user agent must act as if there was a U+202E
RIGHT-TO-LEFT OVERRIDE character at the start of the element, and a U+202C POP
DIRECTIONAL FORMATTING at the end of the element.

The requirements on handling the bdo (page 149) element for the bidi algorithm may be
implemented indirectly through the style layer. For example, an HTML+CSS user agent
should implement these requirements by implementing the CSS unicode-bidi

property. [CSS21]

3.13. Edits

The ins (page 150) and del (page 151) elements represent edits to the document.

3.13.1. The ins element

Transparent (page 70) block-level element (page 68), and transparent (page 70) strictly
inline-level content (page 69).

Contexts in which this element may be used:
Where block-level elements (page 68) is expected.
Where strictly inline-level content (page 69) is allowed.

Content model:
Transparent (page 70).
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Element-specific attributes:
cite (page 152)
datetime (page 153)

Predefined classes that apply to this element:
None.

DOM interface:
Uses the HTMLModElement (page 153) interface.

The ins (page 150) element represents an addition to the document.

The ins (page 150) element must be used only where block-level elements (page 68)
or strictly inline-level content (page 69) can be used.

An ins (page 150) element can only contain content that would still be conformant if all
elements with transparent (page 70) content models were replaced by their contents.

The following would be syntactically legal:

<aside>
<ins>
<p>...</p>

</ins>
</aside>

As would this:

<aside>
<ins>
<em>...</em>

</ins>
</aside>

However, this last example would be illegal, as em (page 126) and p (page 112)
cannot both be used inside an aside (page 100) element at the same time:

<aside>
<ins>
<p>...</p>

</ins>
<ins>
<em>...</em>

</ins>
</aside>

3.13.2. The del element

Block-level element (page 68), and strictly inline-level content (page 69).
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Contexts in which this element may be used:
Where block-level elements (page 68) is expected.
Where strictly inline-level content (page 69) is allowed.

Content model:
When the element has a parent: same content model as the parent element
(without taking into account the other children of the parent element).
Otherwise: zero or more block-level elements (page 68), or inline-level content
(page 69) (but not both).

Element-specific attributes:
cite (page 152)
datetime (page 153)

Predefined classes that apply to this element:
None.

DOM interface:
Uses the HTMLModElement (page 153) interface.

The del (page 151) element represents a removal from the document.

The del (page 151) element must only contain content that would be allowed inside the
parent element (regardless of what the parent element actually contains).

The following would be syntactically legal:

<aside>
<del>
<p>...</p>

</del>
<ins>
<em>...</em>

</ins>
</aside>

...even though the p (page 112) and em (page 126) elements would never be
allowed side by side in the aside (page 100) element. This is allowed because the
del (page 151) element represents content that was removed, and it is quite
possible that an edit could cause an element to go from being an inline-level
container to a block-level container, or vice-versa.

3.13.3. Attributes common to ins (page 150) and del (page 151) elements

The cite attribute may be used to specify a URI that explains the change. When that
document is long, for instance the minutes of a meeting, authors are encouraged to
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include a fragment identifier pointing to the specific part of that document that discusses
the change.

If the cite (page 152) attribute is present, it must be a URI (or IRI) that explains the
change. User agents should allow users to follow such citation links.

The datetime attribute may be used to specify the time and date of the change.

If present, the datetime (page 153) attribute must be a valid datetime (page 55) value.

User agents must parse the datetime (page 153) attribute according to the parse a
string as a datetime value (page 56) algorithm. If that doesn't return a time, then the
modification has no associated timestamp (the value is non-conforming; it is not a valid
datetime (page 55)). Otherwise, the modification is marked as having been made at the
given datetime. User agents should use the associated timezone information to
determine which timezone to present the given datetime in.

The ins (page 150) and del (page 151) elements must implement the
HTMLModElement (page 153) interface:

interface HTMLModElement : HTMLElement (page 28) {

attribute DOMString cite (page 153);
attribute DOMString datetime (page 153);

};

The cite and datetime DOM attributes must reflect the elements' content attributes of
the same name.

3.14. Embedded content

3.14.1. The figure element

Block-level element (page 68).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
In any order, exactly one legend (page 267) element, and exactly one
embedded content (page 69) element.

Element-specific attributes:
None.

Predefined classes that apply to this element:
example (page 77), warning (page 78)

DOM interface:
No difference from HTMLElement (page 28).
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The figure (page 153) element represents a paragraph (page 72) consisting of
embedded content and a caption.

The first embedded content (page 69) element child of the figure (page 153) element,
if any, is the paragraph's content.

The first legend (page 267) element child of the element, if any, represents the caption
of the embedded content. If there is no child legend (page 267) element, then there is
no caption.

If the embedded content cannot be used, then, for the purposes of establishing what the
figure (page 153) element represents:

↪ If the embedded content's fallback content (page 69) is a single embedded
content (page 69) element

The figure (page 153) element must be treated as if that embedded content
(page 69) element was the figure (page 153) element's embedded content.
(If that embedded content can't be used either, then this processing must be
done again, with the new embedded content's fallback content (page 69).)

↪ If the embedded content's fallback is nothing
The entire figure (page 153) element (including the caption, if any) must be
ignored.

↪ If the embedded content's fallback is inline-level content (page 69)
The entire figure (page 153) element (including the caption, if any) must be
treated as being a single paragraph (page 72) with that inline-level content
(page 69) as its content.

↪ Otherwise
The entire figure (page 153) element (including the caption, if any) must be
treated as being replaced by that fallback content.

3.14.2. The img element

Strictly inline-level (page 69) embedded content (page 69).

Contexts in which this element may be used:
As the only embedded content (page 69) child of a figure (page 153) element.
Where strictly inline-level content (page 69) is allowed.

Content model:
Empty.

Element-specific attributes:
alt (page 155) (required)
src (page 155) (required)
usemap (page 198)
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ismap (page 156) (but only if one of the ancestor elements is an a (page 122)
element)
height (page 156)
width (page 156)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLImageElement : HTMLElement (page 28) {

attribute DOMString alt (page 157);
attribute DOMString src (page 157);
attribute DOMString useMap (page 157);
attribute boolean isMap (page 157);
attribute long height (page 157);
attribute long width (page 157);

readonly attribute boolean complete (page 157);
};

Note: An instance of HTMLImageElement (page 155) can be
obtained using the Image (page 301) constructor.

The img (page 154) element represents a piece of text with an alternate graphical
representation. The text is given by the alt attribute, which must be present, and the
URI to the graphical representation of that text is given in the src attribute, which must
also be present.

The image given by the src (page 155) attribute is the embedded content, and the value
of the alt (page 155) attribute is the img (page 154) element's fallback content (page
69).

When the alt (page 155) attribute's value is the empty string, the image supplements
the surrounding content. In such cases, the image could be omitted without affecting the
meaning of the document.

If the alt (page 155) attribute is omitted, user agents must treat the element as if it had
an alt (page 155) attribute set to the empty string.

The alt (page 155) attribute does not represent advisory information. User agents must
not present the contents of the alt (page 155) attribute in the same way as content of
the title (page 73) attribute.

Guidelines on writing "alt" text here.
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The src (page 155) attribute must contain a URI (or IRI). If the src (page 155) attribute
is omitted, there is no alternative image representation.

When the src (page 155) attribute is set, the user agent must immediately begin to
download the specified resource, unless the user agent cannot support images, or its
support for images has been disabled.

The download of the image must delay the load event (page 455).

Once the download has completed, if the image is a valid image, the user agent must fire
a load event (page 286) on the img (page 154) element. If the download fails or it
completes but the image is not a valid or supported image, the user agent must fire an
error event (page 286) on the img (page 154) element.

The remote server's response metadata (e.g. an HTTP 404 status code, or associated
Content-Type headers (page 277)) must be ignored when determining whether the
resource obtained is a valid image or not.

Note: This allows servers to return images with error responses.

User agents must not support non-image resources with the img (page 154) element.

The usemap (page 198) attribute, if present, can indicate that the image has an
associated image map (page 198).

The ismap attribute, when used on an element that is a descendant of an a (page 122)
element with an href (page 286) attribute, indicates by its presence that the element
provides access to a server-side image map. This affects how events are handled on the
corresponding a (page 122) element.

The ismap (page 156) attribute is a boolean attribute (page 48). The attribute must not
be specified on an element that does not have an ancestor a (page 122) element.

The height and width attributes give the preferred rendered dimensions of the image
if the image is to be shown in a visual medium.

Should we require the dimensions to be correct? Should we disallow percentages?

The values of the height (page 156) and width (page 156) attributes must be either
valid non-negative integers (page 48) or valid non-negative percentages (page 53).

To parse the attributes, user agents must use the rules for parsing dimension values
(page 53). This will return either an integer length, a percentage value, or nothing. When
one of these attributes has no value, it must be ignored.

The user agent requirements for processing the values obtained from parsing these
attributes are described in the rendering section (page 461).

The img (page 154) element must be empty.
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The DOM attributes alt, src, useMap, and isMap each must reflect (page 29) the
respective content attributes of the same name.

The DOM attributes height and width must return the rendered height and width of
the image, in CSS pixels, if the image is being rendered, and is being rendered to a
visual medium, or 0 otherwise. [CSS21]

The DOM attribute complete must return true if the user agent has downloaded the
image specified in the src (page 155) attribute, and it is a valid image.

3.14.3. The iframe element

Strictly inline-level (page 69) embedded content (page 69).

Contexts in which this element may be used:
As the only embedded content (page 69) child of a figure (page 153) element.
Where strictly inline-level content (page 69) is allowed.

Content model:
Text (for details, see prose).

Element-specific attributes:
src (page 157)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLIFrameElement : HTMLElement (page 28) {

attribute DOMString src (page 158);
};

Objects implementing the HTMLIFrameElement (page 157) interface must also
implement the EmbeddingElement interface defined in the Window Object
specification. [WINDOW]

The iframe (page 157) element introduces a new nested browsing context (page 20).

The src attribute, if present, must be a URI (or IRI) to a page that the nested browsing
context (page 20) is to contain. If the user navigates (page 269) away from this page,
the iframe (page 157)'s corresponding Window object will reference new Document

objects, but the src (page 157) attribute will not change.

Whenever the src (page 157) attribute is set, the nested browsing context (page 20)
must be navigated (page 269) to the given URI.

The default value, which must be used if the src (page 157) attribute is not set when the
element is created, or if the attribute is ever removed, is about:blank.

The download of the resource must delay the load event (page 455).
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When content loads in an iframe (page 157), the user agent must fire a load event
(page 286) at the iframe (page 157) element. When content fails to load (e.g. due to a
network error), then the user agent must fire an error event (page 286) at the element
instead.

order of events when content is also firing its own load/error?

An iframe (page 157) element never has fallback content (page 69), as it will always
create a nested browsing context (page 20), regardless of whether the specified initial
contents are successfully used.

iframe (page 157) elements may contain any text. iframe (page 157) elements must
not contain element nodes. Descendants of iframe (page 157) elements represent
nothing. (In legacy user agents that do not support iframe (page 157) elements, the
contents would be parsed as markup that could act as fallback content.)

restrictions for what that text must be?

Note: The HTML parser (page 392) treats markup inside iframe (page 157)
elements as text.

The DOM attribute src must reflect (page 29) the content attribute of the same name.

3.14.4. The embed element

Strictly inline-level (page 69) embedded content (page 69).

Contexts in which this element may be used:
As the only embedded content (page 69) child of a figure (page 153) element.
Where strictly inline-level content (page 69) is allowed.

Content model:
Empty.

Element-specific attributes:
src (page 159) (required)
type (page 159)
height

width

Any other attribute that has no namespace (see prose).

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLEmbedElement : HTMLElement (page 28) {

attribute DOMString src (page 160);
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attribute DOMString type (page 160);
attribute long height (page 160);
attribute long width (page 160);

};

Depending on the type of content instantiated by the embed (page 158) element,
the node may also support other interfaces.

The embed (page 158) element represents an integration point for an external (typically
non-HTML) application or interactive content.

The src attribute gives the address of the resource being embedded. The attribute must
be present and contain a URI (or IRI).

If the src (page 159) attribute is missing, then the embed (page 158) element must be
ignored.

When the src (page 159) attribute is set, user agents are expected to find an
appropriate handler for the specified resource, based on the content's type (page 159),
and hand that handler the content of the resource. If the handler supports a scriptable
interface, the HTMLEmbedElement (page 158) object representing the element should
expose that interfaces.

The download of the resource must delay the load event (page 455).

The user agent should pass the names and values of all the attributes of the embed

(page 158) element that have no namespace to the handler used. Any (namespace-less)
attribute may be specified on the embed (page 158) element.

Note: This specification does not define a mechanism for interacting with
third-party handlers, as it is expected to be user-agent-specific. Some UAs
might opt to support a plugin mechanism such as the Netscape Plugin
API; others may use remote content convertors or have built-in support
for certain types. [NPAPI]

The embed (page 158) element has no fallback content (page 69). If the user agent can't
display the specified resource, e.g. because the given type is not supported, then the
user agent must use a default handler for the content. (This default could be as simple
as saying "Unsupported Format", of course.)

The type attribute, if present, gives the MIME type of the linked resource. The value
must be a valid MIME type, optionally with parameters. [RFC2046]

The type of the content being embedded is defined as follows:
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1. If the element has a type (page 159) attribute, then the value of the type (page
159) attribute is the content's type.

2. Otherwise, if the specified resource has explicit Content-Type metadata (page 277),
then that is the content's type.

3. Otherwise, the content has no type and there can be no appropriate handler for it.

Should we instead say that the content-sniffing that we're going to define for top-level
browsing contexts should apply here?

Should we require the type attribute to match the server information?

We should say that 404s, etc, don't affect whether the resource is used or not. Not
sure how to say it here though.

Browsers should take extreme care when interacting with external content intended for
third-party renderers. When third-party software is run with the same privileges as the
user agent itself, vulnerabilities in the third-party software become as dangerous as
those in the user agent.

height/width

The DOM attributes src and type each must reflect (page 29) the respective content
attributes of the same name.

The DOM attributes height and width must return the rendered height and width of
the image, in CSS pixels, if the image is being rendered, and is being rendered to a
visual medium, or 0 otherwise. [CSS21]

3.14.5. The object element

Strictly inline-level (page 69) embedded content (page 69).

Contexts in which this element may be used:
As the only embedded content (page 69) child of a figure (page 153) element.
Where strictly inline-level content (page 69) is allowed.

Content model:
When used as the child of a figure (page 153) element, or, when used as a
figure (page 153) fallback object (page 160): Zero or more param (page
164) elements, followed by either zero or more block-level elements (page 68) or
a single object (page 160) element, which is then considered to be a figure
(page 153) fallback object (page 160).
Otherwise: Zero or more param (page 164) elements, followed by inline-level
content (page 69).
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Element-specific attributes:
data (page 161) (required if type (page 161) is not given)
type (page 161) (required if data (page 161) is not given)
usemap (page 198)
height

width

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLObjectElement : HTMLElement (page 28) {

attribute DOMString data (page 164);
attribute DOMString type (page 164);
attribute DOMString useMap (page 164);
attribute long height (page 164);
attribute long width (page 164);

};

Objects implementing the HTMLObjectElement (page 161) interface must also
implement the EmbeddingElement interface defined in the Window Object
specification. [WINDOW]

Depending on the type of content instantiated by the object (page 160) element,
the node may also support other interfaces.

Shouldn't allow inline-level content to be the content model when the parent's content
model is strictly inline only.

The object (page 160) element can represent an external resource, which, depending
on the type of the resource, will either be treated as an image, as a nested browsing
context (page 20), or as an external resource to be processed by a third-party software
package.

The data attribute, if present, specifies the address of the resource. If present, the
attribute must be a URI (or IRI).

The type attribute, if present, specifies the type of the resource. If present, the attribute
must be a valid MIME type, optionally with parameters. [RFC2046]

One or both of the data (page 161) and type (page 161) attributes must be present.

Whenever the data (page 161) attribute changes, or, if the data (page 161) attribute is
not present, whenever the type (page 161) attribute changes, the user agent must
follow the following steps to determine what the object (page 160) element represents:
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1. If the data (page 161) attribute is present, then:

1. Begin a load for the resource.

The download of the resource must delay the load event (page 455).

2. If the resource is not yet available (e.g. because the resource was not available
in the cache, so that loading the resource required making a request over the
network), then jump to step 3 in the overall set of steps (fallback). When the
resource becomes available, or if the load fails, restart this algorithm from this
step. Resources can load incrementally; user agents may opt to consider a
resource "available" whenever enough data has been obtained to begin
processing the resource.

3. If the load failed (e.g. DNS error), fire an error event (page 286) at the
element, then jump to step 3 in the overall set of steps (fallback).

4. Determine the resource type, as follows:

This says to trust the type. Should we instead use the same mechanism as
for browsing contexts?

↪ If the resource has associated Content-Type metadata (page 277)
The type is the type specified in the resource's Content-Type metadata
(page 277).

↪ Otherwise, if the type (page 161) attribute is present
The type is the type specified in the type (page 161) attribute.

↪ Otherwise, there is no explicit type information
The type is the sniffed type of the resource.

5. Handle the content as given by the first of the following cases that matches:

↪ If the resource requires a special handler (e.g. a plugin)
The user agent should find an appropriate handler for the specified
resource, based on the resource type found in the previous step, and
pass the content of the resource to that handler. If the handler
supports a scriptable interface, the HTMLObjectElement (page 161)
object representing the element should expose that interface. The
handler is not a nested browsing context (page 20). If no appropriate
handler can be found, then jump to step 3 in the overall set of steps
(fallback).

The user agent should pass the names and values of all the
parameters given by param (page 164) elements that are children of
the object (page 160) element to the handler used.
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Note: This specification does not define a mechanism for
interacting with third-party handlers, as it is expected to
be user-agent-specific. Some UAs might opt to support a
plugin mechanism such as the Netscape Plugin API;
others may use remote content convertors or have
built-in support for certain types. [NPAPI]

this doesn't completely duplicate the navigation section, since it
handles <param>, etc, but surely some work should be done to
work with it

↪ If the type of the resource is an XML MIME type
↪ If the type of the resource is HTML
↪ If the type of the resource does not start with "image/"

The object (page 160) element must be associated with a nested
browsing context (page 20), if it does not already have one. The
element's nested browsing context (page 20) must then be navigated
(page 269) to the given resource. (The data (page 161) attribute of
the object (page 160) element doesn't get updated if the browsing
context gets further navigated to other locations.)

navigation might end up treating it as something else, because it
can do sniffing. how should we handle that?

↪ If the resource is a supported image format, and support for images
has not been disabled

The object (page 160) element represents the specified image. The
image is not a nested browsing context (page 20).

shouldn't we use the image-sniffing stuff here?

↪ Otherwise
The object (page 160) element represents the specified image, but
the image cannot be shown. Jump to step 3 below in the overall set of
steps (fallback).

6. The element's contents are not part of what the object (page 160) element
represents.

7. Once the resource is completely loaded, fire a load event (page 286) at the
element.

2. If the data (page 161) attribute is absent but the type (page 161) attribute is
present, and if the user agent can find a handler suitable according to the value of
the type (page 161) attribute, then that handler should be used. If the handler
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supports a scriptable interface, the HTMLObjectElement (page 161) object
representing the element should expose that interface. The handler is not a nested
browsing context (page 20). If no suitable handler can be found, jump to the next
step (fallback).

3. (Fallback.) The object (page 160) element doesn't represent anything except what
the element's contents represent, ignoring any leading param (page 164) element
children. This is the element's fallback content (page 69).

In the absence of other factors (such as style sheets), user agents must show the user
what the object (page 160) element represents. Thus, the contents of object (page
160) elements act as fallback content (page 69), to be used only when referenced
resources can't be shown (e.g. because it returned a 404 error). This allows multiple
object (page 160) elements to be nested inside each other, targeting multiple user
agents with different capabilities, with the user agent picking the best one it supports.

The usemap (page 198) attribute, if present while the object (page 160) element
represents an image, can indicate that the object has an associated image map (page
198). The attribute must be ignored if the object (page 160) element doesn't represent
an image.

height/width

The DOM attributes data, type, useMap, height, and width each must reflect (page
29) the respective content attributes of the same name.

3.14.6. The param element

Contexts in which this element may be used:
As a child of an object (page 160) element, before any content other than
param (page 164) elements.

Content model:
Empty.

Element-specific attributes:
name (page 165) (required)
value (page 165) (required)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLParamElement : HTMLElement (page 28) {

attribute DOMString name (page 165);
attribute DOMString value (page 165);

};
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The param (page 164) element defines parameters for handlers invoked by object
(page 160) elements.

The name attribute gives the name of the parameter.

The value attribute gives the value of the parameter.

Both attributes must be present. They may have any value.

If both attributes are present, and if the parent element of the param (page 164) is an
object (page 160) element, then the element defines a parameter with the given
name/value pair.

The DOM attributes name and value must both reflect (page 29) the respective content
attributes of the same name.

3.14.7. The video element

Semi-transparent (page 70) strictly inline-level (page 69) embedded content (page 69).

Contexts in which this element may be used:
As the only embedded content (page 69) child of a figure (page 153) element.
Where strictly inline-level content (page 69) is allowed.

Content model:
If the element has a src (page 166) attribute: transparent (page 70).
If the element does not have a src (page 166) attribute: one or more source

(page 176) elements, then, transparent (page 70).

Element-specific attributes:
src (page 166)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLVideoElement : HTMLMediaElement (page 168) {

readonly attribute unsigned long videoWidth (page 166);
readonly attribute unsigned long videoHeight (page 166);

};

A video (page 165) element represents a video or movie.

Content may be provided inside the video (page 165) element so that older Web
browsers, which do not support video (page 165), can display text to the user informing
them of how to access the video contents. User agents should not show this fallback
content to the user.

The video (page 165) element is a media element (page 168) whose media data (page
169) is video data, possibly with associated audio data.
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Note: In this version, the video (page 165) element is aimed primarily at
authors wanting to write their own video player user interfaces, rather
than those authors wanting to expose video clips as part of other content,
without concern to the details of the UI. To this end, the element in this
version merely exposes a JavaScript API, and does not have declarative
features or the ability to enable a default user interface. A future version
of this specification will probably introduce such features.

The src attribute gives the address of the video to show. The attribute, if present, must
contain a URI (or IRI). This is the media source attribute (page 169).

The videoWidth DOM attribute must return the native width of the video in CSS pixels.
The videoHeight DOM attribute must return the native height of the video in CSS
pixels. In the absence of resolution information, user agents may assume that one pixel
in the video corresponds to one CSS pixel. If no video data is available, then the
attributes must return 0.

When no video data is available, video (page 165) elements represent pure black.

In the PLAYING (page 169) state, video (page 165) elements represent the frame of
video at the continuously increasing "current" position (page 169). When the current
playback position (page 169) changes such that the last frame rendered is no longer the
frame corresponding to the current playback position (page 169) in the video, the new
frame must be rendered. Similarly, any audio associated with the video must, if played,
be played synchronised with the current playback position (page 169). If there is
associated audio data, the audio must play synchronised with the video, at the specified
volume (page 175) with the specified mute state (page 175).

In the PAUSED (page 169) state, the element represents the frame of video at the
current playback position (page 169), or, if that is not available yet (e.g. because the
video is seeking or buffering), the last rendered frame of video.

In the AUTO-PAUSED (page 169) state, the element represents either the last frame of
the video to have been rendered, or pure black if no frame from the video has been
rendered yet.

Video content should be rendered inside the element's playback area such that the video
content is shown centered in the playback area at the largest possible size that fits
completely within it, with the video content's aspect ratio being preserved. Thus, if the
aspect ratio of the playback area does not match the aspect ratio of the video, the video
will be shown letterboxed. Areas of the element's playback area that do not contain the
video should be filled with pure black.

User agents should provide controls to enable or disable the display of closed captions
associated with the video stream, though such features should, again, not interfere with
the page's normal rendering.

User agents may allow users to view the video content in manners more suitable to the
user (e.g. full-screen or in an independent resizable window). As for the other user
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interface features, controls to enable this should not interfere with the page's normal
rendering. In such an independent context, however, user agents may make full user
interfaces visible, with, e.g., play, pause, seeking, and volume controls.

User agents may allow video playback to affect system features that could interfere with
the user's experience; for example, user agents could disable screensavers while video
playback is in progress.

3.14.7.1. Video and audio codecs for video (page 165) elements

User agents may support any video and audio codecs and container formats.

User agents should support Ogg Theora video and Ogg Vorbis audio, as well as the Ogg
container format. [THEORA] [VORBIS] [OGG]

3.14.8. The audio element

Semi-transparent (page 70) strictly inline-level (page 69) embedded content (page 69).

Contexts in which this element may be used:
As the only embedded content (page 69) child of a figure (page 153) element.
Where strictly inline-level content (page 69) is allowed.

Content model:
If the element has a src (page 168) attribute: transparent (page 70).
If the element does not have a src (page 168) attribute: one or more source

(page 176) elements, then, transparent (page 70).

Element-specific attributes:
src (page 168)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLAudioElement : HTMLMediaElement (page 168) {
// no members

};

An audio (page 381) element represents a sound or audio stream.

Content may be provided inside the audio (page 381) element so that older Web
browsers, which do not support audio (page 381), can display text to the user informing
them of how to access the audio contents. User agents should not show this fallback
content to the user.

The audio (page 381) element is a media element (page 168) whose media data (page
169) is audio data.
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Note: In this version, the audio (page 381) element is aimed primarily at
authors wanting to add sound effects to games. To this end, the element
in this version merely exposes a JavaScript API, and does not have
declarative features or the ability to enable a default user interface. A
future version of this specification will probably introduce such features.

The src attribute gives the address of the audio to show. The attribute, if present, must
contain a URI (or IRI). This is the media source attribute (page 169).

In the PLAYING (page 169) state, audio (page 381) elements must have their audio
data played synchronised with the current playback position (page 169), at the specified
volume (page 175) with the specified mute state (page 175).

In the PAUSED (page 169) and AUTO-PAUSED (page 169) states, audio must not play.

3.14.8.1. Video and audio codecs for audio (page 381) elements

User agents may support any audio codecs and container formats.

User agents must support the WAVE container format with audio encoded using the
PCM format.

3.14.9. Media elements

Media elements implement the following interface:

interface HTMLMediaElement : HTMLElement (page 28) {
// media

attribute DOMString src (page 170);
readonly attribute DOMString currentSrc (page 170);
readonly attribute float duration (page 174);

// playback state

const unsigned short STOPPED (page 169) = 0;

const unsigned short PLAYING (page 169) = 1;

const unsigned short PAUSED (page 169) = 2;

const unsigned short AUTO_PAUSED (page 169) = 3;

readonly attribute unsigned short state (page 169);
readonly attribute boolean buffering (page 174);
readonly attribute boolean seeking (page 174);
readonly attribute boolean ended (page 174);
readonly attribute float bufferingRate (page 174);
readonly attribute TimeRanges (page 175) buffered (page 175);
readonly attribute float position (page 174);
readonly attribute TimeRanges (page 175) played (page 175);

// controls

attribute float volume (page 175);
attribute boolean muted (page 175);

void load (page 170)();
void play (page 172)();
void pause (page 173)();
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void stop (page 173)();
void seek (page 173)(in float offset);

};

Media elements (page 168) are used to present audio data, or video and audio data, to
the user. This is referred to as media data in this section, since this section applies
equally to media elements (page 168) for audio or for video. The term media resource
is used to refer to the complete set of media data, e.g. the complete video file, or
complete audio file.

Media elements (page 168) have a current playback position, which must initially be
zero. The current position is a time.

Media elements (page 168) can be in one of four states: STOPPED (page 169),
PLAYING (page 169), PAUSED (page 169), and AUTO-PAUSED (page 169). The
current state is exposed to scripts through the state DOM attribute, whose value must
be the value of the constant corresponding to the element's state.

When created, media elements (page 168) must start in the STOPPED state. This state
is represented by the STOPPED constant, whose value is zero. In the STOPPED state,
no media data (page 169) is available.

The PLAYING state is the state when the element has media data (page 169) and is
rendering it in real time. This state is represented by the PLAYING constant, whose value
is 1.

The PAUSED state is the state when the element has media data (page 169) but its
rendering has been intentionally stopped. This state is represented by the PAUSED
constant, whose value is 2.

The AUTO-PAUSED state is the state when the element would be playing if there was
media data (page 169) available, but, for one reason or another, the media data (page
169) is not yet available and therefore rendering has been automatically (and typically
temporarily) stopped by the user agent. This state is represented by the AUTO_PAUSED
constant, whose value is 3.

Media elements (page 168) can have a media source attribute (their src attribute). If it
is specified, the resource it specified is the media resource (page 169) that will be used.
Otherwise, the resource specified by the first suitable source (page 176) element child
of the media element (page 168) is the one used, as described below.

To pick a media resource for a media element (page 168), a user agent must follow the
following steps:

1. If the media element (page 168) has a media source attribute (page 169), then the
address given in that attribute, resolved to an absolute URI relative to the media
element (page 168), is the address of the media resource (page 169); jump to the
last step.
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2. Otherwise, let candidate be the first source (page 176) element child in the media
element (page 168), or null if there is no such child.

3. If candidate is not null and the candidate element has a src (page 177) attribute,
and either:

• the candidate element has a type (page 177) attribute and that attribute's
value, when parsed as a MIME type, represents a type that the user agent can
render (including any codecs described by the codec parameter), or [RFC2046]
[RFC4281]

• the candidate element has no type (page 177) attribute,

...then the address given in that candidate element's src (page 177) attribute,
resolved to an absolute URI relative to the candidate element, is the address of the
media resource (page 169); jump to the last step.

4. Let candidate be the next source (page 176) element child in the media element
(page 168), or null if there are no more such children.

5. If candidate is not null, return to step 3.

6. There is no media resource (page 169). Abort these steps.

7. Let the chosen media resource be the one with the address that was resolved
before jumping to this step.

The src DOM attribute on media elements (page 168) must reflect (page 29) the
content attribute of the same name.

The currentSrc DOM attribute must return the empty string if the media element
(page 168) is in the STOPPED (page 169) state, and the absolute URL of the chosen
media resource (page 170) otherwise.

All media elements (page 168) have a begun flag, which must begin in the false state.

When the load() method on a media element (page 168) is invoked, the user agent
must run the following steps. Note that this algorithm might get aborted, e.g. if the
stop() (page 173) method is invoked, or if the method itself is invoked again.

1. Any already-running instance of this algorithm for this element must be aborted. If
those method calls have not yet returned, they must finish the step they are on, and
then immediately return.

2. The media element (page 168)'s buffering (page 174) attribute must be set to
false.

3. If the media element (page 168) is not in the STOPPED (page 169) state, then the
element must be switched to the STOPPED (page 169) state and the user agent
must synchronously fire a stopped event at the element.
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4. The user agent must pick a media resource (page 169) for the media element (page
168). If that fails, the method must raise an INVALID_STATE_ERR exception, and
abort these steps.

5. The element must be switched to the PAUSED (page 169) state and the user agent
must synchronously fire a paused event at the element.

6. The method must return, but these steps must continue.

7. Playback of any previously playing media resource (page 169) for this element
stops.

8. If the element's begun flag (page 170) is true, then the begun flag (page 170) must
be set to false and the user agent must fire an abort event at the media element
(page 168).

9. If a download is in progress for the media element (page 168), the user agent
should stop the download.

10. The element's buffering (page 174) attribute must be set to true.

11. The user agent must then set the begun flag (page 170) to true and fire a begin

event at the media element (page 168).

12. The user agent must then begin to download the chosen media resource (page
170). The rate of the download may be throttled, however, in response to user
preferences (including throttling it to zero until the user indicates that the download
can start), or to balance the download with other connections sharing the same
bandwidth.

13. While the download is progressing, the user agent must fire a progress event at
the element every 350ms (±200ms) or for every byte received, whichever is least
frequent.

If at any point the user agent has received no data for more than about three
seconds, the user agent must fire a stalled event at the element.

User agents may allow users to selectively block or slow media data (page 169)
downloads. When a media element (page 168)'s download has been blocked, the
user agent must act as if it was stalled (as opposed to acting as if the connection
was closed).

The user agent may use whatever means necessary to download the resource
(within the constraints put forward by this and other specifications); for example,
reconnecting to the server in the face of network errors, or using HTTP partial range
requests. The user agent must only consider a resource erroneous if it has given up
trying to download it.

When the user agent has completed the download of the entire media resource
(page 169), or when it has determined that the resource is erroneous, it must move
on to the next step.
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14. Once the download stops, for whatever reason, the element's buffering (page
174) attribute must be set to false.

15. If the resource is erroneous and no media data (page 169) has been obtained (e.g.
because it is an HTTP 404 response, or the server returned a file that turns out to
not be pure audio when the media element (page 168) is a video (page 165)
element, or the file uses an unsupported codec), then:

1. The user agent should cancel the download.

2. The element must be switched to the STOPPED (page 169) state and the user
agent must synchronously fire a stopped event at the element.

3. The begun flag (page 170) must be set to false and the user agent must fire an
error event (page 286) at the media element (page 168).

16. In the case of a download being interrupted after some media data (page 169) has
been received, then the begun flag (page 170) must be set to false and the user
agent must fire an error event (page 286) at the media element (page 168), but
the element must not be switched to the STOPPED (page 169) state.

17. If the download completes without errors, the begun flag (page 170) must be set to
false and the user agent must fire a load event (page 286) at the element.

If a media element (page 168) in the STOPPED (page 169) state is inserted into a
document, user agents must implicitly invoke the load() (page 170) method on the
media element (page 168). Any exceptions raised must be ignored.

When the play() method on a media element (page 168) is invoked, the user agent
must run the following steps.

1. If the media element (page 168) is in the STOPPED (page 169) state, then the user
agent must invoke the load() (page 170) method. If that raises an exception, that
exception must be reraised by the play() (page 172) method.

2. If the media element (page 168) is in either the PLAYING (page 169) state or the
AUTO-PAUSED (page 169) state, then the method must return and the user agent
must abort these steps.

3. If the user agent has enough media data (page 169) to begin playback at the
current playback position (page 169), then the media element (page 168) must be
switched to the PLAYING (page 169) state, the user agent must synchronously fire
a playing event at the element, and then the method call must return. These steps
must be aborted at this point. As described below, playback will then start.

4. Otherwise, the user agent does not have enough data to begin playback at the
current playback position (page 169).

If the media element (page 168) is in the PAUSED (page 169) state, then it must be
switched to the AUTO-PAUSED (page 169) state; the user agent must then
synchronously fire an autopaused event at the element, and the method call must
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return. These steps must then be aborted. As described below, playback will resume
when the data is available.

When the pause() method is invoked, the user agent must run the following steps:

1. If the media element (page 168) is in the STOPPED (page 169) state, then the user
agent must raise an INVALID_STATE_ERR exception, and abort these steps.

2. If the media element (page 168) is in the PAUSED (page 169) state, then the
method must return and the user agent must abort these steps.

3. The media element (page 168) must be switched to the PAUSED (page 169) state
and the user agent must synchronously fire a paused event at the element.

4. The method must then return. As described below, playback of will stop.

When the seek(offset) method is invoked, the user agent must run the following
steps:

1. If the media element (page 168) is in the STOPPED (page 169) state, then the user
agent must raise an INVALID_STATE_ERR exception, and abort these steps.

2. If the given offset is below zero, then the user agent must raise an
INDEX_SIZE_ERR exception, and abort these steps.

3. The current playback position (page 169) must be set to the given offset, treating
this argument as a time in seconds from the start of the media resource (page 169).
If the given offset is beyond the end of the media resource, then the current
playback position (page 169) must be set to the end of the media resource (page
169).

4. If the media element (page 168) is in the PLAYING (page 169) state, then the
element must be switched to the AUTO-PAUSED (page 169) state, and the user
agent must synchronously fire an autopaused event at the element.

5. The method must then return. As described below, the user agent will then seek to
the given offset, and, if appropriate, start playing.

When the stop() method is invoked, the user agent must run the following steps:

1. Any already-running instance of the algorithm for the load() (page 170) method for
this element must be aborted. If those method calls have not yet returned, they must
finish the step they are on, and then immediately return.

2. The media element (page 168)'s buffering (page 174) attribute must be set to
false.

3. If the media element (page 168) is not in the STOPPED (page 169) state, then the
element must be switched to the STOPPED (page 169) state and the user agent
must synchronously fire a stopped event at the element.
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4. The method must return, but these steps must continue.

5. Playback stops.

6. If the element's begun flag (page 170) is true, then the begun flag (page 170) must
be set to false and the user agent must fire an abort event at the media element
(page 168).

7. If a download is in progress for the media element (page 168), the user agent
should stop the download.

While in the PLAYING (page 169) state, the current playback position (page 169) must
increase monotonically at one unit time of media time per unit time of wall clock time.

If the media data (page 169) for the current playback position (page 169) is not yet
available, the user agent must switch the media element (page 168) to the
AUTO-PAUSED (page 169) state and stop playback.

While in the AUTO-PAUSED (page 169) state, once media data (page 169) becomes
available for playing back at the current playback position (page 169), and if the user
agent estimates that data is being downloaded at a rate where the current playback
position (page 169), if it were to advance in real time, would not soon overtake the
available data, and once the user agent is able to start playing at the current playback
position (page 169) (e.g. after seeking to that position), the user agent must switch the
media element (page 168) to the PLAYING (page 169) state and resume playback.

The duration attribute must return the length of the media resource (page 169), in
seconds. If no media data (page 169) is available, then the attributes must return 0. If
media data (page 169) is available but the length is not known, the attribute must return
the length of the currently available data, in seconds.

The buffering attribute returns true if data is still being buffered, and false otherwise.
The exact rules for this are described above as part of the algorithm for the play()

(page 172) method. When the media element (page 168) is created, the buffering

(page 174) attribute must initially be false.

The seeking attribute must return false if the media element (page 168) is in the
STOPPED (page 169) state or if the user agent would be able to immediately start
playing at the current playback position (page 169). Otherwise it must return true.

The ended attribute must return true if the media element (page 168) is in the PAUSED
(page 169) or AUTO-PAUSED (page 169) state and the current playback position (page
169) is at the end of the available media data (page 169). Otherwise it must return false.

The bufferingRate attribute must return the average number of bits received per
second for the current download over the past few seconds. If there is no download in
progress, the attribute must return 0.

The position attribute must return the current playback position (page 169),
expressed in seconds.
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The buffered attribute must return a static normalised TimeRanges object (page 176)
that represents the ranges of the media resource (page 169), if any, that the user agent
has downloaded, at the time the attribute is evaluated.

Note: Typically this will be a single range anchored at the zero point, but
if, e.g. the user agent uses HTTP range requests in response to seeking,
then there could be multiple ranges.

The played attribute must return a static normalised TimeRanges object (page 176)
that represents the ranges of the media resource (page 169), if any, that the user agent
has so far rendered, at the time the attribute is evaluated.

The timeline of the objects returned by the buffered (page 175) and played (page
175) attributes must be the same as the media resource (page 169)'s timeline.

The volume attribute must return the playback volume of any audio portions of the
media element (page 168), in the range 0.0 (silent) to 1.0 (loudest). Initially, the volume
must be 0.5, but user agents may remember the last set value across sessions, on a
per-site basis or otherwise, so the volume may start at other values. On setting, if the
new value is in the range 0.0 to 1.0 inclusive, the attribute must be set to the new value
and the playback volume must be correspondingly adjusted as soon as possible after
setting the attribute, with 0.0 being silent, and 1.0 being the loudest setting, values in
between increasing in loudness. The range need not be linear. The loudest setting may
be lower than the system's loudest possible setting; for example the user could have set
a maximum volume. If the new value is outside the range 0.0 to 1.0 inclusive, then, on
setting, an INDEX_SIZE_ERR exception must be raised instead.

The muted attribute must return true if the audio channels are muted and false
otherwise. On setting, the attribute must be set to the new value; if the new value is true,
audio playback for this media resource (page 169) must then be muted, and if false,
audio playback must then be enabled.

User agents may provide controls to affect playback of the media resource (e.g. play,
pause, seeking, and volume controls), but such features should not interfere with the
page's normal rendering. For example, such features could be exposed in the media
element (page 168)'s context menu.

Where possible (specifically, for starting, stopping, pausing, and unpausing playback, for
muting or changing the volume of the audio, and for seeking), user interface features
exposed by the user agent must be implemented in terms of the DOM API described
above, so that, e.g., all the same events fire.

3.14.9.1. Time range

Objects implementing the TimeRanges (page 175) interface represent a list of ranges
(periods) of time.

interface TimeRanges {

readonly attribute unsigned long length (page 176);
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float start (page 176)(in unsigned long index);
float end (page 176)(in unsigned long index);

};

The length DOM attribute must return the number of ranges represented by the object.

The start(index) method must return the position of the start of the indexth range
represented by the object, in seconds measured from the start of the timeline that the
object covers.

The end(index) method must return the position of the end of the indexth range
represented by the object, in seconds measured from the start of the timeline that the
object covers.

When a TimeRanges (page 175) object is said to be a normalised TimeRanges
object, the ranges it represents must obey the following criteria:

• The start of a range must be greater than the end of all earlier ranges.

• The start of a range must be less than the end of that same range.

In other words, the ranges in such an object are ordered, don't overlap, and don't touch
(adjacent ranges are folded into one bigger range).

3.14.10. The source element

Contexts in which this element may be used:
As a child of a media element (page 168), before any content other than source

(page 176) elements.

Content model:
Empty.

Element-specific attributes:
src (page 177) (required)
type (page 177) (required)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLSourceElement : HTMLElement (page 28) {

attribute DOMString name (page 177);
attribute DOMString value (page 177);

};

The source (page 176) element allows authors to specify multiple media resources
(page 169) for media elements (page 168).
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The src attribute gives the address of the media resource (page 169). The value must
be a URI (or IRI).

The type attribute gives the type of the media resource (page 169), to help the user
agent determine if it can play this media resource (page 169) before downloading it. Its
value must be a MIME type. The codec parameter may be specified and might be
necessary to specify exactly how the resource is encoded. [RFC2046] [RFC4281]

Both attributes must be present.

If a source (page 176) element is inserted into a media element (page 168) that is in
the STOPPED (page 169) state and that is already in a document, the user agent must
implicitly invoke the load() (page 170) method on the media element (page 168). Any
exceptions raised must be ignored.

The DOM attributes src and type must both reflect (page 29) the respective content
attributes of the same name.

3.14.11. The canvas element

Strictly inline-level (page 69) embedded content (page 69).

Contexts in which this element may be used:
As the only embedded content (page 69) child of a figure (page 153) element.
Where strictly inline-level content (page 69) is allowed.

Content model:
Inline-level content (page 69).

Element-specific attributes:
height (page 178)
width (page 178)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLCanvasElement : HTMLElement (page 28) {

attribute long width (page 179);
attribute long height (page 179);

DOMString toDataURL() (page 179);
DOMString toDataURL (page 179)(in DOMString type);

DOMObject getContext (page 179)(in DOMString contextID);
};

Shouldn't allow inline-level content to be the content model when the parent's content
model is strictly inline only.
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The canvas (page 177) element represents a resolution-dependent bitmap canvas,
which can be used for rendering graphs, game graphics, or other visual images on the
fly.

Authors should not use the canvas (page 177) element in a document when a more
suitable element is available. For example, it is inappropriate to use a canvas (page
177) element to render a page heading: if the desired presentation of the heading is
graphically intense, it should be marked up using appropriate elements (typically h1
(page 101)) and then styled using CSS and supporting technologies such as XBL.

When authors use the canvas (page 177) element, they should also provide content
that, when presented to the user, conveys essentially the same function or purpose as
the bitmap canvas. This content may be placed as content of the canvas (page 177)
element. The contents of the canvas (page 177) element, if any, are the element's
fallback content (page 69).

In interactive visual media with scripting enabled, the canvas element is an embedded
element with a dynamically created image.

In non-interactive, static, visual media, if the canvas (page 177) element has been
previously painted on (e.g. if the page was viewed in an interactive visual medium and is
now being printed, or if some script that ran during the page layout process painted on
the element), then the canvas (page 177) element must be treated as embedded
content with the current image and size. Otherwise, the element's fallback content must
be used instead.

In non-visual media, and in visual media with scripting disabled, the canvas (page 177)
element's fallback content must be used instead.

The canvas (page 177) element has two attributes to control the size of the coordinate
space: height and width. These attributes, when specified, must have values that are
valid non-negative integers (page 48). The rules for parsing non-negative integers (page
48) must be used to obtain their numeric values. If an attribute is missing, or if parsing its
value returns an error, then the default value must be used instead. The width attribute
defaults to 300, and the height attribute defaults to 150.

The intrinsic dimensions of the canvas (page 177) element equal the size of the
coordinate space, with the numbers interpreted in CSS pixels. However, the element can
be sized arbitrarily by a style sheet. During rendering, the image is scaled to fit this
layout size.

The size of the coordinate space does not necessarily represent the size of the actual
bitmap that the user agent will use internally or during rendering. On high-definition
displays, for instance, the user agent may internally use a bitmap with two device pixels
per unit in the coordinate space, so that the rendering remains at high quality throughout.

The canvas must initially be fully transparent black.
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If the width (page 178) and height (page 178) attributes are dynamically modified, the
bitmap and any associated contexts must be cleared back to their initial state and
reinitialised with the newly specified coordinate space dimensions.

The width and height DOM attributes must reflect (page 29) the content attributes of
the same name.

To draw on the canvas, authors must first obtain a reference to a context using the
getContext method of the canvas (page 177) element.

This specification only defines one context, with the name "2d (page 180)". If
getContext() (page 179) is called with that exact string, then the UA must return a
reference to an object implementing CanvasRenderingContext2D (page 180). Other
specifications may define their own contexts, which would return different objects.

Vendors may also define experimental contexts using the syntax
vendorname-context, for example, moz-3d.

When the UA is passed an empty string or a string specifying a context that it does not
support, then it must return null. String comparisons should be literal and case-sensitive.

Note: A future version of this specification will probably define a 3d
context (probably based on the OpenGL ES API).

The toDataURL() method must, when called with no arguments, return a data: URI
containing a representation of the image as a PNG file. [PNG].

The toDataURL(type) method (when called with one or more arguments) must return
a data: URI containing a representation of the image in the format given by type. The
possible values are MIME types with no parameters, for example image/png, image/
jpeg, or even maybe image/svg+xml if the implementation actually keeps enough
information to reliably render an SVG image from the canvas.

Only support for image/png is required. User agents may support other types. If the
user agent does not support the requested type, it must return the image using the PNG
format.

User agents must convert the provided type to lower case before establishing if they
support that type and before creating the data: URL.

Note: When trying to use types other than image/png, authors can check
if the image was really returned in the requested format by checking to
see if the returned string starts with one the exact strings "data:image/
png," or "data:image/png;". If it does, the image is PNG, and thus the
requested type was not supported.

Arguments other than the type must be ignored, and must not cause the user agent to
raise an exception (as would normally occur if a method was called with the wrong
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number of arguments). A future version of this specification will probably allow extra
parameters to be passed to toDataURL() (page 179) to allow authors to more carefully
control compression settings, image metadata, etc.

Security: To prevent information leakage, the toDataURL() (page 179) and
getImageData() (page 193) methods should raise a security exception (page 280) if
the canvas ever had images painted on it that originate from a domain other than the
domain of the script (page 280) that painted the images onto the canvas.

3.14.11.1. The 2D context

When the getContext() (page 179) method of a canvas (page 177) element is
invoked with 2d as the argument, a CanvasRenderingContext2D (page 180) object
is returned.

There is only one CanvasRenderingContext2D (page 180) object per canvas, so
calling the getContext() (page 179) method with the 2d (page 180) argument a
second time must return the same object.

The 2D context represents a flat cartesian surface whose origin (0,0) is at the top left
corner, with the coordinate space having x values increasing when going right, and y
values increasing when going down.

interface CanvasRenderingContext2D {

// back-reference to the canvas readonly attribute

HTMLCanvasElement (page 177) canvas (page 182);

// state

void save (page 182)(); // push state on state stack
void restore (page 183)(); // pop state stack and restore state

// transformations (default transform is the identity matrix)

void scale (page 183)(in float x, in float y);
void rotate (page 183)(in float angle);
void translate (page 183)(in float x, in float y);
void transform (page 183)(in float m11, in float m12, in float m21, in float

m22, in float dx, in float dy);

void setTransform (page 183)(in float m11, in float m12, in float m21, in
float m22, in float dx, in float dy);

// compositing

attribute float globalAlpha (page 183); // (default 1.0)
attribute DOMString globalCompositeOperation (page 184); // (default

over)

// colors and styles

attribute DOMObject strokeStyle (page 185); // (default black)
attribute DOMObject fillStyle (page 185); // (default black)

CanvasGradient (page 186) createLinearGradient(in float x0, in float y0, in
float x1, in float y1);

CanvasGradient (page 186) createRadialGradient(in float x0, in float y0, in
float r0, in float x1, in float y1, in float r1);
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CanvasPattern (page 187) createPattern(in HTMLImageElement (page 155) image,
DOMString repetition);

CanvasPattern (page 187) createPattern(in HTMLCanvasElement (page 177) image,
DOMString repetition);

// line caps/joins

attribute float lineWidth (page 187); // (default 1)
attribute DOMString lineCap (page 187); // "butt", "round", "square"

(default "butt")

attribute DOMString lineJoin (page 188); // "round", "bevel",
"miter" (default "miter")

attribute float miterLimit (page 188); // (default 10)

// shadows

attribute float shadowOffsetX (page 189); // (default 0)
attribute float shadowOffsetY (page 189); // (default 0)
attribute float shadowBlur (page 189); // (default 0)
attribute DOMString shadowColor (page 188); // (default black)

// rects

void clearRect (page 189)(in float x, in float y, in float w, in float h);
void fillRect (page 189)(in float x, in float y, in float w, in float h);
void strokeRect (page 189)(in float x, in float y, in float w, in float h);

// path API

void beginPath (page 190)();
void closePath (page 190)();
void moveTo (page 190)(in float x, in float y);
void lineTo (page 190)(in float x, in float y);
void quadraticCurveTo (page 190)(in float cpx, in float cpy, in float x, in

float y);

void bezierCurveTo (page 190)(in float cp1x, in float cp1y, in float cp2x, in
float cp2y, in float x, in float y);

void arcTo (page 190)(in float x1, in float y1, in float x2, in float y2, in
float radius);

void rect (page 191)(in float x, in float y, in float w, in float h);
void arc (page 191)(in float x, in float y, in float radius, in float

startAngle, in float endAngle, in boolean anticlockwise);

void fill (page 191)();
void stroke (page 191)();
void clip (page 191)();
boolean isPointInPath (page 192)(in float x, in float y);

// drawing images

void drawImage (page 192)(in HTMLImageElement (page 155) image, in float dx, in
float dy);

void drawImage (page 192)(in HTMLImageElement (page 155) image, in float dx, in
float dy, in float dw, in float dh);

void drawImage (page 192)(in HTMLImageElement (page 155) image, in float sx, in
float sy, in float sw, in float sh, in float dx, in float dy, in float dw, in
float dh);

void drawImage (page 192)(in HTMLCanvasElement (page 177) image, in float dx,
in float dy);

void drawImage (page 192)(in HTMLCanvasElement (page 177) image, in float dx,
in float dy, in float dw, in float dh);

void drawImage (page 192)(in HTMLCanvasElement (page 177) image, in float sx,
in float sy, in float sw, in float sh, in float dx, in float dy, in float dw,
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in float dh);

// pixel manipulation

ImageData (page 182) getImageData (page 193)(in float sx, in float sy, in float
sw, in float sh);

void putImageData (page 193)(in ImageData (page 182) image, in float dx, in
float dy);

// drawing text is not supported in this version of the API
// (there is no way to predict what metrics the fonts will have,
// which makes fonts very hard to use for painting)

};

interface CanvasGradient {
// opaque object

void addColorStop (page 186)(in float offset, in DOMString color);
};

interface CanvasPattern {
// opaque object

};

interface ImageData {

readonly attribute long int width (page 193);
readonly attribute long int height (page 193);
readonly attribute int[] data (page 193);

};

The canvas attribute must return the canvas (page 177) element that the context
paints on.

3.14.11.1.1. THE CANVAS STATE

Each context maintains a stack of drawing states. Drawing states consist of:

• The current transformation matrix.
• The current clip region.
• The current values of the following attributes: strokeStyle (page 185),
fillStyle (page 185), globalAlpha (page 183), lineWidth (page 187),
lineCap (page 187), lineJoin (page 188), miterLimit (page 188),
shadowOffsetX (page 189), shadowOffsetY (page 189), shadowBlur (page
189), shadowColor (page 188), globalCompositeOperation (page 184).

Note: The current path and the current bitmap are not part of the drawing
state. The current path is persistent, and can only be reset using the
beginPath() (page 190) method. The current bitmap is a property of the
canvas, not the context.

The save() method pushes a copy of the current drawing state onto the drawing state
stack.
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The restore() method pops the top entry in the drawing state stack, and resets the
drawing state it describes. If there is no saved state, the method does nothing.

3.14.11.1.2. TRANSFORMATIONS

The transformation matrix is applied to all drawing operations prior to their being
rendered. It is also applied when creating the clip region.

When the context is created, the transformation matrix must initially be the identity
transform. It may then be adjusted using the three transformation methods.

The transformations must be performed in reverse order. For instance, if a scale
transformation that doubles the width is applied, followed by a rotation transformation
that rotates drawing operations by a quarter turn, and a rectangle twice as wide as it is
tall is then drawn on the canvas, the actual result will be a square.

The scale(x, y) method must add the scaling transformation described by the
arguments to the transformation matrix. The x argument represents the scale factor in
the horizontal direction and the y argument represents the scale factor in the vertical
direction. The factors are multiples.

The rotate(angle) method must add the rotation transformation described by the
argument to the transformation matrix. The angle argument represents a clockwise
rotation angle expressed in radians.

The translate(x, y) method must add the translation transformation described by
the arguments to the transformation matrix. The x argument represents the translation
distance in the horizontal direction and the y argument represents the translation
distance in the vertical direction. The arguments are in coordinate space units.

The transform(m11, m12, m21, m22, dx, dy) method must multiply the current
transformation matrix with the matrix described by:

m11 m21 dx
m12 m22 dy

0 0 1

The setTransform(m11, m12, m21, m22, dx, dy) method must reset the
current transform to the identity matrix, and then invoke the transform (page
183)(m11, m12, m21, m22, dx, dy) method with the same arguments.

3.14.11.1.3. COMPOSITING

All drawing operations are affected by the global compositing attributes, globalAlpha
(page 183) and globalCompositeOperation (page 184).

The globalAlpha attribute gives an alpha value that is applied to shapes and images
before they are composited onto the canvas. The value must be in the range from 0.0
(fully transparent) to 1.0 (no additional transparency). If an attempt is made to set the
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attribute to a value outside this range, the attribute must retain its previous value. When
the context is created, the globalAlpha (page 183) attribute must initially have the
value 1.0.

The globalCompositeOperation attribute sets how shapes and images are drawn
onto the existing bitmap, once they have had globalAlpha (page 183) and the current
transformation matrix applied. It must be set to a value from the following list. In the
descriptions below, the source image is the shape or image being rendered, and the
destination image is the current state of the bitmap.

source-atop

Display the source image wherever both images are opaque. Display the destination
image wherever the destination image is opaque but the source image is
transparent. Display transparency elsewhere.

source-in

Display the source image wherever both the source image and destination image
are opaque. Display transparency elsewhere.

source-out

Display the source image wherever the source image is opaque and the destination
image is transparent. Display transparency elsewhere.

source-over (default)
Display the source image wherever the source image is opaque. Display the
destination image elsewhere.

destination-atop

Same as source-atop (page 184) but using the destination image instead of the
source image and vice versa.

destination-in

Same as source-in (page 184) but using the destination image instead of the
source image and vice versa.

destination-out

Same as source-out (page 184) but using the destination image instead of the
source image and vice versa.

destination-over

Same as source-over (page 184) but using the destination image instead of the
source image and vice versa.

darker

Display the sum of the source image and destination images, with color values
approaching 0 as a limit.

lighter

Display the sum of the source image and destination image, with color values
approaching 1 as a limit.

The source-* descriptions
below don't define what
should happen with
semi-transparent regions.

▶
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copy

Display the source image instead of the destination image.

xor

Exclusive OR of the source and destination images.

vendorName-operationName

Vendor-specific extensions to the list of composition operators should use this
syntax.

These values are all case-sensitive — they must be used exactly as shown. User agents
must only recognise values that exactly match the values given above.

On setting, if the user agent does not recognise the specified value, it must be ignored,
leaving the value of globalCompositeOperation (page 184) unaffected.

When the context is created, the globalCompositeOperation (page 184) attribute
must initially have the value source-over.

3.14.11.1.4. COLORS AND STYLES

The strokeStyle attribute represents the color or style to use for the lines around
shapes, and the fillStyle attribute represents the color or style to use inside the
shapes.

Both attributes can be either strings, CanvasGradient (page 186)s, or
CanvasPattern (page 187)s. On setting, strings should be parsed as CSS <color>
values and the color assigned, and CanvasGradient (page 186) and CanvasPattern

(page 187) objects must be assigned themselves. [CSS3COLOR] If the value is a string
but is not a valid color, or is neither a string, a CanvasGradient (page 186), nor a
CanvasPattern (page 187), then it must be ignored, and the attribute must retain its
previous value.

On getting, if the value is a color, then: if it has alpha equal to 1.0, then the color must be
returned as an uppercase six-digit hex value, prefixed with a "#" character (U+0023
NUMBER SIGN), with the first two digits representing the red component, the next two
digits representing the green component, and the last two digits representing the blue
component, the digits being in the range 0-9 A-F (U+0030 to U+0039 and U+0041 to
U+0046). If the value has alpha less than 1.0, then the value must instead be returned in
the CSS rgba() functional-notation format: the literal string rgba (U+0072 U+0067
U+0062 U+0061) followed by a U+0028 LEFT PARENTHESIS, a base-ten integer in the
range 0-255 representing the red component (using digits 0-9, U+0030 to U+0039, in the
shortest form possible), a literal U+002C COMMA and U+0020 SPACE, an integer for
the green component, a comma and a space, an integer for the blue component, another
comma and space, a U+0030 DIGIT ZERO, a U+002E FULL STOP (representing the
decimal point), one or more digits in the range 0-9 (U+0030 to U+0039) representing the
fractional part of the alpha value, and finally a U+0029 RIGHT PARENTHESIS.
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Otherwise, if it is not a color but a CanvasGradient (page 186) or CanvasPattern
(page 187), then an object supporting those interfaces must be returned. Such objects
are opaque and therefore only useful for assigning to other attributes or for comparison
to other gradients or patterns.

When the context is created, the strokeStyle (page 185) and fillStyle (page 185)
attributes must initially have the string value #000000.

There are two types of gradients, linear gradients and radial gradients, both represented
by objects implementing the opaque CanvasGradient interface.

Once a gradient has been created (see below), stops must be placed along it to define
how the colors are distributed along the gradient. Between each such stop, the colors
and the alpha component must be interpolated over the RGBA space to find the color to
use at that offset. Immediately before the 0 offset and immediately after the 1 offset,
transparent black stops are be assumed.

The addColorStop(offset, color) method on the CanvasGradient (page 186)
interface adds a new stop to a gradient. If the offset is less than 0 or greater than 1 then
an INDEX_SIZE_ERR exception must be raised. If the color cannot be parsed as a CSS
color, then a SYNTAX_ERR exception must be raised. Otherwise, the gradient must be
updated with the new stop information.

The createLinearGradient(x0, y0, x1, y1) method takes four arguments,
representing the start point (x0, y0) and end point (x1, y1) of the gradient, in coordinate
space units, and must return a linear CanvasGradient (page 186) initialised with that
line.

Linear gradients must be rendered such that at the starting point on the canvas the color
at offset 0 is used, that at the ending point the color at offset 1 is used, that all points on
a line perpendicular to the line between the start and end points have the color at the
point where those two lines cross (interpolation happening as described above), and that
any points beyond the start or end points are a transparent black.

The createRadialGradient(x0, y0, r0, x1, y1, r1) method takes six
arguments, the first three representing the start circle with origin (x0, y0) and radius r0,
and the last three representing the end circle with origin (x1, y1) and radius r1. The
values are in coordinate space units. The method must return a radial
CanvasGradient (page 186) initialised with those two circles.

Radial gradients must be rendered such that a cone is created from the two circles, so
that at the circumference of the starting circle the color at offset 0 is used, that at the
circumference around the ending circle the color at offset 1 is used, that the
circumference of a circle drawn a certain fraction of the way along the line between the
two origins with a radius the same fraction of the way between the two radii has the color
at that offset (interpolation happening as described above), that the end circle appear to
be above the start circle when the end circle is not completely enclosed by the start
circle, that the end circle be filled by the color at offset 1, and that any points not
described by the gradient are a transparent black.
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If a gradient has no stops defined, then the gradient must be treated as a solid
transparent black. Gradients are, naturally, only painted where the stroking or filling
effect requires that they be drawn.

Support for actually painting gradients is optional. Instead of painting the gradients, user
agents may instead just paint the first stop's color. However,
createLinearGradient() and createRadialGradient() must always return
objects when passed valid arguments.

Patterns are represented by objects implementing the opaque CanvasPattern
interface.

To create objects of this type, the createPattern(image, repetition) method is
used. The first argument gives the image to use as the pattern (either an
HTMLImageElement (page 155) or an HTMLCanvasElement (page 177)). Modifying
this image after calling the createPattern() method must not affect the pattern. The
second argument must be a string with one of the following values: repeat, repeat-x,
repeat-y, no-repeat. If the empty string or null is specified, repeat must be
assumed. If an unrecognised value is given, then the user agent must raise a
SYNTAX_ERR exception. User agents must recognise the four values described above
exactly (e.g. they must not do case folding). The method must return a CanvasPattern

(page 187) object suitably initialised.

The image argument must be an instance of an HTMLImageElement (page 155) or
HTMLCanvasElement (page 177). If the image is of the wrong type, the implementation
must raise a TYPE_MISMATCH_ERR exception.

Patterns must be painted so that the top left of the first image is anchored at the origin of
the coordinate space, and images are then repeated horizontally to the left and right (if
the repeat-x string was specified) or vertically up and down (if the repeat-y string
was specified) or in all four directions all over the canvas (if the repeat string was
specified). The images are not be scaled by this process; one CSS pixel of the image
must be painted on one coordinate space unit. Of course, patterns must only actually
painted where the stroking or filling effect requires that they be drawn, and are affected
by the current transformation matrix.

Support for patterns is optional. If the user agent doesn't support patterns, then
createPattern() must return null.

3.14.11.1.5. LINE STYLES

The lineWidth attribute gives the default width of lines, in coordinate space units. On
setting, zero and negative values must be ignored, leaving the value unchanged.

When the context is created, the lineWidth (page 187) attribute must initially have the
value 1.0.

The lineCap attribute defines the type of endings that UAs shall place on the end of
lines. The three valid values are butt, round, and square. The butt value means that
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the end of each line is a flat edge perpendicular to the direction of the line. The round

value means that a semi-circle with the diameter equal to the width of the line is then
added on to the end of the line. The square value means that at the end of each line is
a rectangle with the length of the line width and the width of half the line width, placed flat
against the edge perpendicular to the direction of the line. On setting, any other value
than the literal strings butt, round, and square must be ignored, leaving the value
unchanged.

When the context is created, the lineCap (page 187) attribute must initially have the
value butt.

The lineJoin attribute defines the type of corners that that UAs will place where two
lines meet. The three valid values are round, bevel, and miter.

On setting, any other value than the literal strings round, bevel and miter must be
ignored, leaving the value unchanged.

When the context is created, the lineJoin (page 188) attribute must initially have the
value miter.

The round value means that a filled arc connecting the corners on the outside of the
join, with the diameter equal to the line width, and the origin at the point where the inside
edges of the lines touch, must be rendered at joins. The bevel value means that a filled
triangle connecting those two corners with a straight line, the third point of the triangle
being the point where the lines touch on the inside of the join, must be rendered at joins.
The miter value means that a filled four- or five-sided polygon must be placed at the
join, with two of the lines being the perpendicular edges of the joining lines, and the other
two being continuations of the outside edges of the two joining lines, as long as required
to intersect without going over the miter limit.

The miter length is the distance from the point where the lines touch on the inside of the
join to the intersection of the line edges on the outside of the join. The miter limit ratio is
the maximum allowed ratio of the miter length to the line width. If the miter limit would be
exceeded, then a fifth line must be added to the polygon, connecting the two outside
lines, such that the distance from the inside point of the join to the point in the middle of
this fifth line is the maximum allowed value for the miter length.

The miter limit ratio can be explicitly set using the miterLimit attribute. On setting,
zero and negative values must be ignored, leaving the value unchanged.

When the context is created, the miterLimit (page 188) attribute must initially have
the value 10.0.

3.14.11.1.6. SHADOWS

All drawing operations are affected by the four global shadow attributes. Shadows form
part of the source image during composition.

The shadowColor attribute sets the color of the shadow.
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When the context is created, the shadowColor (page 188) attribute initially must be
fully-transparent black.

The shadowOffsetX and shadowOffsetY attributes specify the distance that the
shadow will be offset in the positive horizontal and positive vertical distance respectively.
Their values are in coordinate space units.

When the context is created, the shadow offset attributes initially have the value 0.

The shadowBlur attribute specifies the number of coordinate space units that the
blurring is to cover. On setting, negative numbers must be ignored, leaving the attribute
unmodified.

When the context is created, the shadowBlur (page 189) attribute must initially have
the value 0.

Support for shadows is optional. When they are supported, then, when shadows are
drawn, they must be rendered using the specified color, offset, and blur radius.

3.14.11.1.7. SIMPLE SHAPES (RECTANGLES)

There are three methods that immediately draw rectangles to the bitmap. They each take
four arguments; the first two give the x and y coordinates of the top left of the rectangle,
and the second two give the width and height of the rectangle, respectively.

Shapes are painted without affecting the current path, and are subject to
transformations, shadow effects (page 188), global alpha, clipping paths (page 191),
and global composition operators.

Negative values for width and height must cause the implementation to raise an
INDEX_SIZE_ERR exception.

The clearRect() method must clear the pixels in the specified rectangle to a fully
transparent black, erasing any previous image. If either height or width are zero, this
method has no effect.

The fillRect() method must paint the specified rectangular area using the
fillStyle (page 185). If either height or width are zero, this method has no effect.

The strokeRect() method must draw a rectangular outline of the specified size using
the strokeStyle (page 185), lineWidth (page 187), lineJoin (page 188), and (if
appropriate) miterLimit (page 188) attributes. What should happen with zero heights
or widths?

3.14.11.1.8. COMPLEX SHAPES (PATHS)

The context always has a current path. There is only one current path, it is not part of the
drawing state.
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A path has a list of zero or more subpaths. Each subpath consists of a list of one or
more points, connected by straight or curved lines, and a flag indicating whether the
subpath is closed or not. A closed subpath is one where the last point of the subpath is
connected to the first point of the subpath by a straight line. Subpaths with fewer than
two points are ignored when painting the path.

Initially, the context's path must have zero subpaths.

The beginPath() method must empty the list of subpaths so that the context once
again has zero subpaths.

The moveTo(x, y) method must create a new subpath with the specified point as its
first (and only) point.

The closePath() method must do nothing if the context has no subpaths. Otherwise, it
must mark the last subpath as closed, create a new subpath whose first point is the
same as the previous subpath's first point, and finally add this new subpath to the path.
(If the last subpath had more than one point in its list of points, then this is equivalent to
adding a straight line connecting the last point back to the first point, thus "closing" the
shape, and then repeating the last moveTo() (page 190) call.)

New points and the lines connecting them are added to subpaths using the methods
described below. In all cases, the methods only modify the last subpath in the context's
paths.

The lineTo(x, y) method must do nothing if the context has no subpaths. Otherwise,
it must connect the last point in the subpath to the given point (x, y) using a straight line,
and must then add the given point (x, y) to the subpath.

The quadraticCurveTo(cpx, cpy, x, y) method must do nothing if the context
has no subpaths. Otherwise it must connect the last point in the subpath to the given
point (x, y) by a quadratic curve with control point (cpx, cpy), and must then add the
given point (x, y) to the subpath.

The bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y) method must do nothing
if the context has no subpaths. Otherwise, it must connect the last point in the subpath to
the given point (x, y) using a bezier curve with control points (cp1x, cp1y) and (cp2x,
cp2y). Then, it must add the point (x, y) to the subpath.

The arcTo(x1, y1, x2, y2, radius) method must do nothing if the context has
no subpaths. If the context does have a subpath, then the behaviour depends on the
arguments and the last point in the subpath.

Let the point (x0, y0) be the last point in the subpath. Let The Arc be the shortest arc
given by circumference of the circle that has one point tangent to the line defined by the
points (x0, y0) and (x1, y1), another point tangent to the line defined by the points (x1,
y1) and (x2, y2), and that has radius radius. The points at which this circle touches these
two lines are called the start and end tangent points respectively.

If the point (x2, y2) is on the line defined by the points (x0, y0) and (x1, y1) then the
method must do nothing, as no arc would satisfy the above constraints.
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Otherwise, the method must connect the point (x0, y0) to the start tangent point by a
straight line, then connect the start tangent point to the end tangent point by The Arc,
and finally add the start and end tangent points to the subpath.

Negative or zero values for radius must cause the implementation to raise an
INDEX_SIZE_ERR exception.

The arc(x, y, radius, startAngle, endAngle, anticlockwise) method
draws an arc. If the context has any subpaths, then the method must add a straight line
from the last point in the subpath to the start point of the arc. In any case, it must draw
the arc between the start point of the arc and the end point of the arc, and add the start
and end points of the arc to the subpath. The arc and its start and end points are defined
as follows:

Consider a circle that has its origin at (x, y) and that has radius radius. The points at
startAngle and endAngle along the circle's circumference, measured in radians clockwise
from the positive x-axis, are the start and end points respectively. The arc is the path
along the circumference of this circle from the start point to the end point, going
anti-clockwise if the anticlockwise argument is true, and clockwise otherwise.

Negative or zero values for radius must cause the implementation to raise an
INDEX_SIZE_ERR exception.

The rect(x, y, w, h) method must create a new subpath containing just the four
points (x, y), (x+w, y), (x+w, y+h), (x, y+h), with those four points connected by straight
lines, and must then mark the subpath as closed. It must then create a new subpath with
the point (x, y) as the only point in the subpath.

Negative values for w and h must cause the implementation to raise an
INDEX_SIZE_ERR exception.

The fill() method must fill each subpath of the current path in turn, using fillStyle

(page 185), and using the non-zero winding number rule. Open subpaths must be
implicitly closed when being filled (without affecting the actual subpaths).

The stroke() method must stroke each subpath of the current path in turn, using the
strokeStyle (page 185), lineWidth (page 187), lineJoin (page 188), and (if
appropriate) miterLimit (page 188) attributes.

Paths, when filled or stroked, must be painted without affecting the current path, and
must be subject to transformations (page 183), shadow effects (page 188), global alpha
(page 183), clipping paths (page 191), and global composition operators (page 184).

Note: The transformation is applied to the path when it is drawn, not when
the path is constructed. Thus, a single path can be constructed and then
drawn according to different transformations without recreating the path.

The clip() method must create a new clipping path by calculating the intersection of
the current clipping path and the area described by the current path (after applying the
current transformation), using the non-zero winding number rule. Open subpaths must
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be implicitly closed when computing the clipping path, without affecting the actual
subpaths.

When the context is created, the initial clipping path is the rectangle with the top left
corner at (0,0) and the width and height of the coordinate space.

The isPointInPath(x, y) method must return true if the point given by the x and y
coordinates passed to the method, when treated as coordinates in the canvas'
coordinate space unaffected by the current transformation, is within the area of the
canvas that is inside the current path; and must return false otherwise.

3.14.11.1.9. IMAGES

To draw images onto the canvas, the drawImage method can be used.

This method is overloaded with three variants: drawImage(image, dx, dy),
drawImage(image, dx, dy, dw, dh), and drawImage(image, sx, sy, sw,
sh, dx, dy, dw, dh). (Actually it is overloaded with six; each of those three can
take either an HTMLImageElement (page 155) or an HTMLCanvasElement (page
177) for the image argument.) If not specified, the dw and dh arguments default to the
values of sw and sh, interpreted such that one CSS pixel in the image is treated as one
unit in the canvas coordinate space. If the sx, sy, sw, and sh arguments are omitted, they
default to 0, 0, the image's intrinsic width in image pixels, and the image's intrinsic height
in image pixels, respectively.

The image argument must be an instance of an HTMLImageElement (page 155) or
HTMLCanvasElement (page 177). If the image is of the wrong type, the implementation
must raise a TYPE_MISMATCH_ERR exception. If one of the sy, sw, sw, and sh
arguments is outside the size of the image, or if one of the dw and dh arguments is
negative, the implementation must raise an INDEX_SIZE_ERR exception.

When drawImage() (page 192) is invoked, the specified region of the image specified
by the source rectangle (sx, sy, sw, sh) must be painted on the region of the canvas
specified by the destination rectangle (dx, dy, dw, dh).
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Images are painted without affecting the current path, and are subject to transformations
(page 183), shadow effects (page 188), global alpha (page 183), clipping paths (page
191), and global composition operators (page 184).

3.14.11.1.10. PIXEL MANIPULATION

The getImageData(sx, sy, sw, sh) method must return an ImageData (page
182) object representing the underlying pixel data for the area of the canvas denoted by
the rectangle which has one corner at the (sx, sy) coordinate, and that has width sw and
height sh. Pixels outside the canvas must be returned as transparent black.

ImageData (page 182) objects must be initialised so that their height attribute is set to
h, the number of rows in the image data, their width attribute is set to w, the number of
physical device pixels per row in the image data, and the data attribute is initialised to
an array of h×w×4 integers. The pixels must be represented in this array in left-to-right
order, row by row, starting at the top left, with each pixel's red, green, blue, and alpha
components being given in that order. Each component of each device pixel represented
in this array must be in the range 0..255, representing the 8 bit value for that component.

The putImageData(image, dx, dy) method must take the given ImageData (page
182) structure, and draw it at the specified location dx,dy in the canvas coordinate space,
mapping each pixel represented by the ImageData (page 182) structure into one device
pixel.

The handling of pixel rounding when the specified coordinates do not exactly map to the
device coordinate space is not defined by this specification, except that the following
must result in no visible changes to the rendering:

context.putImageData(context.getImageData(x, y, w, h), x, y);
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...for any value of x and y. In other words, while user agents may round the arguments of
the two methods so that they map to device pixel boundaries, any rounding performed
must be performed consistently for both the getImageData() (page 193) and
putImageData() (page 193) operations.

The current transformation matrix must not affect the getImageData() (page 193) and
putImageData() (page 193) methods.

3.14.11.1.11. DRAWING MODEL

When a shape or image is painted, user agents must follow these steps, in the order
given (or act as if they do):

1. The coordinates are transformed by the current transformation matrix.

2. The shape or image is rendered, creating image A, as described in the previous
sections. For shapes, the current fill, stroke, and line styles must be honoured.

3. The shadow is rendered from image A, using the current shadow styles, creating
image B.

4. Image A is composited over image B creating the source image.

5. The source image has its alpha adjusted by globalAlpha (page 183).

6. Within the clip region (as affected by the current transformation matrix), the source
image is composited over the current canvas bitmap using the current composition
operator.

3.14.12. The map element

Block-level element (page 68).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
Zero or more block-level elements (page 68).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLMapElement : HTMLElement (page 28) {

readonly attribute HTMLCollection (page 31) areas (page 195);
};
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The map (page 194) element, in conjuction with any area (page 195) element
descendants, defines an image map (page 198).

The areas attribute must return an HTMLCollection (page 31) rooted at the map

(page 194) element, whose filter matches only area (page 195) elements.

3.14.13. The area element

Strictly inline-level content (page 69).

Contexts in which this element may be used:
Where strictly inline-level content (page 69) is allowed, but only as a descendant
of a map (page 194) element.

Content model:
Empty.

Element-specific attributes:
alt (page 196)
coords (page 196)
shape (page 196)
href (page 286)
target (page 287)
ping (page 287)
rel (page 287)
media (page 287)
hreflang (page 287)
type (page 287)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLAreaElement : HTMLElement (page 28) {

attribute DOMString alt (page 197);
attribute DOMString coords (page 197);
attribute DOMString shape (page 197);
attribute DOMString href (page 197);
attribute DOMString target (page 197);
attribute DOMString ping (page 197);
attribute DOMString rel (page 197);

readonly attribute DOMTokenList relList (page 197);
attribute DOMString media (page 197);
attribute DOMString hreflang (page 197);
attribute DOMString type (page 197);

};

The area (page 195) element represents either a hyperlink with some text and a
corresponding area on an image map (page 198), or a dead area on an image map.
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If the area (page 195) element has an href (page 286) attribute, then the area (page
195) element represents a hyperlink (page 286); the alt attribute, which must then be
present, specifies the text.

However, if the area (page 195) element has no href (page 286) attribute, then the
area represented by the element cannot be selected, and the alt (page 196) attribute
must be omitted.

In both cases, the shape (page 196) and coords (page 196) attributes specify the
area.

The shape attribute is an enumerated attribute (page 64). The following table lists the
keywords defined for this attribute. The states given in the first cell of the the rows with
keywords give the states to which those keywords map. Some of the keywords are
non-conforming, as noted in the last column.

State Keywords Notes

circ Non-conformingCircle state

circle

Default state default

polyPolygon state

polygon Non-conforming

rectRectangle state

rectangle Non-conforming

The attribute may be ommited. The missing value default is the rectangle (page 196)
state.

The coords attribute must, if specified, contain a valid list of integers (page 53). This
attribute gives the coordinates for the shape described by the shape (page 196)
attribute. The processing for this attribute is described as part of the image map (page
198) processing model.

In the circle state (page 196), area (page 195) elements must have a coords (page
196) attribute present, with three integers, the last of which must be non-negative. The
first integer must be the distance in CSS pixels from the left edge of the image to the
center of the circle, the second integer must be the distance in CSS pixels from the top
edge of the image to the center of the circle, and the third integer must be the radius of
the circle, again in CSS pixels.

In the default state (page 196) state, area (page 195) elements must not have a
coords (page 196) attribute.

In the polygon state (page 196), area (page 195) elements must have a coords (page
196) attribute with at least six integers, and the number of integers must be even. Each
pair of integers must represent a coordinate given as the distances from the left and the
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top of the image in CSS pixels respectively, and all the coordinates together must
represent the points of the polygon, in order.

In the rectangle state (page 196), area (page 195) elements must have a coords

(page 196) attribute with exactly four integers, the first of which must be less than the
third, and the second of which must be less than the fourth. The four points must
represent, respectively, the distance from the left edge of the image to the top left side of
the rectangle, the distance from the top edge to the top side, the distance from the left
edge to the right side, and the distance from the top edge to the bottom side, all in CSS
pixels.

When user agents allow users to follow hyperlinks (page 287) created using the area

(page 195) element, as described in the next section, the href (page 286), target
(page 287) and ping (page 287) attributes decide how the link is

followed. The rel (page 287), media (page 287), hreflang (page 287), and
type (page 287) attributes may be used to indicate to the user the

likely nature of the target resource before the user follows the

link.

The target (page 287), ping (page 287), rel (page 287), media (page 287),
hreflang (page 287), and type (page 287) attributes must be omitted if the href

(page 286) attribute is not present.

The activation behavior (page 20) of area (page 195) elements is to run the following
steps:

1. If the DOMActivate event in question is not trusted (i.e. a click() (page 79)
method call was the reason for the event being dispatched), and the area (page
195) element's target attribute is ... then raise an INVALID_ACCESS_ERR

exception.

2. Otherwise, the user agent must follow the hyperlink (page 287) defined by the area

(page 195) element, if any.

Note: One way that a user agent can enable users to follow hyperlinks is
by allowing area (page 195) elements to be clicked, or focussed and
activated by the keyboard. This will cause (page 71) the aforementioned
activation behavior (page 20) to be invoked.

The DOM attributes alt, coords, shape, href, target, ping, rel, media,
hreflang, and type, each must reflect (page 29) the respective content attributes of
the same name.

The DOM attribute relList must reflect (page 29) the rel (page 287) content
attribute.
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3.14.14. [TBW] Image maps

An image map allows geometric areas on an image to be associated with hyperlinks
(page 286).

An image, in the form of an img (page 154) element or an object (page 160) element
representing an image, may be associated with an image map (in the form of a map

(page 194) element) by specifying a usemap attribute on the img (page 154) or object
(page 160) element. The usemap attribute, if specified, must be a valid hashed ID
reference (page 65) to a map (page 194) element.

If an img (page 154) element or an object (page 160) element representing an image
has a usemap attribute specified, user agents must process it as follows:

1. First, rules for parsing a hashed ID reference (page 65) to a map (page 194)
element must be followed. This will return either an element (the map) or null.

2. If that returned null, then abort these steps. The image is not associated with an
image map after all.

3. Otherwise, the user agent must collect all the area (page 195) elements that are
descendants of the map. Let those be the areas.

Having obtained the list of area (page 195) elements that form the image map (the
areas), interactive user agents must process the list in one of two ways.

If the user agent intends to show the text that the img (page 154) element represents,
then it must use the following steps.

Note: In user agents that do not support images, or that have images
disabled, object (page 160) elements cannot represent images, and thus
this section never applies (the fallback content is shown instead). The
following steps therefore only apply to img (page 154) elements.

1. Remove all the area (page 195) elements in areas that have no href (page 286)
attribute.

2. Remove all the area (page 195) elements in areas that have no alt (page 196)
attribute, or whose alt (page 196) attribute's value is the empty string, if there is
another area (page 195) element in areas with the same value in the href (page
286) attribute and with a non-empty alt (page 196) attribute.

3. Each remaining area (page 195) element in areas represents a hyperlink (page
286). Those hyperlinks should all be made available to the user in a manner
associated with the text of the img (page 154) element.

In this context, user agents may represent area (page 195) and img (page 154)
elements with no specified alt attributes, or whose alt attributes are the empty
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string or some other non-visible text, in a user-agent-defined fashion intended to
indicate the lack of suitable author-provided text.

If the user agent intends to show the image and allow interaction with the image to select
hyperlinks, then the image must be associated with a set of layered shapes, taken from
the area (page 195) elements in areas, in reverse tree order (so the last specified area

(page 195) element in the map is the bottom-most shape, and the first element in the
map, in tree order, is the top-most shape).

Each area (page 195) element in areas must be processed as follows to obtain a shape
to layer onto the image:

1. Find the state that the element's shape (page 196) attribute represents.

2. Use the rules for parsing a list of integers (page 53) to parse the element's coords
(page 196) attribute, if it is present, and let the result be the coords list. If the
attribute is absent, let the coords list be the empty list.

3. If the number of items in the coords list is less than the minimum number given for
the area (page 195) element's current state, as per the following table, then the
shape is empty; abort these steps.

State Minimum number of items

Circle state (page 196) 3

Default state (page 196) 0

Polygon state (page 196) 6

Rectangle state (page 196) 4

4. Check for excess items in the coords list as per the entry in the following list
corresponding to the shape (page 196) attribute's state:

↪ Circle state (page 196)
Drop any items in the list beyond the third.

↪ Default state (page 196)
Drop all items in the list.

↪ Polygon state (page 196)
Drop the last item if there's an odd number of items.

↪ Rectangle state (page 196)
Drop any items in the list beyond the fourth.

5. If the shape (page 196) attribute represents the rectangle state (page 196), and the
first number in the list is numerically less than the third number in the list, then swap
those two numbers around.
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6. If the shape (page 196) attribute represents the rectangle state (page 196), and the
second number in the list is numerically less than the fourth number in the list, then
swap those two numbers around.

7. If the shape (page 196) attribute represents the circle state (page 196), and the
third number in the list is less than or equal to zero, then the shape is empty; abort
these steps.

8. Now, the shape represented by the element is the one described for the entry in the
list below corresponding to the state of the shape (page 196) attribute:

↪ Circle state (page 196)
Let x be the first number in coords, y be the second number, and r be the
third number.

The shape is a circle whose center is x CSS pixels from the left edge of the
image and x CSS pixels from the top edge of the image, and whose radius
is r pixels.

↪ Default state (page 196)
The shape is a rectangle that exactly covers the entire image.

↪ Polygon state (page 196)
Let xi be the (2i)th entry in coords, and yi be the (2i+1)th entry in coords
(the first entry in coords being the one with index 0).

Let the coordinates be (xi, yi), interpreted in CSS pixels measured from the
top left of the image, for all integer values of i from 0 to (N/2)-1, where N is
the number of items in coords.

The shape is a polygon whose vertices are given by the coordinates, and
whose interior is established using the even-odd rule. [GRAPHICS]

↪ Rectangle state (page 196)
Let x1 be the first number in coords, y1 be the second number, x2 be the
third number, and y2 be the fourth number.

The shape is a rectangle whose top-left corner is given by the coordinate
(x1, y1) and whose bottom right corner is given by the coordinate (x2, y2),
those coordinates being interpreted as CSS pixels from the top left corner
of the image.

Mouse clicks on an image associated with a set of layered shapes per the above
algorithm must be dispatched to the top-most shape covering the point that the pointing
device indicated (if any), and then, must be dispatched again (with a new Event object)
to the image element itself. User agents may also allow individual area (page 195)
elements representing hyperlinks (page 286) to be selected and activated (e.g. using a
keyboard); events from this are not also propagated to the image.
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Note: Because a map (page 194) element (and its area (page 195)
elements) can be associated with multiple img (page 154) elements, it is
possible for an area (page 195) element to correspond to multiple
focusable areas of the document.

Image maps are live (page 22); if the DOM is mutated, then the user agent must act as if
it had rerun the algorithms for image maps.

3.15. Tabular data

3.15.1. The table element

Block-level element (page 68), and structured inline-level element (page 69).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.
Where structured inline-level elements (page 69) are allowed.

Content model:
In this order: optionally a caption (page 204) element, followed by either zero or
more colgroup (page 204) elements, followed optionally by a thead (page 207)
element, followed optionally by a tfoot (page 208) element, followed by either
zero or more tbody (page 206) elements or one or more tr (page 208)
elements, followed optionally by a tfoot (page 208) element (but there can only
be one tfoot (page 208) element child in total).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLTableElement : HTMLElement (page 28) {

attribute HTMLTableCaptionElement caption (page 202);
HTMLElement createCaption (page 202)();
void deleteCaption (page 202)();

attribute HTMLTableSectionElement (page 206) tHead (page 202);
HTMLElement createTHead (page 202)();
void deleteTHead (page 202)();

attribute HTMLTableSectionElement (page 206) tFoot (page 202);
HTMLElement createTFoot (page 203)();
void deleteTFoot (page 203)();
readonly attribute HTMLCollection (page 31) tBodies (page 203);
readonly attribute HTMLCollection (page 31) rows (page 203);
HTMLElement insertRow (page 203)(in long index);
void deleteRow (page 204)(in long index);

};
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The table (page 201) element represents data with more than one dimension (a table
(page 212)).

The children of a table (page 201) element must be, in order:

1. Zero or one caption (page 204) elements.

2. Zero or more colgroup (page 204) elements.

3. Zero or one thead (page 207) elements.

4. Zero or one tfoot (page 208) elements, if the last element in the table is not a
tfoot (page 208) element.

5. Either:

• Zero or more tbody (page 206) elements, or

• One or more tr (page 208) elements.

6. Zero or one tfoot (page 208) element, if there are no other tfoot (page 208)
elements in the table.

The table (page 201) element takes part in the table model (page 212).

The caption DOM attribute must return, on getting, the first caption (page 204)
element child of the table (page 201) element. On setting, the first caption (page
204) element child of the table (page 201) element, if any, must be removed, and the
new value must be inserted as the first node of the table (page 201) element.

The createCaption() method must return a new caption (page 204) element.

The deleteCaption() method must remove the first caption (page 204) element
child of the table (page 201) element, if any.

The tHead DOM attribute must return, on getting, the first thead (page 207) element
child of the table (page 201) element. On setting, the first thead (page 207) element
child of the table (page 201) element, if any, must be removed, and the new value
must be inserted immediately before the first element in the table (page 201) element
that is neither a caption (page 204) element nor a colgroup (page 204) element.

The createTHead() method must return a new thead (page 207) element.

The deleteTHead() method must remove the first thead (page 207) element child of
the table (page 201) element, if any.

The tFoot DOM attribute must return, on getting, the first tfoot (page 208) element
child of the table (page 201) element. On setting, the first tfoot (page 208) element
child of the table (page 201) element, if any, must be removed, and the new value
must be inserted immediately before the first element in the table (page 201) element
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that is neither a caption (page 204) element, a colgroup (page 204) element, nor a
thead (page 207) element.

The createTFoot() method must return a new tfoot (page 208) element.

The deleteTFoot() method must remove the first tfoot (page 208) element child of
the table (page 201) element, if any.

The tBodies attribute must return an HTMLCollection (page 31) rooted at the table

(page 201) node, whose filter matches only tbody (page 206) elements that are
children.

The rows attribute must return an HTMLCollection (page 31) rooted at the table

(page 201) node, whose filter matches only tr (page 208) elements that are either
children of the table (page 201) element, or children of thead (page 207), tbody
(page 206), or tfoot (page 208) elements that are themselves children of the table

(page 201) element. The elements in the collection must be ordered such that those
elements whose parent is a thead (page 207) are included first, in tree order, followed
by those elements whose parent is either a table (page 201) or tbody (page 206)
element, again in tree order, followed finally by those elements whose parent is a tfoot

(page 208) element, still in tree order.

The behaviour of the insertRow(index) method depends on the state of the table.
When it is called, the method must act as required by the first item in the following list of
conditions that describes the state of the table and the index argument:

↪ If index is less than -1 or greater than the number of elements in rows (page
203) collection:

The method must raise an INDEX_SIZE_ERR exception.

↪ If the rows (page 203) collection has zero elements in it, and the table (page
201) has no tbody (page 206) elements in it:

The method must create a tbody (page 206) element, then create a tr (page
208) element, then append the tr (page 208) element to the tbody (page
206) element, then append the tbody (page 206) element to the table (page
201) element, and finally return the tr (page 208) element.

↪ If the rows (page 203) collection has zero elements in it:
The method must create a tr (page 208) element, append it to the last tbody
(page 206) element in the table, and return the tr (page 208) element.

↪ If index is equal to -1 or equal to the number of items in rows (page 203)
collection:

The method must create a tr (page 208) element, and append it to the parent
of the last tr (page 208) element in the rows (page 203) collection. Then, the
newly created tr (page 208) element must be returned.
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↪ Otherwise:
The method must create a tr (page 208) element, insert it immediately before
the indexth tr (page 208) element in the rows (page 203) collection, in the
same parent, and finally must return the newly created tr (page 208) element.

The deleteRow(index) method must remove the indexth element in the rows (page
203) collection from its parent. If index is less than zero or greater than or equal to the
number of elements in the rows (page 203) collection, the method must instead raise an
INDEX_SIZE_ERR exception.

3.15.2. The caption element

Contexts in which this element may be used:
As the first element child of a table (page 201) element.

Content model:
Significant (page 69) strictly inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The caption (page 204) element represents the title of the table (page 201) that is its
parent, if it has a parent and that is a table (page 201) element.

The caption (page 204) element takes part in the table model (page 212).

3.15.3. The colgroup element

Contexts in which this element may be used:
As a child of a table (page 201) element, after any caption (page 204)
elements and before any thead (page 207), tbody (page 206), tfoot (page
208), and tr (page 208) elements.

Content model:
Zero or more col (page 205) elements.

Element-specific attributes:
span (page 205), but only if the element contains no col (page 205) elements

Predefined classes that apply to this element:
None.
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DOM interface:

interface HTMLTableColElement : HTMLElement (page 28) {

attribute unsigned long span (page 205);
};

The colgroup (page 204) element represents a group (page 213) of one or more
columns (page 212) in the table (page 201) that is its parent, if it has a parent and that
is a table (page 201) element.

If the colgroup (page 204) element contains no col (page 205) elements, then the
element may have a span content attribute specified, whose value must be a valid
non-negative integer (page 48) greater than zero. Its default value, which must be used
if parsing the attribute as a non-negative integer (page 48) returns either an error or
zero, is 1.

The colgroup (page 204) element and its span (page 205) attribute take part in the
table model (page 212).

The span DOM attribute must reflect (page 29) the content attribute of the same name,
with the exception that on setting, if the new value is 0, then an INDEX_SIZE_ERR

exception must be raised.

3.15.4. The col element

Contexts in which this element may be used:
As a child of a colgroup (page 204) element that doesn't have a span (page
206) attribute.

Content model:
Empty.

Element-specific attributes:
span (page 206)

Predefined classes that apply to this element:
None.

DOM interface:
HTMLTableColElement (page 205), same as for colgroup (page 204)
elements. This interface defines one member, span (page 206).

If a col (page 205) element has a parent and that is a colgroup (page 204) element
that itself has a parent that is a table (page 201) element, then the col (page 205)
element represents one or more columns (page 212) in the column group (page 213)
represented by that colgroup (page 204).
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The element may have a span content attribute specified, whose value must be a valid
non-negative integer (page 48) greater than zero. Its default value, which must be used
if parsing the attribute as a non-negative integer (page 48) returns either an error or
zero, is 1.

The col (page 205) element and its span (page 206) attribute take part in the table
model (page 212).

The span DOM attribute must reflect (page 29) the content attribute of the same name,
with the exception that on setting, if the new value is 0, then an INDEX_SIZE_ERR

exception must be raised.

3.15.5. The tbody element

Contexts in which this element may be used:
As a child of a table (page 201) element, after any caption (page 204),
colgroup (page 204), and thead (page 207) elements, but only if there are no
tr (page 208) elements that are children of the table (page 201) element.

Content model:
One or more tr (page 208) elements

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLTableSectionElement : HTMLElement (page 28) {

readonly attribute HTMLCollection (page 31) rows (page 206);
HTMLElement (page 28) insertRow (page 206)(in long index);
void deleteRow (page 207)(in long index);

};

The HTMLTableSectionElement (page 206) interface is also used for thead
(page 207) and tfoot (page 208) elements.

The tbody (page 206) element represents a block (page 213) of rows (page 212) that
consist of a body of data for the parent table (page 201) element, if the tbody (page
206) element has a parent and it is a table (page 201).

The tbody (page 206) element takes part in the table model (page 212).

The rows attribute must return an HTMLCollection (page 31) rooted at the element,
whose filter matches only tr (page 208) elements that are children of the element.

The insertRow(index) method must, when invoked on an element table section, act
as follows:
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If index is less than -1 or greater than the number of elements in the rows (page 206)
collection, the method must raise an INDEX_SIZE_ERR exception.

If index is equal to -1 or equal to the number of items in the rows (page 206) collection,
the method must create a tr (page 208) element, append it to the element table section,
and return the newly created tr (page 208) element.

Otherwise, the method must create a tr (page 208) element, insert it as a child of the
table section element, immediately before the indexth tr (page 208) element in the
rows (page 206) collection, and finally must return the newly created tr (page 208)
element.

The deleteRow(index) method must remove the indexth element in the rows (page
206) collection from its parent. If index is less than zero or greater than or equal to the
number of elements in the rows (page 206) collection, the method must instead raise an
INDEX_SIZE_ERR exception.

3.15.6. The thead element

Contexts in which this element may be used:
As a child of a table (page 201) element, after any caption (page 204), and
colgroup (page 204) elements and before any tbody (page 206), tfoot (page
208), and tr (page 208) elements, but only if there are no other thead (page
207) elements that are children of the table (page 201) element.

Content model:
One or more tr (page 208) elements

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
HTMLTableSectionElement (page 206), as defined for tbody (page 206)
elements.

The thead (page 207) element represents the block (page 213) of rows (page 212) that
consist of the column labels (headers) for the parent table (page 201) element, if the
thead (page 207) element has a parent and it is a table (page 201).

The thead (page 207) element takes part in the table model (page 212).

207



3.15.7. The tfoot element

Contexts in which this element may be used:
As a child of a table (page 201) element, after any caption (page 204),
colgroup (page 204), and thead (page 207) elements and before any tbody
(page 206) and tr (page 208) elements, but only if there are no other tfoot
(page 208) elements that are children of the table (page 201) element.
As a child of a table (page 201) element, after any caption (page 204),
colgroup (page 204), thead (page 207), tbody (page 206), and tr (page
208) elements, but only if there are no other tfoot (page 208) elements that are
children of the table (page 201) element.

Content model:
One or more tr (page 208) elements

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
HTMLTableSectionElement (page 206), as defined for tbody (page 206)
elements.

The tfoot (page 208) element represents the block (page 213) of rows (page 212) that
consist of the column summaries (footers) for the parent table (page 201) element, if
the tfoot (page 208) element has a parent and it is a table (page 201).

The tfoot (page 208) element takes part in the table model (page 212).

3.15.8. The tr element

Contexts in which this element may be used:
As a child of a thead (page 207) element.
As a child of a tbody (page 206) element.
As a child of a tfoot (page 208) element.
As a child of a table (page 201) element, after any caption (page 204),
colgroup (page 204), and thead (page 207) elements, but only if there are no
tbody (page 206) elements that are children of the table (page 201) element.

Content model:
One or more td (page 210) or th (page 211) elements

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.
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DOM interface:

interface HTMLTableRowElement : HTMLElement (page 28) {

readonly attribute long rowIndex (page 209);
readonly attribute long sectionRowIndex (page 209);
readonly attribute HTMLCollection (page 31) cells (page 209);
HTMLElement (page 28) insertCell (page 209)(in long index);
void deleteCell(in long index);

};

The tr (page 208) element represents a row (page 212) of cells (page 212) in a table
(page 212).

The tr (page 208) element takes part in the table model (page 212).

The rowIndex element must, if the element has a parent table (page 201) element, or
a parent tbody (page 206), thead (page 207), or tfoot (page 208) element and a
grandparent table (page 201) element, return the index of the tr (page 208) element
in that table (page 201) element's rows (page 203) collection. If there is no such
table (page 201) element, then the attribute must return 0.

The rowIndex DOM attribute must, if the element has a parent table (page 201),
tbody (page 206), thead (page 207), or tfoot (page 208) element, return the index of
the tr (page 208) element in the parent element's rows collection (for tables, that's the
rows (page 203) collection; for table sections, that's the rows (page 206) collection). If
there is no such parent element, then the attribute must return 0.

The cells attribute must return an HTMLCollection (page 31) rooted at the tr (page
208) element, whose filter matches only td (page 210) and th (page 211) elements that
are children of the tr (page 208) element.

The insertCell(index) method must act as follows:

If index is less than -1 or greater than the number of elements in the cells (page 209)
collection, the method must raise an INDEX_SIZE_ERR exception.

If index is equal to -1 or equal to the number of items in cells (page 209) collection, the
method must create a td (page 210) element, append it to the tr (page 208) element,
and return the newly created td (page 210) element.

Otherwise, the method must create a td (page 210) element, insert it as a child of the
tr (page 208) element, immediately before the indexth td (page 210) or th (page 211)
element in the cells (page 209) collection, and finally must return the newly created td

(page 210) element.

The deleteCell(index) method must remove the indexth element in the cells

(page 209) collection from its parent. If index is less than zero or greater than or equal to
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the number of elements in the cells (page 209) collection, the method must instead
raise an INDEX_SIZE_ERR exception.

3.15.9. The td element

Contexts in which this element may be used:
As a child of a tr (page 208) element.

Content model:
Zero or more block-level elements (page 68), or inline-level content (page 69)
(but not both).

Element-specific attributes:
colspan (page 210)
rowspan (page 210)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLTableCellElement : HTMLElement (page 28) {

attribute long colSpan (page 210);
attribute long rowSpan (page 210);

readonly attribute long cellIndex (page 211);
};

The td (page 210) element represents a data cell (page 212) in a table.

The td (page 210) element may have a colspan content attribute specified, whose
value must be a valid non-negative integer (page 48) greater than zero. Its default value,
which must be used if parsing the attribute as a non-negative integer (page 48) returns
either an error or zero, is 1.

The td (page 210) element may also have a rowspan content attribute specified,
whose value must be a valid non-negative integer (page 48). Its default value, which
must be used if parsing the attribute as a non-negative integer (page 48) returns an
error, is also 1.

The td (page 210) element and its colspan (page 210) and rowspan (page 210)
attributes take part in the table model (page 212).

The colspan DOM attribute must reflect (page 29) the content attribute of the same
name, with the exception that on setting, if the new value is 0, then an
INDEX_SIZE_ERR exception must be raised.

The rowspan DOM attribute must reflect (page 29) the content attribute of the same
name.

210



The cellIndex DOM attribute must, if the element has a parent tr (page 208)
element, return the index of the cell's element in the parent element's cells (page 209)
collection. If there is no such parent element, then the attribute must return 0.

3.15.10. The th element

Contexts in which this element may be used:
As a child of a tr (page 208) element.

Content model:
Zero or more block-level elements (page 68), or inline-level content (page 69)
(but not both).

Element-specific attributes:
colspan (page 211)
rowspan (page 211)
scope (page 211)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLTableHeaderCellElement : HTMLTableCellElement (page 210) {

attribute DOMString scope (page 212);
};

The th (page 211) element represents a header cell (page 212) in a table.

The th (page 211) element may have a colspan content attribute specified, whose
value must be a valid non-negative integer (page 48) greater than zero. Its default value,
which must be used if parsing the attribute as a non-negative integer (page 48) returns
either an error or zero, is 1.

The th (page 211) element may also have a rowspan content attribute specified,
whose value must be a valid non-negative integer (page 48). Its default value, which
must be used if parsing the attribute as a non-negative integer (page 48) returns an
error, is also 1.

The th (page 211) element may have a scope content attribute specified. The scope

(page 211) attribute is an enumerated attribute (page 64) with five states, four of which
have explicit keywords:

The row keyword, which maps to the row state
The row state means the header cell applies to all the remaining cells in the row.

The col keyword, which maps to the column state
The column state means the header cell applies to all the remaining cells in the
column.

211



The rowgroup keyword, which maps to the row group state
The row group state means the header cell applies to all the remaining cells in the
row group.

The colgroup keyword, which maps to the column group state
The column group state means the header cell applies to all the remaining cells in
the column group.

The auto state
The auto state makes the header cell apply to a set of cells selected based on
context.

The scope (page 211) attribute's missing value default is the auto state.

The exact effect of these values is described in detail in the algorithm for assigning
header cells to data cells (page 218), which user agents must apply to determine the
relationships between data cells and header cells.

The th (page 211) element and its colspan (page 211), rowspan (page 211), and
scope (page 211) attributes take part in the table model (page 212).

The scope DOM attribute must reflect (page 29) the content attribute of the same name.

The HTMLTableHeaderCellElement (page 211) interface inherits from the
HTMLTableCellElement (page 210) interface and therefore also has the DOM
attributes defined above in the td (page 210) section.

3.15.11. Processing model

The various table elements and their content attributes together define the table model.

A table consists of cells aligned on a two-dimensional grid of slots with coordinates (x,
y). The grid is finite, and is either empty or has one or more slots. If the grid has one or
more slots, then the x coordinates are always in the range 1 ≤ x ≤ xmax, and the y
coordinates are always in the range 1 ≤ y ≤ ymax. If one or both of xmax and ymax are
zero, then the table is empty (has no slots). Tables correspond to table (page 201)
elements.

A cell is a set of slots anchored at a slot (cellx, celly), and with a particular width and
height such that the cell covers all the slots with coordinates (x, y) where
cellx ≤ x < cellx+width and celly ≤ y < celly+height. Cell can either be data cells or header
cells. Data cells correspond to td (page 210) elements, and have zero or more
associated header cells. Header cells correspond to th (page 211) elements.

A row is a complete set of slots from x=1 to x=xmax, for a particular value of y. Rows
correspond to tr (page 208) elements.

A column is a complete set of slots from y=1 to y=ymax, for a particular value of x.
Columns can correspond to col (page 205) elements, but in the absense of col (page
205) elements are implied.
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A row group is a set of rows (page 212) anchored at a slot (1, groupy) with a particular
height such that the row group covers all the slots with coordinates (x, y) where
1 ≤ x < xmax and groupy ≤ y < groupy+height. Row groups correspond to tbody (page
206), thead (page 207), and tfoot (page 208) elements. Not every row is necessarily
in a row group.

A column group is a set of columns (page 212) anchored at a slot (groupx, 1) with a
particular width such that the column group covers all the slots with coordinates (x, y)
where groupx ≤ x < groupx+width and 1 ≤ y < ymax. Column groups correspond to
colgroup (page 204) elements. Not every column is necessarily in a column group.

Row groups (page 213) cannot overlap each other. Similarly, column groups (page 213)
cannot overlap each other.

A cell (page 212) cannot cover slots that are from two or more row groups (page 213). It
is, however, possible for a cell to be in multiple column groups (page 213). All the slots
that form part of one cell are part of zero or one row groups (page 213) and zero or more
column groups (page 213).

In addition to cells (page 212), columns (page 212), rows (page 212), row groups (page
213), and column groups (page 213), tables (page 212) can have a caption (page
204) element associated with them. This gives the table a heading, or legend.

A table model error is an error with the data represented by table (page 201)
elements and their descendants. Documents must not have table model errors.

3.15.11.1. Forming a table

To determine which elements correspond to which slots in a table (page 212) associated
with a table (page 201) element, to determine the dimensions of the table (xmax and
ymax), and to determine if there are any table model errors (page 213), user agents must
use the following algorithm:

1. Let xmax be zero.

2. Let ymax be zero.

3. Let the table be the table (page 212) represented by the table (page 201)
element. The xmax and ymax variables give the table's extent. The table is initially
empty.

4. If the table (page 201) element has no table children, then return the table (which
will be empty), and abort these steps.

5. Let the current element be the first element child of the table (page 201) element.

If a step in this algorithm ever requires the current element to be advanced to the
next child of the table (page 201) when there is no such next child, then the
algorithm must be aborted at that point and the algorithm must return the table.
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6. While the current element is not one of the following elements, advance the current
element to the next child of the table (page 201):

• caption (page 204)
• colgroup (page 204)
• thead (page 207)
• tbody (page 206)
• tfoot (page 208)
• tr (page 208)

7. If the current element is a caption (page 204), then that is the caption (page
204) element associated with the table. Otherwise, it has no associated caption

(page 204) element.

8. If the current element is a caption (page 204), then while the current element is
not one of the following elements, advance the current element to the next child of
the table (page 201):

• colgroup (page 204)
• thead (page 207)
• tbody (page 206)
• tfoot (page 208)
• tr (page 208)

(Otherwise, the current element will already be one of those elements.)

9. If the current element is a colgroup (page 204), follow these substeps:

1. Let next column be 1.

2. Column groups. Process the current element according to the appropriate one
of the following two cases:

↪ If the current element has any col (page 205) element children
Follow these steps:

1. Let xstart have the value xmax+1.

2. Let the current column be the first col (page 205) element child
of the colgroup (page 204) element.

3. Columns. If the current column col (page 205) element has a
span (page 206) attribute, then parse its value using the rules for
parsing non-negative integers (page 48).

If the result of parsing the value is not an error or zero, then let
span be that value.

Otherwise, if the col (page 205) element has no span (page
206) attribute, or if trying to parse the attribute's value resulted in
an error, then let span be 1.
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4. Increase xmax by span.

5. Let the last span columns (page 212) in the table correspond to
the current column col (page 205) element.

6. If current column is not the last col (page 205) element child of
the colgroup (page 204) element, then let the current column be
the next col (page 205) element child of the colgroup (page
204) element, and return to the third step of this innermost group
of steps (columns).

7. Let all the last columns (page 212) in the table from x=xstart to
x=xmax form a new column group (page 213), anchored at the slot
(xstart, 1), with width xmax-xstart-1, corresponding to the colgroup

(page 204) element.

↪ If the current element has no col (page 205) element children

1. If the colgroup (page 204) element has a span (page 205)
attribute, then parse its value using the rules for parsing
non-negative integers (page 48).

If the result of parsing the value is not an error or zero, then let
span be that value.

Otherwise, if the colgroup (page 204) element has no span

(page 206) attribute, or if trying to parse the attribute's value
resulted in an error, then let span be 1.

2. Increase xmax by span.

3. Let the last span columns (page 212) in the table form a new
column group (page 213), anchored at the slot (xmax-span+1, 1),
with width span, corresponding to the colgroup (page 204)
element.

3. Advance the current element to the next child of the table (page 201).

4. While the current element is not one of the following elements, advance the
current element to the next child of the table (page 201):

• colgroup (page 204)
• thead (page 207)
• tbody (page 206)
• tfoot (page 208)
• tr (page 208)

5. If the current element is a colgroup (page 204) element, jump to step 2 in
these substeps (column groups).

215



10. Let ycurrent be zero. When the algorithm is aborted, if ycurrent does not equal ymax,
then that is a table model error (page 213).

11. Let the list of downward-growing cells be an empty list.

12. Rows. While the current element is not one of the following elements, advance the
current element to the next child of the table (page 201):

• thead (page 207)
• tbody (page 206)
• tfoot (page 208)
• tr (page 208)

13. If the current element is a tr (page 208), then run the algorithm for processing rows
(page 216) (defined below), then return to the previous step (rows).

14. Otherwise, run the algorithm for ending a row group (page 216).

15. Let ystart have the value ymax+1.

16. For each tr (page 208) element that is a child of the current element, in tree order,
run the algorithm for processing rows (page 216) (defined below).

17. If ymax ≥ ystart, then let all the last rows (page 212) in the table from y=ystart to
y=ymax form a new row group (page 213), anchored at the slot with coordinate (1,
ystart), with height ymax-ystart+1, corresponding to the current element.

18. Run the algorithm for ending a row group (page 216) again.

19. Return to step 12 (rows).

The algorithm for ending a row group, which is invoked by the set of steps above
when starting and eding a block of rows, is:

1. If ycurrent is less than ymax, then this is a table model error (page 213).

2. While ycurrent is less than ymax, follow these steps:

1. Increase ycurrent by 1.

2. Run the algorithm for growing downward-growing cells (page 218).

3. Empty the list of downward-growing cells.

The algorithm for processing rows, which is invoked by the set of steps above for
processing tr (page 208) elements, is:

1. Increase ycurrent by 1.

2. Run the algorithm for growing downward-growing cells (page 218).

3. Let xcurrent be 1.
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4. If the tr (page 208) element being processed contains no td (page 210) or th
(page 211) elements, then abort this set of steps and return to the algorithm above.

5. Let current cell be the first td (page 210) or th (page 211) element in the tr (page
208) element being processed.

6. Cells. While xcurrent is less than or equal to xmax and the slot with coordinate
(xcurrent, ycurrent) already has a cell assigned to it, increase xcurrent by 1.

7. If xcurrent is greater than xmax, increase xmax by 1 (which will make them equal).

8. If the current cell has a colspan attribute, then parse that attribute's value, and let
colspan be the result.

If parsing that value failed, or returned zero, or if the attribute is absent, then let
colspan be 1, instead.

9. If the current cell has a rowspan attribute, then parse that attribute's value, and let
rowspan be the result.

If parsing that value failed or if the attribute is absent, then let rowspan be 1, instead.

10. If rowspan is zero, then let cell grows downward be true, and set rowspan to 1.
Otherwise, let cell grows downward be false.

11. If xmax < xcurrent+colspan-1, then let xmax be xcurrent+colspan-1.

12. If ymax < ycurrent+rowspan-1, then let ymax be ycurrent+rowspan-1.

13. Let the slots with coordinates (x, y) such that xcurrent ≤ x < xcurrent+colspan and
ycurrent ≤ y < ycurrent+rowspan be covered by a new cell (page 212) c, anchored at
(xcurrent, ycurrent), which has width colspan and height rowspan, corresponding to
the current cell element.

If the current cell element is a th (page 211) element, let this new cell c be a header
cell; otherwise, let it be a data cell. To establish what header cells apply to a data
cell, use the algorithm for assigning header cells to data cells (page 218) described
in the next section.

If any of the slots involved already had a cell (page 212) covering them, then this is
a table model error (page 213). Those slots now have two cells overlapping.

14. If cell grows downward is true, then add the tuple {c, xcurrent, colspan} to the list of
downward-growing cells.

15. Increase xcurrent by colspan.

16. If current cell is the last td (page 210) or th (page 211) element in the tr (page
208) element being processed, then abort this set of steps and return to the
algorithm above.
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17. Let current cell be the next td (page 210) or th (page 211) element in the tr (page
208) element being processed.

18. Return to step 5 (cells).

The algorithm for growing downward-growing cells, used when adding a new row, is
as follows:

1. If the list of downward-growing cells is empty, do nothing. Abort these steps; return
to the step that invoked this algorithm.

2. Otherwise, if ymax is less than ycurrent, then increase ymax by 1 (this will make it
equal to ycurrent).

3. For each {cell, cellx, width} tuple in the list of downward-growing cells, extend the
cell (page 212) cell so that it also covers the slots with coordinates (x, ycurrent),
where cellx ≤ x < cellx+width-1.

If, after establishing which elements correspond to which slots, there exists a column
(page 212) in the table (page 212) containing only slots that do not have a cell (page
212) anchored to them, then this is a table model error (page 213).

3.15.11.2. [TBW] Forming relationships between data cells and header cells

Each data cell can be assigned zero or more header cells. The algorithm for assigning
header cells to data cells is as follows.

For each header cell in the table, in tree order (page 21):

1. Let (headerx, headery) be the coordinate of the slot to which the header cell is
anchored.

2. Examine the scope (page 211) attribute of the th (page 211) element
corresponding to the header cell, and, based on its state, apply the appropriate
substep:

↪ If it is in the row (page 211) state
Assign the header cell to any data cells anchored at slots with coordinates
(datax, datay) where headerx < datax ≤ xmax and datay = headery.

↪ If it is in the column (page 211) state
Assign the header cell to any data cells anchored at slots with coordinates
(datax, datay) where datax = headerx and headery < datay ≤ ymax.

↪ If it is in the row group (page 212) state
If the header cell is not in a row group (page 213), then don't assign the
header cell to any data cells.

Otherwise, let (1, groupy) be the slot at which the row group is anchored,
let height be the number of rows in the row group, and assign the header
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cell to any data cells anchored at slots with coordinates (datax, datay)
where headerx ≤ datax ≤ xmax and headery ≤ datay < groupy+height.

↪ If it is in the column group (page 212) state
If the header cell is not in a column group (page 213), then don't assign the
header cell to any data cells.

Otherwise, let (groupx, 1) be the slot at which the column group is
anchored, let width be the number of columns in the column group, and
assign the header cell to any data cells anchored at slots with coordinates
(datax, datay) where headerx ≤ datax < groupx+width and
headery ≤ datay ≤ ymax.

↪ Otherwise, it is in the auto state
If the header cell is not in the first row of the table, or not in the first cell of a
row, then don't assign the header cell to any data cells.

Otherwise, if the header cell is in the first row of the table, assign the
header cell to any data cells anchored at slots with coordinates (datax,
datay) where datax = headerx and headery < datay ≤ ymax.

Otherwise, the header cell is in the first column of the table; assign the
header cell to any data cells anchored at slots with coordinates (datax,
datay) where headerx < datax ≤ xmax and datay = headery.

3.16. [TBW] Forms

This section will contain definitions of the form element and so forth.

This section will be a rewrite of the HTML4 Forms and Web Forms 2.0 specifications,
with hopefully no normative changes.
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3.16.1. The form element

3.16.2. The fieldset element

3.16.3. The input element

3.16.4. The button element

3.16.5. The label element

3.16.6. The select element

3.16.7. The datalist element

3.16.8. The optgroup element

3.16.9. The option element

3.16.10. The textarea element

3.16.11. The output element

3.16.12. Processing model

See WF2 for now

3.16.12.1. Form submission

See WF2 for now

3.17. Scripting

3.17.1. The script element

Block-level element (page 68), strictly inline-level content (page 69), and metadata
element (page 82).

Contexts in which this element may be used:
In a head (page 82) element.
Where block-level elements (page 68) are expected.
Where inline-level content (page 69) is expected.
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Content model:
If there is no src (page 221) attribute, depends on the value of the type (page
221) attribute.
If there is a src (page 221) attribute, the element must be empty.

Element-specific attributes:
src (page 221)
defer (page 221) (if the src (page 221) attribute is present)
async (page 221) (if the src (page 221) attribute is present)
type (page 221)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLScriptElement : HTMLElement (page 28) {

attribute DOMString src (page 225);
attribute boolean defer (page 225);
attribute boolean async (page 225);
attribute DOMString type (page 225);
attribute DOMString text (page 225);

};

The script (page 220) element allows authors to include dynamic script in their
documents.

When the src attribute is set, the script (page 220) element refers to an external file.
The value of the attribute must be a URI (or IRI).

If the src (page 221) attribute is not set, then the script is given by the contents of the
element.

The language of the script is given by the type attribute. The value must be a valid
MIME type, optionally with parameters. [RFC2046]

The defer and async attributes are boolean attributes (page 48) that indicate how the
script should be executed.

There are three possible modes that can be selected using these attributes. If the defer

(page 221) attribute is present, then the script is executed when the page has finished
parsing. If the defer (page 221) attribute is not present but the async (page 221)
attribute is present, then the script will be executed asynchronously, as soon as it is
available. If neither attribute is present, then the script is downloaded and executed
immediately, before the user agent continues parsing the page. The exact processing
details for these attributes is described below.
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Changing the src (page 221), type (page 221), defer (page 221) and async (page
221) attributes dynamically has no direct effect; these attribute are only used at specific
times described below (namely, when the element is inserted into the document).

script (page 220) elements have two associated pieces of metadata. The first is a flag
indicating whether or not the script block has been "already executed". Initially, script
(page 220) elements must have this flag unset (script blocks, when created, are not
"already executed"). When a script (page 220) element is cloned, the "already
executed" flag, if set, must be propagated to the clone when it is created. The second is
a flag indicating whether the element was "parser-inserted". This flag is set by the
HTML parser (page 392) and is used to handle document.write() (page 40) calls.

Running a script: when a script block is inserted into a document, the user agent must
act as follows:

1. How to handle the type (page 221) and language attributes should be defined
here, probably with reference to the next section.

2. If scripting is disabled (page 278), or if the user agent does not support the scripting
language in question, or if the Document has designMode (page 334) enabled, or
if the script (page 220) element has its "already executed" (page 222) flag set,
then the user agent must abort these steps at this point. The script is not executed.

3. The user agent must set the element's "already executed" (page 222) flag.

4. If the element has a src (page 221) attribute, then a load for the specified content
must be started.

Note: Later, once the load has completed, the user agent will have to
complete the steps described below (page 223).

For performance reasons, user agents may start loading the script as soon as the
attribute is set, instead, in the hope that the element will be inserted into the
document. Either way, once the element is inserted into the document, the load
must have started. If the UA performs such prefetching, but the element is never
inserted in the document, or the src (page 221) attribute is dynamically changed,
then the user agent will not execute the script, and the load will have been
effectively wasted.

5. Then, the first of the following options that describes the situation must be followed:

↪ If the document is still being parsed, and the element has a defer (page
221) attribute

The element must be added to the end of the list of scripts that will execute
when the document has finished parsing (page 223). The user agent must
begin the next set of steps (page 223) when the script is ready. This
isn't compatible with IE for inline deferred scripts, but then what IE does is
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pretty hard to pin down exactly. Do we want to keep this like it is? Be
more compatible?

↪ If the element has an async (page 221) attribute and a src (page 221)
attribute

The element must be added to the end of the list of scripts that will execute
asynchronously (page 224). The user agent must jump to the next set of
steps (page 223) once the script is ready.

↪ If the element has an async (page 221) attribute but no src (page 221)
attribute, and the list of scripts that will execute asynchronously (page
224) is not empty

The element must be added to the end of the list of scripts that will execute
asynchronously (page 224).

↪ If the element has a src (page 221) attribute and has been flagged as
"parser-inserted" (page 222)

The element is the script that will execute as soon as the parser resumes
(page 224). (There can only be one such script at a time.)

↪ If the element has a src (page 221) attribute
The element must be added to the end of the list of scripts that will execute
as soon as possible (page 224). The user agent must jump to the next set
of steps (page 223) when the script is ready.

↪ Otherwise
The user agent must immediately execute the script (page 224), even if
other scripts are already executing.

When a script completes loading: If a script whose element was added to one of the
lists mentioned above completes loading while the document is still being parsed, then
the parser handles it. Otherwise, when a script completes loading, the UA must follow
the following steps as soon as as any other scripts that may be executing have finished
executing:

↪ If the script's element was added to the list of scripts that will execute when
the document has finished parsing:

1. If the script's element is not the first element in the list, then do nothing yet.
Stop going through these steps.

2. Otherwise, execute the script (page 224) (that is, the script associated with
the first element in the list).

3. Remove the script's element from the list (i.e. shift out the first entry in the
list).

4. If there are any more entries in the list, and if the script associated with the
element that is now the first in the list is already loaded, then jump back to
step two to execute it.
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↪ If the script's element was added to the list of scripts that will execute
asynchronously:

1. If the script is not the first element in the list, then do nothing yet. Stop
going through these steps.

2. Execute the script (page 224) (the script associated with the first element in
the list).

3. Remove the script's element from the list (i.e. shift out the first entry in the
list).

4. If there are any more scripts in the list, and the element now at the head of
the list had no src (page 221) attribute when it was added to the list, or
had one, but its associated script has finished loading, then jump back to
step two to execute the script associated with this element.

↪ If the script's element was added to the list of scripts that will execute as soon
as possible:

1. Execute the script (page 224).

2. Remove the script's element from the list.

↪ If the script is the script that will execute as soon as the parser resumes:
The script will be handled when the parser resumes (page 426) (amazingly
enough).

The download of an external script must delay the load event (page 455).

Executing a script block: If the load resulted in an error (for example a DNS error, or an
HTTP 404 error), then executing the script must just consist of firing an error event
(page 286) at the element.

If the load was successful, then first the user agent must fire a load event (page 286) at
the element, and then, if scripting is enabled (page 278) and the Document does not
have designMode (page 334) enabled, the user agent must run the script according to
the semantics of the relevant scripting language defines.

If the script is from an external file, then that file must be used as the file to execute.

If the script is inline, then, for scripting languages that consist of pure text, user agents
must use the value of the DOM text (page 225) attribute (defined below) as the script
to execute, and for XML-based scripting languages, user agents must use all the child
nodes of the script (page 220) element as the script to execute.

In any case, the user agent must execute the script according to the semantics of the
relevant language specification, as determined by the type (page 221) and language

attributes on the script (page 220) element when the element was inserted into the
document, as described above.

224



Have to define that the script executes in context of global scope (page 301), scripting
context (page 278), browsing context (page 20), etc.

Note: The element's attributes' values might have changed between when
the element was inserted into the document and when the script has
finished loading, as may its other attributes; similarly, the element itself
might have been taken back out of the DOM, or had other changes made.
These changes do not in any way affect the above steps; only the values
of the attributes at the time the script (page 220) element is first inserted
into the document matter.

The DOM attributes src, type, defer, async, each must reflect (page 29) the
respective content attributes of the same name.

The DOM attribute text must return a concatenation of the contents of all the text nodes
(page 23) that are direct children of the script (page 220) element (ignoring any other
nodes such as comments or elements), in tree order. On setting, it must act the same
way as the textContent (page 19) DOM attribute.

3.17.1.1. Script languages

The following lists some MIME types and the languages to which they refer:

text/javascript

ECMAScript. [ECMA262]

text/javascript;e4x=1

ECMAScript with ECMAScript for XML. [ECMA357]

User agents may support other MIME types and other languages.

When examining types to determine if they support the language, user agents must not
ignore unknown MIME parameters — types with unknown parameters must be assumed
to be unsupported.

3.17.2. The noscript element

When scripting is disabled (page 278): transparent (page 70) block-level element (page
68), and transparent (page 70) strictly inline-level content (page 69).

When scripting is enabled (page 278): block-level element (page 68), and strictly
inline-level content (page 69).

Contexts in which this element may be used:
In a head (page 82) element of an HTML document (page 25), if there are no
ancestor noscript (page 225) elements.
Where block-level elements (page 68) are expected in HTML documents (page
25), if there are no ancestor noscript (page 225) elements.
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Where inline-level content (page 69) is expected in HTML documents (page 25),
if there are no ancestor noscript (page 225) elements.

Content model:
When scripting is disabled (page 278): transparent (page 70), but there must be
no noscript (page 225) element descendants.
When scripting is enabled (page 278): Text that conforms to the requirements
given in the prose.

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The noscript (page 225) element does not represent anything. It is used to present
different markup to user agents that support scripting and those that don't support
scripting, by affecting how the document is parsed.

The noscript (page 225) element must not be used in XML documents (page 25).

When used in HTML documents (page 25), the allowed content model depends on
whether scripting is enabled or not.

If scripting is disabled (page 278), then the content model of a noscript (page 225)
element is transparent (page 70), with the additional restriction that a noscript (page
225) element must not have a noscript (page 225) element as an ancestor (that is,
noscript (page 225) can't be nested).

If scripting is enabled (page 278), then the content model of a noscript (page 225)
element is text, except that the text must be such that running the following algorithm
results in a conforming document with no noscript (page 225) elements and no
script (page 220) elements, and such that no step in the algorithm causes an HTML
parser (page 392) to flag a parse error (page 392):

1. Remove every script (page 220) element from the document.

2. Make a list of every noscript (page 225) element in the document. For every
noscript (page 225) element in that list, perform the following steps:
1. Let the parent element be the parent element of the noscript (page 225)

element.
2. Take all the children of the parent element that come before the noscript

(page 225) element, and call these elements the before children.
3. Take all the children of the parent element that come after the noscript (page

225) element, and call these elements the after children.
4. Let s be the concatenation of all the text node (page 23) children of the

noscript (page 225) element.
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5. Set the innerHTML (page 40) attribute of the parent element to the value of s.
(This, as a side-effect, causes the noscript (page 225) element to be
removed from the document.)

6. Insert the before children at the start of the parent element, preserving their
original relative order.

7. Insert the after children at the end of the parent element, preserving their
original relative order.

The noscript (page 225) element has no other requirements. In particular, children of
the noscript (page 225) element are not exempt from form submission, scripting, and
so forth, even when scripting is enabled.

Note: All these contortions are required because, for historical reasons,
the noscript (page 225) element causes the HTML parser (page 392) to
act differently based on whether scripting is enabled or not. The element
is not allowed in XML, because in XML the parser is not affected by such
state, and thus the element would not have the desired effect.

3.17.3. The event-source element

Block-level element (page 68), strictly inline-level content (page 69), and metadata
element (page 82).

Contexts in which this element may be used:
In a head (page 82) element.
Where block-level elements (page 68) are expected.
Where inline-level content (page 69) is expected.

Content model:
Empty.

Element-specific attributes:
src (page 227)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLEventSourceElement : HTMLElement (page 28) {

attribute DOMString src (page 228);
};

The event-source (page 227) element represents a target for events generated by a
remote server.

The src attribute, if specified, must give a URI (or IRI) pointing to a resource that uses
the application/x-dom-event-stream format.

227



When the element is inserted into the document, if it has the src (page 227) attribute
specified, the user agent must act as if the addEventSource() (page 360) method on
the event-source (page 227) element had been invoked with the URI resulting from
resolving the src (page 227) attribute's value to an absolute URI.

While the element is in a document, if its src (page 227) attribute is mutated, the user
agent must act as if first the removeEventSource() (page 360) method on the
event-source (page 227) element had been invoked with the URI resulting from
resolving the old value of the attribute to an absolute URI, and then as if the
addEventSource() (page 360) method on the element had been invoked with the URI
resulting from resolving the new value of the src (page 227) attribute to an absolute
URI.

When the element is removed from the document, if it has the src (page 227) attribute
specified, or, when the src (page 227) attribute is about to be removed, the user agent
must act as if the removeEventSource() (page 360) method on the event-source

(page 227) element had been invoked with the URI resulting from resolving the src

(page 227) attribute's value to an absolute URI.

There can be more than one event-source (page 227) element per document, but
authors should take care to avoid opening multiple connections to the same server as
HTTP recommends a limit to the number of simultaneous connections that a user agent
can open per server.

The src DOM attribute must reflect the content attribute of the same name.

3.18. Interactive elements

3.18.1. The details element

Interactive (page 71), block-level element (page 68).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
One legend (page 267) element followed by either one or more block-level
elements (page 68) or inline-level content (page 69) (but not both).

Element-specific attributes:
open (page 229)

Predefined classes that apply to this element:
None.
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DOM interface:

interface HTMLDetailsElement : HTMLElement (page 28) {

attribute boolean open (page 229);
};

The details (page 228) element represents additional information or controls which
the user can obtain on demand.

The first element child of a details (page 228) element, if it is a legend (page 267)
element, represents the summary of the details.

If the first element is not a legend (page 267) element, the UA should provide its own
legend (e.g. "Details").

The open content attribute is a boolean attribute (page 48). If present, it indicates that
the details should be shown to the user. If the attribute is absent, the details should not
be shown.

If the attribute is removed, then the details should be hidden. If the attribute is added, the
details should be shown.

The user should be able to request that the details be shown or hidden.

The open attribute must reflect (page 29) the open (page 229) content attribute.

Rendering will be described in the Rendering section in due course. Basically CSS
:open and :closed match the element, it's a block-level element by default, and when
it matches :closed it renders as if it had an XBL binding attached to it whose template
was just <template>▶<content
includes="legend:first-child">Details</content></template>, and
when it's :open it acts as if it had an XBL binding attached to it whose template was
just <template>▼<content
includes="legend:first-child">Details</content><content/></template>

or some such.

Clicking the legend would make it open/close (and would change the content
attribute). Question: Do we want the content attribute to reflect the actual state like
this? I think we do, the DOM not reflecting state has been a pain in the neck before.
But is it semantically ok?

3.18.2. [SCS] The datagrid element

Interactive (page 71), block-level element (page 68).
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Contexts in which this element may be used:
Where block-level elements (page 68) are expected, if there are no ancestor
interactive elements (page 71).

Content model:
Zero or more block-level elements (page 68).

Element-specific attributes:
multiple (page 253)
disabled (page 251)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLDataGridElement : HTMLElement (page 28) {

attribute DataGridDataProvider (page 232) data (page 233);
readonly attribute DataGridSelection (page 252) selection (page 252);

attribute boolean multiple (page 231);
attribute boolean disabled (page 231);

void updateEverything (page 250)();
void updateRowsChanged (page 250)(in RowSpecification (page 232) row, in

unsigned long count);

void updateRowsInserted (page 250)(in RowSpecification (page 232) row, in
unsigned long count);

void updateRowsRemoved (page 250)(in RowSpecification (page 232) row, in
unsigned long count);

void updateRowChanged (page 251)(in RowSpecification (page 232) row);

void updateColumnChanged (page 251)(in unsigned long column);
void updateCellChanged (page 251)(in RowSpecification (page 232) row, in

unsigned long column);
};

One possible thing to be added is a way to detect when a row/selection has been
deleted, activated, etc, by the user (delete key, enter key, etc).

This element is defined as interactive, which means it can't contain other interactive
elements, despite the fact that we expect it to work with other interactive elements
e.g. checkboxes and input fields. It should be called something like a Leaf Interactive
Element or something, which counts for ancestors looking in and not descendants
looking out.

The datagrid (page 229) element represents an interactive representation of tree, list,
or tabular data.
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The data being presented can come either from the content, as elements given as
children of the datagrid (page 229) element, or from a scripted data provider given by
the data (page 233) DOM attribute.

The multiple (page 253) and disabled (page 251) attributes are boolean attributes
(page 48). Their effects are described in the processing model sections below.

The multiple and disabled DOM attributes must reflect (page 29) the multiple

(page 253) and disabled (page 251) content attributes respectively.

3.18.2.1. The datagrid (page 229) data model

This section is non-normative.

In the datagrid (page 229) data model, data is structured as a set of rows representing
a tree, each row being split into a number of columns. The columns are always present
in the data model, although individual columns may be hidden in the presentation.

Each row can have child rows. Child rows may be hidden or shown, by closing or
opening (respectively) the parent row.

Rows are referred to by the path along the tree that one would take to reach the row,
using zero-based indices. Thus, the first row of a list is row "0", the second row is row
"1"; the first child row of the first row is row "0,0", the second child row of the first row is
row "0,1"; the fourth child of the seventh child of the third child of the tenth row is
"9,2,6,3", etc.

The columns can have captions. Those captions are not considered a row in their own
right, they are obtained separately.

Selection of data in a datagrid (page 229) operates at the row level. If the multiple

(page 253) attribute is present, multiple rows can be selected at once, otherwise the
user can only select one row at a time.

The datagrid (page 229) element can be disabled entirely by setting the disabled

(page 251) attribute.

Columns, rows, and cells can each have specific flags, known as classes, applied to
them by the data provider. These classes affect the functionality (page 235) of the
datagrid (page 229) element, and are also passed to the style system (page 461).
They are similar in concept to the class (page 75) attribute, except that they are not
specified on elements but are given by scripted data providers.

3.18.2.2. How rows are identified

The chains of numbers that give a row's path, or identifier, are represented by objects
that implement the RowSpecification (page 232) interface.
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interface RowSpecification {
// binding-specific interface

};

In ECMAScript, two classes of objects are said to implement this interface: Numbers
representing non-negative integers, and homogeneous arrays of Numbers representing
non-negative integers. Thus, [1,0,9] is a RowSpecification (page 232), as is 1 on its
own. However, [1,0.2,9] is not a RowSpecification (page 232) object, since its
second value is not an integer.

User agents must always represent RowSpecification (page 232)s in ECMAScript by
using arrays, even if the path only has one number.

The root of the tree is represented by the empty path; in ECMAScript, this is the empty
array ([]). Only the getRowCount() (page 233) and GetChildAtPosition() (page
233) methods ever get called with the empty path.

3.18.2.3. The data provider interface

The conformance criteria in this section apply to any implementation of the
DataGridDataProvider (page 232), including (and most commonly) the content
author's implementation(s).

// To be implemented by Web authors as a JS object
interface DataGridDataProvider {

void initialize (page 233)(in HTMLDataGridElement datagrid);
unsigned long getRowCount (page 233)(in RowSpecification (page 232) row);

unsigned long getChildAtPosition (page 233)(in RowSpecification (page 232)
parentRow, in unsigned long position);

unsigned long getColumnCount (page 233)();
DOMString getCaptionText (page 233)(in unsigned long column);
void getCaptionClasses (page 234)(in unsigned long column, in DOMTokenList

classes);

DOMString getRowImage (page 234)(in RowSpecification (page 232) row);

HTMLMenuElement getRowMenu (page 234)(in RowSpecification (page 232) row);

void getRowClasses (page 234)(in RowSpecification (page 232) row, in
DOMTokenList classes);

DOMString getCellData (page 234)(in RowSpecification (page 232) row, in
unsigned long column);

void getCellClasses (page 234)(in RowSpecification (page 232) row, in unsigned
long column, in DOMTokenList classes);

void toggleColumnSortState (page 234)(in unsigned long column);
void setCellCheckedState (page 235)(in RowSpecification (page 232) row, in

unsigned long column, in long state);

void cycleCell (page 235)(in RowSpecification (page 232) row, in unsigned long
column);

void editCell (page 235)(in RowSpecification (page 232) row, in unsigned long
column, in DOMString data);
};
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The DataGridDataProvider (page 232) interface represents the interface that
objects must implement to be used as custom data views for datagrid (page 229)
elements.

Not all the methods are required. The minimum number of methods that must be
implemented in a useful view is two: the getRowCount() (page 233) and
getCellData() (page 234) methods.

Once the object is written, it must be hooked up to the datagrid (page 229) using the
data DOM attribute.

The following methods may be usefully implemented:

initialize(datagrid)

Called by the datagrid (page 229) element (the one given by the datagrid
argument) after it has first populated itself. This would typically be used to set the
initial selection of the datagrid (page 229) element when it is first loaded. The
data provider could also use this method call to register a select (page 253) event
handler on the datagrid (page 229) in order to monitor selection changes.

getRowCount(row)

Must return the number of rows that are children of the specified row, including rows
that are off-screen. If row is empty, then the number of rows at the top level must be
returned. If the value that this method would return for a given row changes, the
relevant update methods on the datagrid (page 229) must be called first.
Otherwise, this method must always return the same number. For a list (as opposed
to a tree), this method must return 0 whenever it is called with a row identifier that is
not empty.

getChildAtPosition(parentRow, position)

Must return the index of the row that is a child of parentRow and that is to be
positioned as the positionth row under parentRow when rendering the children of
parentRow. If parentRow is empty, then position refers to the positionth row at the
top level of the data grid. May be omitted if the rows are always to be sorted in the
natural order. (The natural order is the one where the method always returns
position.) For a given parentRow, this method must never return the same value for
different values of position. The returned value x must be in the range 0 ≤ x < n,
where n is the value returned by getRowCount(parentRow) (page 233).

getColumnCount()

Must return the number of columns currently in the data model (including columns
that might be hidden). May be omitted if there is only one column. If the value that
this method would return changes, the datagrid (page 229)'s
updateEverything() (page 250) method must be called.

getCaptionText(column)

Must return the caption, or label, for column column. May be omitted if the columns
have no captions. If the value that this method would return changes, the datagrid
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(page 229)'s updateColumnChanged() (page 251) method must be called with
the appropriate column index.

getCaptionClasses(column, classes)

Must add the classes that apply to column column to the classes object. May be
omitted if the columns have no special classes. If the classes that this method would
add changes, the datagrid (page 229)'s updateColumnChanged() (page 251)
method must be called with the appropriate column index. Some classes have
predefined meanings (page 235).

getRowImage(row)

Must return a URI to an image that represents row row, or the empty string if there is
no applicable image. May be omitted if no rows have associated images. If the value
that this method would return changes, the datagrid (page 229)'s update methods
must be called to update the row in question.

getRowMenu(row)

Must return an HTMLMenuElement object that is to be used as a context menu for
row row, or null if there is no particular context menu. May be omitted if none of the
rows have a special context menu. As this method is called immediately before
showing the menu in question, no precautions need to be taken if the return value of
this method changes.

getRowClasses(row, classes)

Must add the classes that apply to row row to the classes object. May be omitted if
the rows have no special classes. If the classes that this method would add
changes, the datagrid (page 229)'s update methods must be called to update the
row in question. Some classes have predefined meanings (page 235).

getCellData(row, column)

Must return the value of the cell on row row in column column. For text cells, this
must be the text to show for that cell. For progress bar cells (page 236), this must be
either a floating point number in the range 0.0 to 1.0 (converted to a string
representation), indicating the fraction of the progress bar to show as full (1.0
meaning complete), or the empty string, indicating an indeterminate progress bar. If
the value that this method would return changes, the datagrid (page 229)'s
update methods must be called to update the rows that changed. If only one cell
changed, the updateCellChanged() (page 251) method may be used.

getCellClasses(row, column, classes)

Must add the classes that apply to the cell on row row in column column to the
classes object. May be omitted if the cells have no special classes. If the classes
that this method would add changes, the datagrid (page 229)'s update methods
must be called to update the rows or cells in question. Some classes have
predefined meanings (page 235).

toggleColumnSortState(column)

Called by the datagrid (page 229) when the user tries to sort the data using a
particular column column. The data provider must update its state so that the
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GetChildAtPosition() (page 233) method returns the new order, and the
classes of the columns returned by getCaptionClasses() (page 234) represent
the new sort status. There is no need to tell the datagrid (page 229) that it the
data has changed, as the datagrid (page 229) automatically assumes that the
entire data model will need updating.

setCellCheckedState(row, column, state)

Called by the datagrid (page 229) when the user changes the state of a checkbox
cell on row row, column column. The checkbox should be toggled to the state given
by state, which is a positive integer (1) if the checkbox is to be checked, zero (0) if it
is to be unchecked, and a negative number (-1) if it is to be set to the indeterminate
state. There is no need to tell the datagrid (page 229) that the cell has changed,
as the datagrid (page 229) automatically assumes that the given cell will need
updating.

cycleCell(row, column)

Called by the datagrid (page 229) when the user changes the state of a cyclable
cell on row row, column column. The data provider should change the state of the
cell to the new state, as appropriate. There is no need to tell the datagrid (page
229) that the cell has changed, as the datagrid (page 229) automatically assumes
that the given cell will need updating.

editCell(row, column, data)

Called by the datagrid (page 229) when the user edits the cell on row row,
column column. The new value of the cell is given by data. The data provider should
update the cell accordingly. There is no need to tell the datagrid (page 229) that
the cell has changed, as the datagrid (page 229) automatically assumes that the
given cell will need updating.

The following classes (for rows, columns, and cells) may be usefully used in conjunction
with this interface:

Class name Applies
to

Description

checked Cells The cell has a checkbox and it is checked. (The
cyclable (page 235) and progress (page
236) classes override this, though.)

cyclable Cells The cell can be cycled through multiple values.
(The progress (page 236) class overrides this,
though.)

editable Cells The cell can be edited. (The cyclable (page
235), progress (page 236), checked (page
235), unchecked (page 235) and
indeterminate (page 235) classes override
this, though.)

header Rows The row is a heading, not a data row.
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indeterminate Cells The cell has a checkbox, and it can be set to an
indeterminate state. If neither the checked

(page 235) nor unchecked (page 235) classes
are present, then the checkbox is in that state,
too. (The cyclable (page 235) and progress

(page 236) classes override this, though.)

initially-hidden Columns The column will not be shown when the
datagrid (page 229) is initially rendered. If
this class is not present on the column when the
datagrid (page 229) is initially rendered, the
column will be visible if space allows.

initially-closed Rows The row will be closed when the datagrid

(page 229) is initially rendered. If neither this
class nor the initially-open (page 236)
class is present on the row when the datagrid

(page 229) is initially rendered, the initial state
will depend on platform conventions.

initially-open Rows The row will be opened when the datagrid

(page 229) is initially rendered. If neither this
class nor the initially-closed (page 236)
class is present on the row when the datagrid

(page 229) is initially rendered, the initial state
will depend on platform conventions.

progress Cells The cell is a progress bar.

reversed Columns If the cell is sorted, the sort direction is
descending, instead of ascending.

selectable-separator Rows The row is a normal, selectable, data row,
except that instead of having data, it only has a
separator. (The header (page 235) and
separator (page 236) classes override this,
though.)

separator Rows The row is a separator row, not a data row. (The
header (page 235) class overrides this,
though.)

sortable Columns The data can be sorted by this column.

sorted Columns The data is sorted by this column. Unless the
reversed (page 236) class is also present, the
sort direction is ascending.

unchecked Cells The cell has a checkbox and, unless the
checked (page 235) class is present as well, it
is unchecked. (The cyclable (page 235) and
progress (page 236) classes override this,
though.)
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3.18.2.4. The default data provider

The user agent must supply a default data provider for the case where the datagrid

(page 229)'s data (page 233) attribute is null. It must act as described in this section.

The behaviour of the default data provider depends on the nature of the first element
child of the datagrid (page 229).

↪ While the first element child is a table (page 201)
getRowCount(row) (page 233): The number of rows returned by the default
data provider for the root of the tree (when row is empty) must be the total
number of tr (page 208) elements that are children of tbody (page 206)
elements that are children of the table (page 201), if there are any such child
tbody (page 206) elements. If there are no such tbody (page 206) elements
then the number of rows returned for the root must be the number of tr (page
208) elements that are children of the table (page 201).

When row is not empty, the number of rows returned must be zero.

Note: The table (page 201)-based default data provider cannot
represent a tree.

Note: Rows in thead (page 207) elements do not contribute to the
number of rows returned, although they do affect the columns
and column captions. Rows in tfoot (page 208) elements are
ignored (page 22) completely by this algorithm.

getChildAtPosition(row, i) (page 233): The default data provider must
return the mapping appropriate to the current sort order (page 239).

getColumnCount() (page 233): The number of columns returned must be the
number of td (page 210) element children in the first tr (page 208) element
child of the first tbody (page 206) element child of the table (page 201), if
there are any such tbody (page 206) elements. If there are no such tbody

(page 206) elements, then it must be the number of td (page 210) element
children in the first tr (page 208) element child of the table (page 201), if
any, or otherwise 1. If the number that would be returned by these rules is 0,
then 1 must be returned instead.

getCaptionText(i) (page 233): If the table (page 201) has no thead

(page 207) element child, or if its first thead (page 207) element child has no
tr (page 208) element child, the default data provider must return the empty
string for all captions. Otherwise, the value of the textContent (page 19)
attribute of the ith th (page 211) element child of the first tr (page 208)
element child of the first thead (page 207) element child of the table (page
201) element must be returned. If there is no such th (page 211) element, the
empty string must be returned.
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getCaptionClasses(i, classes) (page 234): If the table (page 201)
has no thead (page 207) element child, or if its first thead (page 207) element
child has no tr (page 208) element child, the default data provider must not
add any classes for any of the captions. Otherwise, each class in the class

(page 75) attribute of the ith th (page 211) element child of the first tr (page
208) element child of the first thead (page 207) element child of the table

(page 201) element must be added to the classes. If there is no such th (page
211) element, no classes must be added. The user agent must then:

1. Remove the sorted (page 236) and reversed (page 236) classes.

2. If the table (page 201) element has a class (page 75) attribute that
includes the sortable class, add the sortable (page 236) class.

3. If the column is the one currently being used to sort the data, add the
sorted (page 236) class.

4. If the column is the one currently being used to sort the data, and it is
sorted in descending order, add the reversed (page 236) class as well.

The various row- and cell- related methods operate relative to a particular
element, the element of the row or cell specified by their arguments.

For rows: Since the default data provider for a table (page 201) always
returns 0 as the number of children for any row other than the root, the path to
the row passed to these methods will always consist of a single number. In the
prose below, this number is referred to as i.

If the table (page 201) has tbody (page 206) element children, the element
for the ith row is the ith tr (page 208) element that is a child of a tbody (page
206) element that is a child of the table (page 201) element. If the table

(page 201) does not have tbody (page 206) element children, then the
element for the ith real row is the ith tr (page 208) element that is a child of the
table (page 201) element.

For cells: Given a row and its element, the row's ith cell's element is the ith td

(page 210) element child of the row element.

Note: The colspan and rowspan attributes are ignored (page 22)
by this algorithm.

getRowImage(i) (page 234): If the row's first cell's element has an img

(page 154) element child, then the URI of the row's image is the URI of the first
img (page 154) element child of the row's first cell's element. Otherwise, the
URI of the row's image is the empty string.
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getRowMenu(i) (page 234): If the row's first cell's element has a menu (page
257) element child, then the row's menu is the first menu (page 257) element
child of the row's first cell's element. Otherwise, the row has no menu.

getRowClasses(i, classes) (page 234): The default data provider must
never add a class to the row's classes.

toggleColumnSortState(i) (page 234): If the data is already being sorted
on the given column, then the user agent must change the current sort mapping
to be the inverse of the current sort mapping; if the sort order was ascending
before, it is now descending, otherwise it is now ascending. Otherwise, if the
current sort column is another column, or the data model is currently not sorted,
the user agent must create a new mapping, which maps rows in the data model
to rows in the DOM so that the rows in the data model are sorted by the
specified column, in ascending order. (Which sort comparison operator to use is
left up to the UA to decide.)

When the sort mapping is changed, the values returned by the
getChildAtPosition() (page 233) method for the default data provider will
change appropriately (page 237).

getCellData(i, j) (page 234), getCellClasses(i, j, classes)
(page 234), getCellCheckedState(i, j, state) (page 235),
cycleCell(i, j) (page 235), and editCell(i, j, data) (page 235):
See the common definitions below (page 243).

The data provider must call the datagrid (page 229)'s update methods
appropriately whenever the descendants of the datagrid (page 229) mutate.
For example, if a tr (page 208) is removed, then the updateRowsRemoved()

(page 250) methods would probably need to be invoked, and any change to a
cell or its descendants must cause the cell to be updated. If the table (page
201) element stops being the first child of the datagrid (page 229), then the
data provider must call the updateEverything() (page 250) method on the
datagrid (page 229). Any change to a cell that is in the column that the data
provider is currently using as its sort column must also cause the sort to be
reperformed, with a call to updateEverything() (page 250) if the change
did affect the sort order.

↪ While the first element child is a select

The default data provider must return 1 for the column count, the empty string
for the column's caption, and must not add any classes to the column's classes.

For the rows, assume the existence of a node filter view of the descendants of
the first select element child of the datagrid (page 229) element, that skips
all nodes other than optgroup and option elements, as well as any
descendents of any option elements.

Given a path row, the corresponding element is the one obtained by drilling into
the view, taking the child given by the path each time.
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Given the following XML markup:

<datagrid>
<select>
<!-- the options and optgroups have had their labels and values

removed
to make the underlying structure clearer -->

<optgroup>
<option/>
<option/>

</optgroup>
<optgroup>
<option/>
<optgroup id="a">
<option/>
<option/>
<bogus/>
<option id="b"/>

</optgroup>
<option/>

</optgroup>
</select>

</datagrid>

The path "1,1,2" would select the element with ID "b". In the filtered view,
the text nodes, comment nodes, and bogus elements are ignored; so for
instance, the element with ID "a" (path "1,1") has only 3 child nodes in the
view.

getRowCount(row) (page 233) must drill through the view to find the element
corresponding to the method's argument, and return the number of child nodes
in the filtered view that the corresponding element has. (If the row is empty, the
corresponding element is the select element at the root of the filtered view.)

getChildAtPosition(row, position) (page 233) must return position.
(The select default data provider does not support sorting the data grid.)

getRowImage(i) (page 234) must return the empty string, getRowMenu(i)
(page 234) must return null.

getRowClasses(row, classes) (page 234) must add the classes from the
following list to classes when their condition is met:

• If the row's corresponding element is an optgroup element: header
(page 235)

• If the row's corresponding element contains other elements that are also in
the view, and the element's class (page 75) attribute contains the
closed class: initially-closed (page 236)

• If the row's corresponding element contains other elements that are also in
the view, and the element's class (page 75) attribute contains the open

class: initially-open (page 236)
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The getCellData(row, cell) (page 234) method must return the value of
the label attribute if the row's corresponding element is an optgroup

element, otherwise, if the row's corresponding element is an optionelement,
its label attribute if it has one, otherwise the value of its textContent (page
19) DOM attribute.

The getCellClasses(row, cell, classes) (page 234) method must
add no classes.

autoselect some rows when initialised, reflect the selection in the select,
reflect the multiple attribute somehow.

The data provider must call the datagrid (page 229)'s update methods
appropriately whenever the descendants of the datagrid (page 229) mutate.

↪ While the first element child is another element
The default data provider must return 1 for the column count, the empty string
for the column's caption, and must not add any classes to the column's classes.

For the rows, assume the existence of a node filter view of the descendants of
the datagrid (page 229) that skips all nodes other than li (page 118), h1
(page 101)-h6 (page 101), and hr (page 113) elements, and skips any
descendants of menu (page 257) elements.

Given this view, each element in the view represents a row in the data model.
The element corresponding to a path row is the one obtained by drilling into the
view, taking the child given by the path each time. The element of the row of a
particular method call is the element given by drilling into the view along the
path given by the method's arguments.

getRowCount(row) (page 233) must return the number of child elements in
this view for the given row, or the number of elements at the root of the view if
the row is empty.

In the following example, the elements are identified by the paths given by
their child text nodes:

<datagrid>
<ol>
<li> row 0 </li>
<li> row 1
<ol>
<li> row 1,0 </li>

</ol>
</li>
<li> row 2 </li>

</ol>
</datagrid>

In this example, only the li (page 118) elements actually appear in the
data grid; the ol (page 116) element does not affect the data grid's
processing model.
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getChildAtPosition(row, position) (page 233) must return position.
(The generic default data provider does not support sorting the data grid.)

getRowImage(i) (page 234) must return the URI of the image given by the
first img (page 154) element descendant (in the real DOM) of the row's
element, that is not also a descendant of another element in the filtered view
that is a descendant of the row's element.

In the following example, the row with path "1,0" returns
"http://example.com/a" as its image URI, and the other rows (including the
row with path "1") return the empty string:

<datagrid>
<ol>
<li> row 0 </li>
<li> row 1
<ol>
<li> row 1,0 <img src="http://example.com/a" alt=""> </li>

</ol>
</li>
<li> row 2 </li>

</ol>
</datagrid>

getRowMenu(i) (page 234) must return the first menu (page 257) element
descendant (in the real DOM) of the row's element, that is not also a
descendant of another element in the filtered view that is a decsendant of the
row's element. (This is analogous to the image case above.)

getRowClasses(i, classes) (page 234) must add the classes from the
following list to classes when their condition is met:

• If the row's element contains other elements that are also in the view, and
the element's class (page 75) attribute contains the closed class:
initially-closed (page 236)

• If the row's element contains other elements that are also in the view, and
the element's class (page 75) attribute contains the open class:
initially-open (page 236)

• If the row's element is an h1 (page 101)-h6 (page 101) element: header
(page 235)

• If the row's element is an hr (page 113) element: separator (page 236)

The getCellData(i, j) (page 234), getCellClasses(i, j, classes)
(page 234), getCellCheckedState(i, j, state) (page 235),
cycleCell(i, j) (page 235), and editCell(i, j, data) (page 235)
methods must act as described in the common definitions below (page 243),
treating the row's element as being the cell's element.

selection handling?
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The data provider must call the datagrid (page 229)'s update methods
appropriately whenever the descendants of the datagrid (page 229) mutate.

↪ Otherwise, while there is no element child
The data provider must return 0 for the number of rows, 1 for the number of
columns, the empty string for the first column's caption, and must add no
classes when asked for that column's classes. If the datagrid (page 229)'s
child list changes such that there is a first element child, then the data provider
must call the updateEverything() (page 250) method on the datagrid

(page 229).

3.18.2.4.1. COMMON DEFAULT DATA PROVIDER METHOD DEFINITIONS FOR CELLS

These definitions are used for the cell-specific methods of the default data providers
(other than in the select case). How they behave is based on the contents of an
element that represents the cell given by their first two arguments. Which element that is
is defined in the previous section.

Cyclable cells
If the first element child of a cell's element is a select element that has a no
multiple attribute and has at least one option element descendent, then the cell
acts as a cyclable cell.

The "current" option element is the selected option element, or the first option
element if none is selected.

The getCellData() (page 234) method must return the textContent (page 19)
of the current option element (the label attribute is ignored (page 22) in this
context as the optgroups are not displayed).

The getCellClasses() (page 234) method must add the cyclable (page 235)
class and then all the classes of the current option element.

The cycleCell() (page 235) method must change the selection of the select

element such that the next option element after the current option element is the
only one that is selected (in tree order (page 21)). If the current option element is
the last option element descendent of the select, then the first option element
descendent must be selected instead.

The setCellCheckedState() (page 235) and editCell() (page 235) methods
must do nothing.

Progress bar cells
If the first element child of a cell's element is a progress (page 139) element, then
the cell acts as a progress bar cell.

The getCellData() (page 234) method must return the value returned by the
progress (page 139) element's position (page 142) DOM attribute.
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The getCellClasses() (page 234) method must add the progress (page 236)
class.

The setCellCheckedState() (page 235), cycleCell() (page 235), and
editCell() (page 235) methods must do nothing.

Checkbox cells
If the first element child of a cell's element is an input element that has a type

attribute with the value checkbox, then the cell acts as a check box cell.

The getCellData() (page 234) method must return the textContent (page 19)
of the cell element.

The getCellClasses() (page 234) method must add the checked (page 235)
class if the input element is checked, and the unchecked (page 236) class
otherwise.

The setCellCheckedState() (page 235) method must set the input element's
checkbox state to checked if the method's third argument is 1, and to unchecked
otherwise.

The cycleCell() (page 235) and editCell() (page 235) methods must do
nothing.

Editable cells
If the first element child of a cell's element is an input element that has a type

attribute with the value text or that has no type attribute at all, then the cell acts
as an editable cell.

The getCellData() (page 234) method must return the value of the input

element.

The getCellClasses() (page 234) method must add the editable (page 235)
class.

The editCell() (page 235) method must set the input element's value DOM
attribute to the value of the third argument to the method.

The setCellCheckedState() (page 235) and cycleCell() (page 235)
methods must do nothing.

3.18.2.5. Populating the datagrid (page 229) element

A datagrid (page 229) must be disabled until its end tag has been parsed (in the case
of a datagrid (page 229) element in the original document markup) or until it has been
inserted into the document (in the case of a dynamically created element). After that
point, the element must fire a single load event at itself, which doesn't bubble and
cannot be canceled.
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The end-tag parsing thing should be moved to the parsing section.

The datagrid (page 229) must then populate itself using the data provided by the data
provider assigned to the data (page 233) DOM attribute. After the view is populated
(using the methods described below), the datagrid (page 229) must invoke the
initialize() (page 233) method on the data provider specified by the data (page
233) attribute, passing itself (the HTMLDataGridElement (page 230) object) as the
only argument.

When the data (page 233) attribute is null, the datagrid (page 229) must use the
default data provider described in the previous section.

To obtain data from the data provider, the element must invoke methods on the data
provider object in the following ways:

To determine the total number of columns
Invoke the getColumnCount() (page 233) method with no arguments. The return
value is the number of columns. If the return value is zero or negative, not an
integer, or simply not a numeric type, or if the method is not defined, then 1 must be
used instead.

To get the captions to use for the columns
Invoke the getCaptionText() (page 233) method with the index of the column in
question. The index i must be in the range 0 ≤ i < N, where N is the total number of
columns. The return value is the string to use when referring to that column. If the
method returns null or the empty string, the column has no caption. If the method is
not defined, then none of the columns have any captions.

To establish what classes apply to a column
Invoke the getCaptionClasses() (page 234) method with the index of the
column in question, and an object implementing the DOMTokenList (page 34)
interface, associated with an anonymous empty string. The index i must be in the
range 0 ≤ i < N, where N is the total number of columns. The tokens contained in the
string underlying DOMTokenList (page 34) object when the method returns
represent the classes that apply to the given column. If the method is not defined, no
classes apply to the column.

To establish whether a column should be initially included in the visible columns
Check whether the initially-hidden (page 236) class applies to the column. If
it does, then the column should not be initially included; if it does not, then the
column should be initially included.

To establish whether the data can be sorted relative to a particular column
Check whether the sortable (page 236) class applies to the column. If it does,
then the user should be able to ask the UA to display the data sorted by that
column; if it does not, then the user agent must not allow the user to ask for the data
to be sorted by that column.
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To establish if a column is a sorted column
If the user agent can handle multiple columns being marked as sorted
simultaneously: Check whether the sorted (page 236) class applies to the column.
If it does, then that column is the sorted column, otherwise it is not.
If the user agent can only handle one column being marked as sorted at a time:
Check each column in turn, starting with the first one, to see whether the sorted

(page 236) class applies to that column. The first column that has that class, if any,
is the sorted column. If none of the columns have that class, there is no sorted
column.

To establish the sort direction of a sorted column
Check whether the reversed (page 236) class applies to the column. If it does,
then the sort direction is descending (down; first rows have the highest values),
otherwise it is ascending (up; first rows have the lowest values).

To determine the total number of rows
Determine the number of rows for the root of the data grid, and determine the
number of child rows for each open row. The total number of rows is the sum of all
these numbers.

To determine the number of rows for the root of the data grid
Invoke the getRowCount() (page 233) method with a RowSpecification (page
232) object representing the empty path as its only argument. The return value is
the number of rows at the top level of the data grid. If the return value of the method
is negative, not an integer, or simply not a numeric type, or if the method is not
defined, then zero must be used instead.

To determine the number of child rows for a row
Invoke the getRowCount() (page 233) method with a RowSpecification (page
232) object representing the path to the row in question. The return value is the
number of child rows for the given row. If the return value of the method is negative,
not an integer, or simply not a numeric type, or if the method is not defined, then
zero must be used instead.

To determine what order to render rows in
Invoke the getChildAtPosition() (page 233) method with a
RowSpecification (page 232) object representing the path to the parent of the
rows that are being rendered as the first argument, and the position that is being
rendered as the second argument. The return value is the index of the row to render
in that position.

If the rows are:

1. Row "0"

1. Row "0,0"

2. Row "0,1"

2. Row "1"
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1. Row "1,0"

2. Row "1,1"

...and the getChildAtPosition() (page 233) method is implemented as
follows:

function getChildAtPosition(parent, child) {
// always return the reverse order
return getRowCount(parent)-child-1;

}

...then the rendering would actually be:

1. Row "1"

1. Row "1,1"

2. Row "1,0"

2. Row "0"

1. Row "0,1"

2. Row "0,0"

If the return value of the method is negative, larger than the number of rows that the
getRowCount() (page 233) method reported for that parent, not an integer, or
simply not a numeric type, then the entire data grid should be disabled. Similarly, if
the method returns the same value for two or more different values for the second
argument (with the same first argument, and assuming that the data grid hasn't had
relevant update methods invoked in the meantime), then the data grid should be
disabled. Instead of disabling the data grid, the user agent may act as if the
getChildAtPosition() (page 233) method was not defined on the data provider
(thus disabling sorting for that data grid, but still letting the user interact with the
data). If the method is not defined, then the return value must be assumed to be the
same as the second argument (an indentity transform; the data is rendered in its
natural order).

To establish what classes apply to a row
Invoke the getRowClasses() (page 234) method with a RowSpecification

(page 232) object representing the row in question, and a DOMTokenList (page
34) associated with an empty string. The tokens contained in the DOMTokenList

(page 34) object's underlying string when the method returns represent the classes
that apply to the row in question. If the method is not defined, no classes apply to
the row.

To establish whether a row is a data row or a special row
Examine the classes that apply to the row. If the header (page 235) class applies
to the row, then it is not a data row, it is a subheading. The data from the first cell of
the row is the text of the subheading, the rest of the cells must be ignored.
Otherwise, if the separator (page 236) class applies to the row, then in the place
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of the row, a separator should be shown. Otherwise, if the
selectable-separator (page 236) class applies to the row, then the row should
be a data row, but represented as a separator. (The difference between a
separator (page 236) and a selectable-separator (page 236) is that the
former is not an item that can be actually selected, whereas the second can be
selected and thus has a context menu that applies to it, and so forth.) For both kinds
of separator rows, the data of the rows' cells must all be ignored. If none of those
three classes apply then the row is a simple data row.

To establish whether a row is openable
Determine the number of child rows for that row. If there are one or more child rows,
then the row is openable.

To establish whether a row should be initially open or closed
If the row is openable (page 248), examine the classes that apply to the row. If the
initially-open (page 236) class applies to the row, then it should be initially
open. Otherwise, if the initially-closed (page 236) class applies to the row,
then it must be initially closed. Otherwise, if neither class applies to the row, or if the
row is not openable, then the initial state of the row is entirely up to the UA.

To obtain a URI to an image representing a row
Invoke the getRowImage() (page 234) method with a RowSpecification (page
232) object representing the row in question. The return value is a string
representing a URI (or IRI) to an image. Relative URIs must be interpreted relative
to the datagrid (page 229)'s base URI. If the method returns the empty string,
null, or if the method is not defined, then the row has no associated image.

To obtain a context menu appropriate for a particular row
Invoke the getRowMenu() (page 234) method with a RowSpecification (page
232) object representing the row in question. The return value is a reference to an
object implementing the HTMLMenuElement interface, i.e. a menu (page 257)
element DOM node. (This element must then be interpreted as described in the
section on context menus to obtain the actual context menu to use.) If the method
returns something that is not an HTMLMenuElement, or if the method is not defined,
then the row has no associated context menu. User agents may provide their own
default context menu, and may add items to the author-provided context menu. For
example, such a menu could allow the user to change the presentation of the
datagrid (page 229) element.

To establish the value of a particular cell
Invoke the getCellData() (page 234) method with the first argument being a
RowSpecification (page 232) object representing the row of the cell in question
and the second argument being the index of the cell's column. The second
argument must be a non-negative integer less than the total number of columns.
The return value is the value of the cell. If the return value is null or the empty string,
or if the method is not defined, then the cell has no data. (For progress bar cells, the
cell's value must be further interpreted, as described below.)

248



To establish what classes apply to a cell
Invoke the getCellClasses() (page 234) method with the first argument being a
RowSpecification (page 232) object representing the row of the cell in question,
the second argument being the index of the cell's column, and the third being an
object implementing the DOMTokenList (page 34) interface, associated with an
empty string. The second argument must be a non-negative integer less than the
total number of columns. The tokens contained in the DOMTokenList (page 34)
object's underlying string when the method returns represent the classes that apply
to that cell. If the method is not defined, no classes apply to the cell.

To establish how the type of a cell
Examine the classes that apply to the cell. If the progress (page 236) class
applies to the cell, it is a progress bar. Otherwise, if the cyclable (page 235) class
applies to the cell, it is a cycling cell whose value can be cycled between multiple
states. Otherwise, none of these classes apply, and the cell is a simple text cell.

To establish the value of a progress bar cell
If the value x of the cell is a string that can be converted to a floating-point number
(page 50) in the range 0.0 ≤ x ≤ 1.0, then the progress bar has that value (0.0
means no progress, 1.0 means complete). Otherwise, the progress bar is an
indeterminate progress bar.

To establish how a simple text cell should be presented
Check whether one of the checked (page 235), unchecked (page 236), or
indeterminate (page 236) classes applies to the cell. If any of these are present,
then the cell has a checkbox, otherwise none are present and the cell does not have
a checkbox. If the cell has no checkbox, check whether the editable (page 235)
class applies to the cell. If it does, then the cell value is editable, otherwise the cell
value is static.

To establish the state of a cell's checkbox, if it has one
Check whether the checked (page 235) class applies to the cell. If it does, the cell
is checked. Otherwise, check whether the unchecked (page 236) class applies to
the cell. If it does, the cell is unchecked. Otherwise, the indeterminate (page
236) class appplies to the cell and the cell's checkbox is in an indeterminate state.
When the indeterminate (page 236) class appplies to the cell, the checkbox is a
tristate checkbox, and the user can set it to the indeterminate state. Otherwise, only
the checked (page 235) and/or unchecked (page 236) classes apply to the cell,
and the cell can only be toggled betwen those two states.

If the data provider ever raises an exception while the datagrid (page 229) is invoking
one of its methods, the datagrid (page 229) must act, for the purposes of that
particular method call, as if the relevant method had not been defined.

A RowSpecification (page 232) object p with n path components passed to a
method of the data provider must fulfill the constraint 0 ≤ pi < m-1 for all integer values of
i in the range 0 ≤ i < n-1, where m is the value that was last returned by the
getRowCount() (page 233) method when it was passed the RowSpecification
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(page 232) object q with i-1 items, where pi = qi for all integer values of i in the range
0 ≤ i < n-1, with any changes implied by the update methods taken into account.

The data model is considered stable: user agents may assume that subsequent calls to
the data provider methods will return the same data, until one of the update methods is
called on the datagrid (page 229) element. If a user agent is returned inconsistent
data, for example if the number of rows returned by getRowCount() (page 233) varies
in ways that do not match the calls made to the update methods, the user agent may
disable the datagrid (page 229). User agents that do not disable the datagrid (page
229) in inconsistent cases must honour the most recently returned values.

User agents may cache returned values so that the data provider is never asked for data
that could contradict earlier data. User agents must not cache the return value of the
getRowMenu (page 234) method.

The exact algorithm used to populate the data grid is not defined here, since it will differ
based on the presentation used. However, the behaviour of user agents must be
consistent with the descriptions above. For example, it would be non-conformant for a
user agent to make cells have both a checkbox and be editable, as the descriptions
above state that cells that have a checkbox cannot be edited.

3.18.2.6. Updating the datagrid (page 229)

Whenever the data (page 233) attribute is set to a new value, the datagrid (page
229) must clear the current selection, remove all the displayed rows, and plan to
repopulate itself using the information from the new data provider at the earliest
opportunity.

There are a number of update methods that can be invoked on the datagrid (page
229) element to cause it to refresh itself in slightly less drastic ways:

When the updateEverything() method is called, the user agent must repopulate the
entire datagrid (page 229). If the number of rows decreased, the selection must be
updated appropriately. If the number of rows increased, the new rows should be left
unselected.

When the updateRowsChanged(row, count) method is called, the user agent must
refresh the rendering of the rows starting from the row specified by row, and including
the count next siblings of the row (or as many next siblings as it has, if that is less than
count), including all descendant rows.

When the updateRowsInserted(row, count) method is called, the user agent
must assume that count new rows have been inserted, such that the first new row is
indentified by row. The user agent must update its rendering and the selection
accordingly. The new rows should not be selected.

When the updateRowsRemoved(row, count) method is called, the user agent must
assume that count rows have been removed starting from the row that used to be
identifier by row. The user agent must update its rendering and the selection accordingly.
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The updateRowChanged(row) method must be exactly equivalent to calling
updateRowsChanged(row, 1) (page 250).

When the updateColumnChanged(column) method is called, the user agent must
refresh the rendering of the specified column column, for all rows.

When the updateCellChanged(row, column) method is called, the user agent
must refresh the rendering of the cell on row row, in column column.

Any effects the update methods have on the datagrid (page 229)'s selection is not
considered a change to the selection, and must therefore not fire the select (page 253)
event.

These update methods should only be called by the data provider, or code acting on
behalf of the data provider. In particular, calling the updateRowsInserted() (page
250) and updateRowsRemoved() (page 250) methods without actually inserting or
removing rows from the data provider is likely to result in inconsistent renderings (page
250), and the user agent is likely to disable the data grid.

3.18.2.7. Requirements for interactive user agents

This section only applies to interactive user agents.

If the datagrid (page 229) element has a disabled attribute, then the user agent
must disable the datagrid (page 229), preventing the user from interacting with it. The
datagrid (page 229) element should still continue to update itself when the data
provider signals changes to the data, though. Obviously, conformance requirements
stating that datagrid (page 229) elements must react to users in particular ways do not
apply when one is disabled.

If a row is openable (page 248), then the user should be able to toggle its open/closed
state. When a row's open/closed state changes, the user agent must update the
rendering to match the new state.

If a cell is a cell whose value can be cycled between multiple states (page 249), then the
user must be able to activate the cell to cycle its value. When the user activates this
"cycling" behaviour of a cell, then the datagrid (page 229) must invoke the data
provider's cycleCell() (page 235) method, with a RowSpecification (page 232)
object representing the cell's row as the first argument and the cell's column index as the
second. The datagrid (page 229) must act as if the datagrid (page 229)'s
updateCellChanged() (page 251) method had been invoked with those same
arguments immediately before the provider's method was invoked.

When a cell has a checkbox (page 249), the user must be able to set the checkbox's
state. When the user changes the state of a checkbox in such a cell, the datagrid

(page 229) must invoke the data provider's setCellCheckedState() (page 235)
method, with a RowSpecification (page 232) object representing the cell's row as
the first argument, the cell's column index as the second, and the checkbox's new state
as the third. The state should be represented by the number 1 if the new state is
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checked, 0 if the new state is unchecked, and -1 if the new state is indeterminate (which
must only be possible if the cell has the indeterminate (page 236) class set). The
datagrid (page 229) must act as if the datagrid (page 229)'s
updateCellChanged() (page 251) method had been invoked, specifying the same
cell, immediately before the provider's method was invoked.

If a cell is editable (page 249), the user must be able to edit the data for that cell, and
doing so must cause the user agent to invoke the editCell() (page 235) method of
the data provider with three arguments: a RowSpecification (page 232) object
representing the cell's row, the cell's column's index, and the new text entered by the
user. The user agent must act as if the updateCellChanged() (page 251) method
had been invoked, with the same row and column specified, immediately before the
provider's method was invoked.

3.18.2.8. The selection

This section only applies to interactive user agents. For other user agents, the
selection (page 252) attribute must return null.

interface DataGridSelection {
readonly attribute unsigned long length;

RowSpecification (page 232) item(in unsigned long index);

boolean isSelected (page 253)(in RowSpecification (page 232) row);

void setSelected (page 253)(in RowSpecification (page 232) row, in boolean
selected);

void selectAll (page 253)();
void invert (page 253)();
void clear (page 253)();

};

Each datagrid (page 229) element must keep track of which rows are currently
selected. Initially no rows are selected, but this can be changed via the methods
described in this section.

The selection of a datagrid (page 229) is represented by its selection DOM
attribute, which must be a DataGridSelection (page 252) object.

DataGridSelection (page 252) objects represent the rows in the selection. In the
selection the rows must be ordered in the natural order of the data provider (and not,
e.g., the rendered order). Rows that are not rendered because one of their ancestors is
closed must share the same selection state as their nearest rendered ancestor. Such
rows are not considered part of the selection for the purposes of iterating over the
selection.

Note: This selection API doesn't allow for hidden rows to be selected
because it is trivial to create a data provider that has infinite depth, which
would then require the selection to be infinite if every row, including every
hidden row, was selected.

252



The length attribute must return the number of rows currently present in the selection.
The item(index) method must return the indexth row in the selection. If the argument
is out of range (less than zero or greater than the number of selected rows minus one),
then it must raise an INDEX_SIZE_ERR exception. [DOM3CORE]

The isSelected() method must return the selected state of the row specified by its
argument. If the specified row exists and is selected, it must return true, otherwise it must
return false.

The setSelected() method takes two arguments, row and selected. When invoked, it
must set the selection state of row row to selected if selected is true, and unselected if it
is false. If row is not a row in the data grid, the method must raise an INDEX_SIZE_ERR

exception. If the specified row is not rendered because one of its ancestors is closed, the
method must do nothing.

The selectAll() method must mark all the rows in the data grid as selected. After a
call to selectAll() (page 253), the length (page 253) attribute will return the
number of rows in the data grid, not counting children of closed rows.

The invert() method must cause all the rows in the selection that were marked as
selected to now be marked as not selected, and vice versa.

The clear() method must mark all the rows in the data grid to be marked as not
selected. After a call to clear() (page 253), the length (page 253) attribute will return
zero.

If the datagrid (page 229) element has a multiple attribute, then the user must be
able to select any number of rows (zero or more). If the attribute is not present, then the
user must only be able to select a single row at a time, and selecting another one must
unselect all the other rows.

Note: This only applies to the user. Scripts can select multiple rows even
when the multiple (page 253) attribute is absent.

Whenever the selection of a datagrid (page 229) changes, whether due to the user
interacting with the element, or as a result of calls to methods of the selection (page
252) object, a select event that bubbles but is not cancelable must be fired on the
datagrid (page 229) element. If changes are made to the selection via calls to the
object's methods during the execution of a script, then the select (page 253) events
must be coalesced into one, which must then be fired when the script execution has
completed.

Note: The DataGridSelection (page 252) interface has no relation to the
Selection (page 354) interface.

3.18.2.9. Columns and captions

This section only applies to interactive user agents.
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Each datagrid (page 229) element must keep track of which columns are currently
being rendered. User agents should initially show all the columns except those with the
initially-hidden (page 236) class, but may allow users to hide or show columns.
User agents should initially display the columns in the order given by the data provider,
but may allow this order to be changed by the user.

If columns are not being used, as might be the case if the data grid is being presented in
an icon view, or if an overview of data is being read in an aural context, then the text of
the first column of each row should be used to represent the row.

If none of the columns have any captions (i.e. if the data provider does not provide a
getCaptionText() (page 233) method), then user agents may avoid showing the
column headers at all. This may prevent the user from performing actions on the
columns (such as reordering them, changing the sort column, and so on).

Note: Whatever the order used for rendering, and irrespective of what
columns are being shown or hidden, the "first column" as referred to in
this specification is always the column with index zero, and the "last
column" is always the column with the index one less than the value
returned by the getColumnCount() (page 233) method of the data
provider.

If a column is sortable (page 245), then the user must be able to invoke it to sort the
data. When the user does so, then the datagrid (page 229) must invoke the data
provider's toggleColumnSortState() (page 234) method, with the column's index
as the only argument. The datagrid (page 229) must then act as if the datagrid

(page 229)'s updateEverything() (page 250) method had been invoked.

3.18.3. The command element

Metadata element (page 82), and strictly inline-level content (page 69).

Contexts in which this element may be used:
In a head (page 82) element.
Where strictly inline-level content (page 69) is allowed.

Content model:
Empty.

Element-specific attributes:
type (page 255)
label (page 255)
icon (page 255)
hidden (page 255)
disabled (page 255)
checked (page 256)
radiogroup (page 256)
default (page 256)
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Also, the title (page 255) attribute has special semantics on this element.

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLCommandElement : HTMLElement (page 28) {

attribute DOMString type (page 256);
attribute DOMString label (page 256);
attribute DOMString icon (page 256);
attribute boolean hidden (page 256);
attribute boolean disabled (page 256);
attribute boolean checked (page 256);
attribute DOMString radiogroup (page 256);
attribute boolean default (page 256);

void click (page 256)(); // shadows HTMLElement (page 28).click() (page 79)
};

The Command (page 262) interface must also be implemented by this element.

The command (page 254) element represents a command that the user can invoke.

The type attribute indicates the kind of command: either a normal command with an
associated action, or a state or option that can be toggled, or a selection of one item
from a list of items.

The attribute's value must be either "command", "checkbox", or "radio", denoting each
of these three types of commands respectively. The attribute may also be omitted if the
element is to represent the first of these types, a simple command.

The label attribute gives the name of the command, as shown to the user.

The title attribute gives a hint describing the command, which might be shown to the
user to help him.

The icon attribute gives a picture that represents the command. If the attribute is
specified, the attribute's value must contain a URI (or IRI).

The hidden attribute is a boolean attribute (page 48) that, if present, indicates that the
command is not relevant and is to be hidden.

The disabled attribute is a boolean attribute (page 48) that, if present, indicates that
the command is not available in the current state.

Note: The distinction between Disabled State (page 261) and Hidden State
(page 261) is subtle. A command should be Disabled if, in the same
context, it could be enabled if only certain aspects of the situation were
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changed. A command should be marked as Hidden if, in that situation, the
command will never be enabled. For example, in the context menu for a
water faucet, the command "open" might be Disabled if the faucet is
already open, but the command "eat" would be marked Hidden since the
faucet could never be eaten.

The checked attribute is a boolean attribute (page 48) that, if present, indicates that the
command is selected.

The radiogroup attribute gives the name of the group of commands that will be
toggled when the command itself is toggled, for commands whose type (page 255)
attribute has the value "radio". The scope of the name is the child list of the parent
element.

If the command (page 254) element is used when generating a context menu, then the
default attribute indicates, if present, that the command is the one that would have
been invoked if the user had directly activated the menu's subject instead of using its
context menu. The default (page 256) attribute is a boolean attribute (page 48).

Need an example that shows an element that, if double-clicked, invokes an
action, but that also has a context menu, showing the various command (page
254) attributes off, and that has a default command.

The type, label, icon, hidden, disabled, checked, radiogroup, and default
DOM attributes must reflect (page 29) their respective namesake content attributes.

The click() method's behaviour depends on the value of the type (page 255)
attribute of the element, as follows:

↪ If the type (page 255) attribute has the value checkbox

If the element has a checked (page 256) attribute, the UA must remove that
attribute. Otherwise, the UA must add a checked (page 256) attribute, with the
literal value checked. The UA must then fire a click event (page 285) at the
element.

↪ If the type (page 255) attribute has the value radio

If the element has a parent, then the UA must walk the list of child nodes of that
parent element, and for each node that is a command (page 254) element, if
that element has a radiogroup (page 256) attribute whose value exactly
matches the current element's (treating missing radiogroup (page 256)
attributes as if they were the empty string), and has a checked (page 256)
attribute, must remove that attribute and fire a click event (page 285) at the
element.

Then, the element's checked (page 256) attribute attribute must be set to the
literal value checked and a click event must be fired at the element.
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↪ Otherwise
The UA must fire a click event (page 285) at the element.

Note: Firing a synthetic click event at the element does not cause any of
the actions described above to happen.

should change all the above so it actually is just trigged by a click event, then we
could remove the shadowing click() method and rely on actual events.

Need to define the command="" attribute

Note: command (page 254) elements are not rendered unless they form
part of a menu (page 257).

3.18.4. The menu element

Block-level element (page 68), and structured inline-level element (page 69).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.
Where structured inline-level elements (page 69) are allowed.

Content model:
Zero or more li (page 118) elements, or inline-level content (page 69) (but not
both).

Element-specific attributes:
type (page 257)
label (page 258)
autosubmit (page 258)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLCommandElement : HTMLElement (page 28) {
attribute DOMString type;
attribute DOMString label;
attribute boolean autosubmit;

};

The menu (page 257) element represents a list of commands.

The type attribute indicates the kind of menu. It must have either the value popup (to
declare a context menu) or the value toolbar (to define a tool bar). The attribute may
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also be omitted, to indicate that the element is merely a list of commands that is neither
declaring a context menu nor defining a tool bar.

If a menu (page 257) element has a type (page 257) attribute with the value popup,
then it represents the commands of a context menu, and the user can only interact with
the commands if that context menu is activated.

If a menu (page 257) element has a type (page 257) attribute with the value toolbar,
then it represents a list of active commands that the user can immediately interact with.

Otherwise, if a menu (page 257) element has no type (page 257) attribute, or if has a
type (page 257) attribute with a value other than popup or toolbar, then it either
represents an unordered list of items (each represented by an li (page 118) element),
each of which represents a command that the user may perform or activate, or, if the
element has no li (page 118) element children, a paragraph (page 72) describing
available commands.

The label attribute gives the label of the menu. It is used by user agents to display
nested menus in the UI. For example, a context menu containing another menu would
use the nested menu's label (page 258) attribute for the submenu's menu label.

The autosubmit attribute is a boolean attribute (page 48) that, if present, indicates that
selections made to form controls in this menu are to result in the control's form being
immediately submitted.

If a change event bubbles through a menu (page 257) element, then, in addition to any
other default action that that event might have, the UA must act as if the following was an
additional default action for that event: if (when it comes time to execute the default
action) the menu (page 257) element has an autosubmit (page 258) attribute, and the
target of the event is an input element, and that element has a type attribute whose
value is either radio or checkbox, and the input element in question has a non-null
form DOM attribute, then the UA must invoke the submit() method of the form

element indicated by that DOM attribute.

3.18.4.1. [TBW] Introduction

This section is non-normative.

...

3.18.4.2. Building menus

A menu consists of a list of zero or more of the following components:

• Commands (page 261), which can be marked as default commands
• Separators
• Other menus (which allows the list to be nested)
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The list corresponding to a particular menu (page 257) element is built by iterating over
its child nodes. For each child node in tree order (page 21), the required behaviour
depends on what the node is, as follows:

↪ An element that defines a command (page 261)
Append the command to the menu. If the element is a command (page 254)
element with a default (page 256) attribute, mark the command as being a
default command.

↪ An hr (page 113) element
↪ An option element that has a value attribute set to the empty string, and has

a disabled attribute, and whose textContent (page 19) consists of a string
of one or more hyphens (U+002D HYPHEN-MINUS)

Append a separator to the menu.

↪ An li (page 118) element
Iterate over the children of the li (page 118) element.

↪ A menu (page 257) element with no label (page 258) attribute
↪ A select element

Append a separator to the menu, then iterate over the children of the menu

(page 257) or select element, then append another separator.

↪ A menu (page 257) element with a label (page 258) attribute
↪ An optgroup element

Append a submenu to the menu, using the value of the element's label
attribute as the label of the menu. The submenu must be constructed by taking
the element and creating a new menu for it using the complete process
described in this section.

↪ Any other node
Ignore (page 22) the node.

Once all the nodes have been processed as described above, the user agent must the
post-process the menu as follows:

1. Any menu item with no label, or whose label is the empty string, must be removed.

2. Any sequence of two or more separators in a row must be collapsed to a single
separator.

3. Any separator at the start or end of the menu must be removed.

3.18.4.3. Context menus

The contextmenu attribute gives the element's context menu (page 259). The value
must be the ID of a menu (page 257) element in the DOM. If the node that would be
obtained by the invoking the getElementById() method using the attribute's value as
the only argument is null or not a menu (page 257) element, then the element has no
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assigned context menu. Otherwise, the element's assigned context menu is the element
so identified.

When an element's context menu is requested (e.g. by the user right-clicking the
element, or pressing a context menu key), the UA must fire a contextmenu event
(page 286) on the element for which the menu was requested.

Note: Typically, therefore, the firing of the contextmenu event will be the
default action of a mouseup or keyup event. The exact sequence of events
is UA-dependent, as it will vary based on platform conventions.

The default action of the contextmenu event depends on whether the element has a
context menu assigned (using the contextmenu (page 259) attribute) or not. If it does
not, the default action must be for the user agent to show its default context menu, if it
has one.

If the element does have a context menu assigned, then the user agent must fire a show

event (page 286) on the relevant menu (page 257) element.

The default action of this event is that the user agent must show a context menu built
(page 258) from the menu (page 257) element.

The user agent may also provide access to its default context menu, if any, with the
context menu shown. For example, it could merge the menu items from the two menus
together, or provide the page's context menu as a submenu of the default menu.

If the user dismisses the menu without making a selection, nothing in particular happens.

If the user selects a menu item that represents a command, then the UA must invoke
that command's Action (page 261).

Context menus must not, while being shown, reflect changes in the DOM; they are
constructed as the default action of the show event and must remain like that until
dismissed.

User agents may provide means for bypassing the context menu processing model,
ensuring that the user can always access the UA's default context menus. For example,
the user agent could handle right-clicks that have the Shift key depressed in such a way
that it does not fire the contextmenu event and instead always shows the default
context menu.

The contextMenu attribute must reflect (page 29) the contextmenu (page 259)
content attribute.

3.18.4.4. Toolbars

Toolbars are a kind of menu that is always visible.

When a menu (page 257) element has a type (page 257) attribute with the value
toolbar, then the user agent must build (page 258) the menu for that menu (page 257)
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element and render it in the document in a position appropriate for that menu (page 257)
element.

The user agent must reflect changes made to the menu (page 257)'s DOM immediately
in the UI.

3.18.5. Commands

A command is the abstraction behind menu items, buttons, and links. Once a command
is defined, other parts of the interface can refer to the same command, allowing many
access points to a single feature to share aspects such as the disabled state.

Commands are defined to have the following facets:

Type
The kind of command: "command", meaning it is a normal command; "radio",
meaning that triggering the command will, amongst other things, set the Checked
State (page 261) to true (and probably uncheck some other commands); or
"checkbox", meaning that triggering the command will, amongst other things, toggle
the value of the Checked State (page 261).

ID
The name of the command, for referring to the command from the markup or from
script. If a command has no ID, it is an anonymous command.

Label
The name of the command as seen by the user.

Hint
A helpful or descriptive string that can be shown to the user.

Icon
A graphical image that represents the action.

Hidden State
Whether the command is hidden or not (basically, whether it should be shown in
menus).

Disabled State
Whether the command can be triggered or not. If the Hidden State (page 261) is
true (hidden) then the Disabled State (page 261) will be true (disabled) regardless.

Checked State
Whether the command is checked or not.

Action
The actual effect that triggering the command will have. This could be a scripted
event handler, a URI to which to navigate, or a form submission.

We could make this into a
string value that acts as a
Hint for why the command
is disabled.

▶

261



Triggers
The list of elements that can trigger the command. The element defining a command
is always in the list of elements that can trigger the command. For anonymous
commands, only the element defining the command is on the list, since other
elements have no way to refer to it.

Commands are represented by elements in the DOM. Any element that can define a
command also implements the Command (page 262) interface:

interface Command {

readonly attribute DOMString commandType (page 262);
readonly attribute DOMString id (page 262);
readonly attribute DOMString label (page 262);
readonly attribute DOMString title (page 262);
readonly attribute DOMString icon (page 263);
readonly attribute boolean hidden (page 263);
readonly attribute boolean disabled (page 263);
readonly attribute boolean checked (page 263);
void click (page 263)();
readonly attribute HTMLCollection (page 31) triggers (page 263);
readonly attribute Command (page 254) command;

};

The Command (page 262) interface is implemented by any element capable of defining a
command. (If an element can define a command, its definition will list this interface
explicitly.) All the attributes of the Command (page 262) interface are read-only. Elements
implementing this interface may implement other interfaces that have attributes with
identical names but that are mutable; in bindings that simply flatten all supported
interfaces on the object, the mutable attributes must shadow the readonly attributes
defined in the Command (page 262) interface.

The commandType attribute must return a string whose value is either "command",
"radio", or "checked", depending on whether the Type (page 261) of the command
defined by the element is "command", "radio", or "checked" respectively. If the element
does not define a command, it must return null.

The id attribute must return the command's ID (page 261), or null if the element does
not define a command or defines an anonymous command (page 261). This attribute will
be shadowed by the id (page 73) DOM attribute on the HTMLElement (page 28)
interface.

The label attribute must return the command's Label (page 261), or null if the element
does not define a command or does not specify a Label (page 261). This attribute will be
shadowed by the label DOM attribute on option and command (page 254) elements.

The title attribute must return the command's Hint (page 261), or null if the element
does not define a command or does not specify a Hint (page 261). This attribute will be
shadowed by the title (page 74) DOM attribute on the HTMLElement (page 28)
interface.
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The icon attribute must return an absolute URI to the command's Icon (page 261). If the
element does not specify an icon, or if the element does not define a command, then the
attribute must return null. This attribute will be shadowed by the icon (page 256) DOM
attribute on command (page 254) elements.

The hidden attribute must return true if the command's Hidden State (page 261) is that
the command is hidden, and false if it is that the command is not hidden. If the element
does not define a command, the attribute must return false. This attribute will be
shadowed by the hidden (page 256) DOM attribute on command (page 254) elements.

The disabled attribute must return true if the command's Disabled State (page 261) is
that the command is disabled, and false if the command is not disabled. This attribute is
not affected by the command's Hidden State (page 261). If the element does not define
a command, the attribute must return false. This attribute will be shadowed by the
disabled attribute on button, input, option, and command (page 254) elements.

The checked attribute must return true if the command's Checked State (page 261) is
that the command is checked, and false if it is that the command is not checked. If the
element does not define a command, the attribute must return false. This attribute will be
shadowed by the checked attribute on input and command (page 254) elements.

The click() method must trigger the Action (page 261) for the command. If the
element does not define a command, this method must do nothing. This method will be
shadowed by the click() (page 79) method on HTML elements, and is included only
for completeness.

The triggers attribute must return a list containing the elements that can trigger the
command (the command's Triggers (page 262)). The list must be live (page 22). While
the element does not define a command, the list must be empty.

The commands attribute of the document's HTMLDocument (page 26) interface must
return an HTMLCollection (page 31) rooted at the Document node, whose filter
matches only elements that define commands and have IDs.

The following elements can define commands: a (page 263), button (page 264),
input (page 264), option (page 265), command (page 266).

3.18.5.1. Using the a element to define a command

An a (page 122) element with an href (page 286) attribute defines a command (page
261).

The Type (page 261) of the command is "command".

The ID (page 261) of the command is the value of the id (page 73) attribute of the
element, if the attribute is present and not empty. Otherwise the command is an
anonymous command (page 261).

The Label (page 261) of the command is the string given by the element's
textContent (page 19) DOM attribute.
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The Hint (page 261) of the command is the value of the title (page 73) attribute of the
a (page 122) element. If the attribute is not present, the Hint (page 261) is the empty
string.

The Icon (page 261) of the command is the absolute URI of the first image in the
element. Specifically, in a depth-first search of the children of the element, the first
element that is img (page 154) element with a src attribute is the one that is used as
the image. The URI must be taken from the element's src attribute. Relative URIs must
be resolved relative to the base URI of the image element. If no image is found, then the
Icon facet is left blank.

The Hidden State (page 261) and Disabled State (page 261) facets of the command are
always false. (The command is always enabled.)

The Checked State (page 261) of the command is always false. (The command is never
checked.)

The Action (page 261) of the command is to fire a click event (page 285) at the
element.

3.18.5.2. Using the button element to define a command

A button element always defines a command (page 261).

The Type (page 261), ID (page 261), Label (page 261), Hint (page 261), Icon (page
261), Hidden State (page 261), Checked State (page 261), and Action (page 261) facets
of the command are determined as for a elements (page 263) (see the previous section).

The Disabled State (page 261) of the command mirrors the disabled state of the button.
Typically this is given by the element's disabled attribute, but certain button types
become disabled at other times too (for example, the move-up button type is disabled
when it would have no effect).

3.18.5.3. Using the input element to define a command

An input element whose type attribute is one of submit, reset, button, radio,
checkbox, move-up, move-down, add, and remove defines a command (page 261).

The Type (page 261) of the command is "radio" if the type attribute has the value
radio, "checkbox" if the type attribute has the value checkbox, and "command"
otherwise.

The ID (page 261) of the command is the value of the id (page 73) attribute of the
element, if the attribute is present and not empty. Otherwise the command is an
anonymous command (page 261).

The Label (page 261) of the command depends on the Type of the command:
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If the Type (page 261) is "command", then it is the string given by the value attribute, if
any, and a UA-dependent value that the UA uses to label the button itself if the attribute
is absent.

Otherwise, the Type (page 261) is "radio" or "checkbox". If the element has a label

element associated with it, the textContent (page 19) of the first such element is the
Label (page 261) (in DOM terms, this the string given by
element.labels[0].textContent). Otherwise, the value of the value attribute, if
present, is the Label (page 261). Otherwise, the Label (page 261) is the empty string.

The Hint (page 261) of the command is the value of the title (page 73) attribute of the
input element. If the attribute is not present, the Hint (page 261) is the empty string.

There is no Icon (page 261) for the command.

The Hidden State (page 261) of the command is always false. (The command is never
hidden.)

The Disabled State (page 261) of the command mirrors the disabled state of the control.
Typically this is given by the element's disabled attribute, but certain input types
become disabled at other times too (for example, the move-up input type is disabled
when it would have no effect).

The Checked State (page 261) of the command is true if the command is of Type (page
261) "radio" or "checkbox" and the element has a checked attribute, and false
otherwise.

The Action (page 261) of the command is to fire a click event (page 285) at the
element.

3.18.5.4. Using the option element to define a command

An option element with an ancestor select element and either no value attribute or
a value attribute that is not the empty string defines a command (page 261).

The Type (page 261) of the command is "radio" if the option's nearest ancestor
select element has no multiple attribute, and "checkbox" if it does.

The ID (page 261) of the command is the value of the id (page 73) attribute of the
element, if the attribute is present and not empty. Otherwise the command is an
anonymous command (page 261).

The Label (page 261) of the command is the value of the option element's label
attribute, if there is one, or the value of the option element's textContent (page 19)
DOM attribute if it doesn't.

The Hint (page 261) of the command is the string given by the element's title (page
73) attribute, if any, and the empty string if the attribute is absent.

There is no Icon (page 261) for the command.
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The Hidden State (page 261) of the command is always false. (The command is never
hidden.)

The Disabled State (page 261) of the command is true (disabled) if the element has a
disabled attribute, and false otherwise.

The Checked State (page 261) of the command is true (checked) if the element's
selected DOM attribute is true, and false otherwise.

The Action (page 261) of the command depends on its Type (page 261). If the
command is of Type (page 261) "radio" then this must set the selected DOM attribute
of the option element to true, otherwise it must toggle the state of the selected DOM
attribute (set it to true if it is false and vice versa). Then a change event must be fired
(page 286) on the option element's nearest ancestor select element (if there is one),
as if the selection had been changed directly.

3.18.5.5. Using the command element to define a command

A command (page 254) element defines a command (page 261).

The Type (page 261) of the command is "radio" if the command (page 254)'s type
(page 255) attribute is "radio", "checkbox" if the attribute's value is "checkbox", and
"command" otherwise.

The ID (page 261) of the command is the value of the id (page 73) attribute of the
element, if the attribute is present and not empty. Otherwise the command is an
anonymous command (page 261).

The Label (page 261) of the command is the value of the element's label (page 255)
attribute, if there is one, or the empty string if it doesn't.

The Hint (page 261) of the command is the string given by the element's title (page
255) attribute, if any, and the empty string if the attribute is absent.

The Icon (page 261) for the command is the absolute URI resulting from resolving the
value of the element's icon (page 255) attribute as a URI relative to the element's base
URI. If the element has no icon (page 255) attribute then the command has no Icon
(page 261).

The Hidden State (page 261) of the command is true (hidden) if the element has a
hidden (page 255) attribute, and false otherwise.

The Disabled State (page 261) of the command is true (disabled) if the element has
either a disabled (page 255) attribute or a hidden (page 255) attribute (or both), and
false otherwise.

The Checked State (page 261) of the command is true (checked) if the element has a
checked (page 256) attribute, and false otherwise.
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The Action (page 261) of the command is to invoke the behaviour described in the
definition of the click() (page 256) method of the HTMLCommandElement (page 257)
interface.

3.19. Miscellaneous elements

3.19.1. The legend element

Contexts in which this element may be used:
As the first child of a fieldset element.
As the first child of a details (page 228) element.
As a child of a figure (page 153) element, if there are no other legend (page
267) element children of that element.

Content model:
If used as a child of a fieldset or details (page 228) element: significant
(page 69) strictly inline-level content (page 69)
If used as a child of a figure (page 153) element: inline-level content (page 69).

Element-specific attributes:
None.

Predefined classes that apply to this element:
None.

DOM interface:
No difference from HTMLElement (page 28).

The legend (page 267) element represents a title or explanatory caption for the rest of
the contents of the legend (page 267) element's parent element.

3.19.2. The div element

Block-level element (page 68).

Contexts in which this element may be used:
Where block-level elements (page 68) are expected.

Content model:
Zero or more style (page 93) elements, followed by either zero or more
block-level elements (page 68), or inline-level content (page 69) (but not both).

Element-specific attributes:
None.

Predefined classes that apply to this element:
error (page 77), example (page 77), issue (page 77), note (page 77),
search (page 77), warning (page 78)
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DOM interface:
No difference from HTMLElement (page 28).

The div (page 267) element represents nothing at all. It can be used with the class

(page 75), lang (page 74)/xml:lang (page 74), and title (page 73) attributes to
mark up semantics common to a group of consecutive elements.
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4. Browsing contexts

This part of the spec is under heavy development right now. It needs massive editorial
work. The actual normative rules won't change (at least not as part of the reorg),
they'll just be made clearer.

4.1. Navigating across documents

This section only applies to Web browsers.

Certain actions cause the browsing context (page 20) to navigate. For example,
following a hyperlink (page 287), form submission, and the window.open() and
location.assign() (page 307) methods can all cause a browsing context to
navigate. A user agent may also provide various ways for the user to explicitly cause a
browsing context to navigate.

When a browsing context is navigated, the user agent must follow the following steps:

1. Cancel any existing attempt to navigate the browsing context to a new URI.

2. If the new resource is the same as the current resource, but a fragment identifier
has been specified, then scroll the document to the specified element (page 277)
and abort these steps.

3. If the new resource is to be handled by displaying some sort of inline content, e.g.
an error message because the specified scheme is not one of the supported
protocols, or an inline prompt to allow the user to select a registered handler (page
308) for the given scheme, then display the inline content (page 277) and abort
these steps.

4. If the new resource is to be handled using a mechanism that does not affect the
browsing context, then abort these steps and proceed with that mechanism instead.

5. Start fetching the specified resource, as appropriate (e.g. performing an HTTP GET
or POST operation, or reading the file from disk, or executing script in the case of a
javascript: URI (page 280)). If this results in a redirect, return to step 2 with the
new resource.

6. Wait for one or more bytes to be available or for the user agent to establish that the
resource in question is empty. During this time, the user agent may allow the user to
cancel this navigation attempt or start other navigation attempts.

7. If the document's out-of-band metadata (e.g. HTTP headers), not counting any type
information (such as the Content-Type HTTP header), requires some sort of
processing that will not affect the browsing context, then perform that processing
and abort these steps.

269



Such processing might be triggered by, amongst other things, the
following:

• HTTP status codes (e.g. 204 No Content or 205 Reset Content)
• HTTP Content-Disposition headers
• Network errors

8. Let type be the sniffed type of the resource (page 271).

9. If the user agent has been configured to process resources of the given type using
some mechanism other than native rendering, then skip this step. Otherwise, if the
type is one of the following types, jump to the appropriate entry in the following list,
and process the resource as described there:

↪ "text/html"
Follow the steps given in the HTML document (page 276) section, and
abort these steps.

↪ Any type ending in "+xml"
↪ "application/xml"
↪ "text/xml"

Follow the steps given in the XML document (page 276) section. If that
section determines that the content is not to be displayed as a generic XML
document, then proceed to the next step in this overall set of steps.
Otherwise, abort these steps.

↪ "text/plain"
Follow the steps given in the plain text file (page 277) section, and abort
these steps.

10. If, given type, the new resource is to be handled by displaying some sort of inline
content, e.g. a native rendering of the content, a full-page plugin, an error message
because the specified type is not supported, or an inline prompt to allow the user to
select a registered handler (page 308) for the given type, then display the inline
content (page 277) and abort these steps.

11. Otherwise, the document's type is such that the resource will not affect the browsing
context, e.g. because the resource is to be handed to an external application.
Process the resource appropriately.

Some of the sections below, to which the above algorithm defers in certain cases,
require the user agent to update the session history with the new page. When a user
agent is required to do this, it must follows these steps. From the point of view of any
script, these steps must occur atomically.

1. If appropriate, update the current entry (page 303) in the browsing context (page
20)'s Document object's History (page 303) object to reflect any state that the
user agent wishes to persist.
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For example, some user agents might want to persist the scroll position, or the
values of form controls.

2. Remove all the entries after the current entry (page 303) in the browsing context
(page 20)'s Document object's History (page 303) object.

Note: This doesn't necessarily have to affect (page 307) the user
agent's user interface.

3. Append a new entry at the end of the History (page 303) object representing the
new resource and its Document object and related state.

4. Traverse the history (page 304) to the new entry.

5. If the navigation was initiated with replacement enabled, remove the entry that was
the current entry (page 303) before the method call (thus simply causing the
previous page to be replaced by the new one). Navigation is initiated with
replacement disabled unless it is stated otherwise.

4.1.1. Determining the type of a new resource in a browsing context

⚠Warning! It is imperative that the rules in this section be followed
exactly. When two user agents use different heuristics for content type
detection, security problems can occur. For example, if a server believes a
contributed file to be an image (and thus benign), but a Web browser
believes the content to be HTML (and thus capable of executing script),
the end user can be exposed to malicious content, making the user
vulnerable to cookie theft attacks and other cross-site scripting attacks.

The sniffed type of a resource must be found as follows:

1. If the resource was fetched over an HTTP protocol, and there is no HTTP
Content-Encoding header, but there is an HTTP Content-Type header and it has a
value whose bytes exactly match one of the following three lines:

Bytes in Hexadecimal Textual representation

74 65 78 74 2f 70 6c 61 69 6e text/plain

74 65 78 74 2f 70 6c 61 69 6e 3b 20 63
68 61 72 73 65 74 3d 49 53 4f 2d 38 38
35 39 2d 31

text/plain; charset=ISO-8859-1

74 65 78 74 2f 70 6c 61 69 6e 3b 20 63
68 61 72 73 65 74 3d 69 73 6f 2d 38 38
35 39 2d 31

text/plain; charset=iso-8859-1

...then jump to the text or binary (page 272) section below.
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2. Let official type be the type given by the Content-Type metadata for the resource (in
lowercase, ignoring any parameters). If there is no such type, jump to the unknown
type (page 272) step below.

3. If official type ends in "+xml", or if it is either "text/xml" or "application/xml", then the
the sniffed type of the resource is official type; return that and abort these steps.

4. If official type is an image type supported by the user agent (e.g. "image/png",
"image/gif", "image/jpeg", etc), then jump to the images (page 274) section below.

5. If official type is "text/html", then jump to the feed or HTML (page 274) section
below.

6. Otherwise, the sniffed type of the resource is official type.

4.1.1.1. Content-Type sniffing: text or binary

1. The user agent may wait for 512 or more bytes of the resource to be available.

2. Let n be the smaller of either 512 or the number of bytes already available.

3. If n is 4 or more, and the first bytes of the file match one of the following byte sets:

Bytes in Hexadecimal Description

FE FF UTF-16BE BOM or UTF-32LE BOM

FF FE UTF-16LE BOM

00 00 FE FF UTF-32BE BOM

EF BB BF UTF-8 BOM

...then the sniffed type of the resource is "text/plain".

4. Otherwise, if any of the first n bytes of the resource are in one of the following byte
ranges:

• 0x00 - 0x08
• 0x0E - 0x1A
• 0x1C - 0x1F

...then the sniffed type of the resource is "application/octet-stream".

5. Otherwise, the sniffed type of the resource is "text/plain".

4.1.1.2. Content-Type sniffing: unknown type

1. The user agent may wait for 512 or more bytes of the resource to be available.

2. Let stream length be the smaller of either 512 or the number of bytes already
available.

3. For each row in the table below:
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1. Let pattern length be the length of the pattern (number of bytes described by
the cell in the second column of the row).

2. If pattern length is smaller than stream length then skip this row.

3. Apply the "and" operator to the first pattern length bytes of the resource and the
given mask (the bytes in the cell of first column of that row), and let the result be
the data.

4. If the bytes of the data matches the given pattern bytes exactly, then the sniffed
type of the resource is the type given in the cell of the third column in that row;
abort these steps.

4. As a last-ditch effort, jump to the text or binary (page 272) section.

Bytes in Hexadecimal Sniffed type Comment
Mask Pattern

FF FF DF DF
DF DF DF DF
DF FF DF DF
DF DF

3C 31 44 4F 43
54 59 50 45 20
48 54 4D 4C

text/html The string "<!DOCTYPE HTML" in
US-ASCII or compatible encodings,
case-insensitively.

FF DF DF DF
DF

3C 48 54 4D 4C text/html The string "<HTML" in US-ASCII or
compatible encodings,
case-insensitively.

FF FF FF FF
FF

25 50 44 46 2D application/pdf The string "%PDF-", the PDF
signature.

FF FF FF FF
FF FF FF FF
FF FF FF

25 21 50 53 2D
41 64 6F 62 65
2D

application/
postscript

The string "%!PS-Adobe-", the
PostScript signature.

FF FF FF FF
FF FF

47 49 46 38 37
61

image/gif The string "GIF87a", a GIF
signature.

FF FF FF FF
FF FF

47 49 46 38 39
61

image/gif The string "GIF89a", a GIF
signature.

FF FF FF FF
FF FF FF FF

89 50 4E 47 0D
0A 1A 0A

image/png The PNG signature.

FF FF FF FF D8 FF image/jpeg A JPEG SOI marker followed by the
first byte of another marker.

User agents may support further types if desired, by implicitly adding to the above table.
However, user agents should not use any other patterns for types already mentioned in
the table above, as this could then be used for privilege escalation (where, e.g., a server
uses the above table to determine that content is not HTML and thus safe from XSS
attacks, but then a user agent detects it as HTML anyway and allows script to execute).
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4.1.1.3. Content-Type sniffing: image

If the first bytes of the file match one of the byte sequences in the first columns of the
following table, then the sniffed type of the resource is the type given in the
corresponding cell in the second column on the same row:

Bytes in Hexadecimal Sniffed type Comment

47 49 46 38 37 61 image/gif The string "GIF87a", a GIF signature.

47 49 46 38 39 61 image/gif The string "GIF89a", a GIF signature.

89 50 4E 47 0D 0A 1A 0A image/png The PNG signature.

FF D8 FF image/jpeg A JPEG SOI marker followed by the first byte
of another marker.

User agents must ignore any rows for image types that they do not support.

Otherwise, the sniffed type of the resource is the same as its official type.

4.1.1.4. Content-Type sniffing: feed or HTML

1. The user agent may wait for 512 or more bytes of the resource to be available.

2. Let s be the stream of bytes, and let s[i] represent the byte in s with position i,
treating s as zero-indexed (so the first byte is at i=0).

3. If at any point this algorithm requires the user agent to determine the value of a byte
in s which is not yet available, or which is past the first 512 bytes of the resource, or
which is beyond the end of the resource, the user agent must stop this algorithm,
and assume that the sniffed type of the resource is "text/html".

Note: User agents are allowed, by the first step of this algorithm, to
wait until the first 512 bytes of the resource are available.

4. Initialise pos to 0.

5. Examine s[pos].

↪ If it is 0x09 (ASCII tab), 0x20 (ASCII space), 0x0A (ASCII LF), or 0x0D
(ASCII CR)

Increase pos by 1 and repeat this step.

↪ If it is 0x3C (ASCII "<")
Increase pos by 1 and go to the next step.

↪ If it is anything else
The sniffed type of the resource is "text/html". Abort these steps.

6. If the bytes with positions pos to pos+2 in s are exactly equal to 0x21, 0x2D, 0x2D
respectively (ASCII for "!--"), then:
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1. Increase pos by 3.

2. If the bytes with positions pos to pos+2 in s are exactly equal to 0x2D, 0x2D,
0x3E respectively (ASCII for "-->"), then increase pos by 3 and jump back to
the previous step (step 6) in the overall algorithm in this section.

3. Otherwise, increase pos by 1.

4. Otherwise, return to step 2 in these substeps.

7. If s[pos] is 0x21 (ASCII "!"):

1. Increase pos by 1.

2. If s[pos] equal 0x3E, then increase pos by 1 and jump back to step 6 in the
overall algorithm in this section.

3. Otherwise, return to step 1 in these substeps.

8. If s[pos] is 0x3F (ASCII "?"):

1. Increase pos by 1.

2. If s[pos] and s[pos+1] equal 0x3F and 0x3E respectively, then increase pos by
1 and jump back to step 6 in the overall algorithm in this section.

3. Otherwise, return to step 1 in these substeps.

9. Otherwise, if the bytes in s starting at pos match any of the sequences of bytes in
the first column of the following table, then the user agent must follow the steps
given in the corresponding cell in the second column of the same row.

Bytes in
Hexadecimal

Requirement Comment

72 73 73 The sniffed type of the resource is
"application/rss+xml"; abort these
steps

The three ASCII
characters "rss"

66 65 65 64 The sniffed type of the resource is
"application/atom+xml"; abort these
steps

The four ASCII
characters "feed"

72 64 66 3A 52 44
46

Continue to the next step in this
algorithm

The ASCII characters
"rdf:RDF"

If none of the byte sequences above match the bytes in s starting at pos, then the
sniffed type of the resource is "text/html". Abort these steps.

10. If, before the next ">", you find two xmlns* attributes with http://www.w3.org/1999/
02/22-rdf-syntax-ns# and http://purl.org/rss/1.0/ as the namespaces, then the
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sniffed type of the resource is "application/rss+xml", abort these steps. (maybe
we only need to check for http://purl.org/rss/1.0/ actually)

11. Otherwise, the sniffed type of the resource is "text/html".

Note: For efficiency reaons, implementations may wish to implement this
algorithm and the algorithm for detecting the character encoding of HTML
documents in parallel.

4.1.2. [TBW] Page load processing model for HTML files

When an HTML document is to be loaded in a browsing context (page 20), the user
agent must create a Document object, mark it as being an HTML document, create an
HTML parser (page 392), associate it with the document, and begin to use the bytes
provided for the document as the input stream (page 394) for that parser.

Note: The input stream (page 394) converts bytes into characters for use
in the tokeniser. This process relies, in part, on character encoding
information found in the real Content-Type metadata of the resource; the
"sniffed type" is not used for this purpose.

When no more bytes are available, an EOF character is implied, which eventually
causes a load event to be fired.

After creating the Document object, but potentially before the page has finished parsing,
the user agent must update the session history with the new page (page 270).

4.1.3. [TBW] Page load processing model for XML files

When faced with displaying an XML file inline, user agents must first create a Document

object, following the requirements of the XML and Namespaces in XML
recommendations, RFC 3023, DOM3 Core, and other relevant specifications. [XML]
[XMLNS] [RFC3023] [DOM3CORE]

The actual HTTP headers and other metadata, not the headers as mutated or implied by
the algorithms given in this specification, are the ones that must be used when
determining the character encoding according to the rules given in the above
specifications.

User agents may examine the namespace of the root Element node of this Document
object to perform namespace-based dispatch to alternative processing tools, e.g.
determining that the content is actually a syndication feed and passing it to a feed
handler. If such processing is to take place, abort the steps in this section, and jump to
step 10 in the navigate (page 269) steps above.

Otherwise, then, with the newly created Document, the user agents must update the
session history with the new page (page 270). User agents may do this before the
complete document has been parsed (thus achieving incremental rendering).
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Error messages from the parse process (e.g. namespace well-formedness errors) may
be reported inline by mutating the Document.

4.1.4. [TBW] Page load processing model for text files

When a plain text document is to be loaded in a browsing context (page 20), the user
agent should create a Document object, mark it as being an HTML document, create an
HTML parser (page 392), associate it with the document, act as if the tokeniser had
emitted a start tag token with the tag name "pre", set the tokenisation (page 400) stage's
content model flag (page 400) to PLAINTEXT, and begin to pass the stream of
characters in the plain text document to that tokeniser.

The rules for how to convert the bytes of the plain text document into actual characters
are defined in RFC 2046, RFC 2646, and subsequent versions thereof. [RFC2046]
[RFC2646]

When no more character are available, an EOF character is implied, which eventually
causes a load event to be fired.

After creating the Document object, but potentially before the page has finished parsing,
the user agent must update the session history with the new page (page 270).

4.1.5. Scrolling to a fragment identifier

When a user agent is supposed to scroll to a particular element, it may change the
scrolling position of the document as desired, or perform any other relevant action.

how to get a "particular element" from a frag id -- id="", name="", XPointer, etc;
missing IDs (e.g. the infamous "#top")

Then, the user agent must update the session history with the new page (page 270),
where "the new page" has the same Document as before, but potentially has a different
scroll position.

4.1.6. Displaying inline content that doesn't have a DOM

display a user agent page inline, update history object

4.1.7. [TBW] Content-Type metadata

This is a placeholder section for some text that will define exactly how to handle
Content-Type headers for top-level browsing contexts, for <img>, <embed>, <object>,
etc; and will cover things like the fact that on some operating systems the extension of
a URI determines the Content-Type for file:// content, or something.
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4.2. [WIP] Scripting

Here are some of the things I think we should list:

• onload/onunload events

• alert() blocks scripts, even those on timeouts or readystatechange events

4.2.1. Running executable code

Various mechanisms can cause author-provided executable code to run in the context of
a document. These mechanisms include, but are probably not limited to:

• Processing of script (page 220) elements.

• Processing of inline javascript: URIs (e.g. the src (page 155) attribute of img
(page 154) elements, or an @import rule in a CSS style (page 93) element
block).

• Event handlers, whether registered through the DOM using
addEventListener(), by explicit event handler content attributes (page 282), by
event handler DOM attributes (page 282), or otherwise.

• Processing of technologies like XBL or SVG that have their own scripting features.

User agents may provide a mechanism to enable or disable the execution of
author-provided code. When the user agent is configured such that author-provided code
does not execute, or if the user agent is implemented so as to never execute
author-provided code, it is said that scripting is disabled. When author-provided code
does execute, scripting is enabled. A user agent with scripting disabled is a user agent
with no scripting support (page 16) for the purposes of conformance.

4.2.2. Scripting contexts

Each Document in a browsing context (page 20) has an associated scripting context.

clean up this document regarding where exactly scripts run -- some parts say global
scope, some say scripting context, some refer to browsing contexts...

4.2.3. Threads

Each scripting context (page 278) is defined as having a list of zero or more reachable
scripting contexts. These are:

• All the scripting contexts (page 278) of all the Documents in each nested browsing
context (page 20) inside the scripting context's Document.
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• The scripting context (page 278) of the Document that contains the Document's
browsing context (page 20).

• All the scripting contexts (page 278) of all the Documents associated with any
top-level browsing contexts (page 20) that were opened from a Document

associated with the scripting context (page 278)'s Document's browsing context
(page 20).

• All the scripting contexts (page 278) of all the Documents associated with the
top-level browsing contexts (page 20) of the browsing context (page 20) of the
WindowHTML (page 301) object returned by the scripting context (page 278)'s
Document's WindowHTML (page 301)'s opener (page 328) attribute.

The transitive closure of all the scripting contexts (page 278) that are reachable scripting
contexts (page 278) consists of a unit of related scripting contexts.

All the executable code in a unit of related scripting contexts (page 279) must execute
on a single conceptual thread. The dispatch of events fired by the user agent (e.g. in
response to user actions or network activity) and the execution of any scripts associated
with timers must be serialised so that for each unit of related scripting contexts (page
279) there is only one script being executed at a time.

4.2.4. [WIP] The security model

Web browser vendors should implement this security model, to provide Web authors with
a consistent development environment that is interoperable across different
implementations. However, implementors may use any other model if desired.

The security model for Web browsers has grown organically with the development of the
Web, and as such is somewhat unique.

Access to resources and APIs is granted or denied to Web content (scripts, elements,
etc) based on the content's origin. For historical reasons, the mechanism for
determining the origin (page 279) of a particular piece of content depends on the nature
of the content.

...

The domain of a Document object is the domain given by the hostname attribute of
the Location (page 306) object returned by the Document object's location (page

306) attribute, if that hostname attribute is not the empty string. If it is, the domain of

the document is UA-defined. For now. Need to be more correct about where

.location is defined. It's not actually on Document.
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The domain of a script is the domain of the Document object (page 279) that is
returned by the document attribute of the script's primary Window object (in UAs that
implement ECMAScript, that is the global scope (page 301) object).

The string representing the script's domain in IDNA format is obtained as follows:
take the script's domain (page 280) and apply the IDNA ToASCII algorithm and then the
IDNA ToUnicode algorithm to each component of the domain name (with both the
AllowUnassigned and UseSTD3ASCIIRules flags set both times). [RFC3490] If ToASCII
fails to convert one of the components of the string, e.g. because it is too long or
because it contains invalid characters, then the string representing the script's domain in
IDNA format cannot be obtained. (ToUnicode is defined to never fail.)

This section is so not complete.

Define security exception.

4.2.5. The javascript: protocol

A URI using the javascript: protocol must, if evaluated, be evaluated using the
in-context evaluation operation defined for javascript: URIs. [JSURI]

When a browsing context is navigated (page 269) to a javascript: URI, the
dereference context must be the global scope (page 301) of the browsing context (page
20) being navigated. Otherwise, the dereference context must be global scope (page
301) of the browsing context (page 20) to which belongs the element for which the URI
is being dereferenced.

URIs using the javascript: protocol should be evaluated when the resource for that
URI is needed, unless scripting is disabled (page 278) or the Document corresponding
to the dereference context (as defined above), if any, has designMode (page 334)
enabled.

If the dereference by-product is void (there is no return value), then the URI must be
treated in a manner equivalent to an HTTP resource with an HTTP 204 No Content
response.

Otherwise, the URI must be treated in a manner equivalent to an HTTP resource with a
200 OK response whose Content-Type metadata is text/html and whose response
body is the dereference by-product, converted to a string value.

Note: Certain contexts, in particular img (page 154) elements, ignore the
Content-Type metadata.

So for example a javascript: URI for a src (page 155) attribute of an img

(page 154) element would be evaluated in the context of the page as soon as the
attribute is set; it would then be sniffed to determine the image type and decoded as
an image.
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A javascript: URI in an href attribute of an a (page 122) element would only
be evaluated when the link was followed (page 287).

The src (page 157) attribute of an iframe (page 157) element would be evaluated
in the context of the iframe (page 157)'s own browsing context (page 20); once
evaluated, its return value (if it was not void) would replace that browsing context
(page 20)'s document, thus changing the variables visible in the global scope (page
301) of that browsing context (page 20).

4.2.6. [SCS] Runtime script errors

Whenever a runtime script error occurs in one of the scripts associated with the
document, the value of the onerror attribute of the window object (defined on the
WindowHTML (page 301) interface of that object), must be processed, as follows:

↪ If the value is a function
The function referenced by the onerror (page 281) attribute must be invoked
with three arguments, before notifying the user of the error.

The three arguments passed to the function are all DOMStrings; the first must
give the message that the UA is considering reporting, the second must give
the URI to the resource in which the error occured, and the third must give the
line number in that resource on which the error occured.

If the function returns false, then the error should not be reported to the user.
Otherwise, if the function returns another value (or does not return at all), the
error should be reported to the user.

Any exceptions thrown or errors caused by this function must be reported to the
user immediately after the error that the function was called for, without calling
the function again.

↪ If the value is null

The error should not reported to the user.

↪ If the value is anything else
The error should be reported to the user.

The initial value of onerror (page 281) must be undefined.

4.2.7. Events

4.2.7.1. Event handler attributes

HTML elements (page 21) can have event handler attributes specified. These act as
bubbling event listeners for the element on which they are specified.

Each event handler attribute has two parts, an event handler content attribute (page
282) and an event handler DOM attribute (page 282). Event handler attributes must
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initially be set to null. When their value changes (through the changing of their event
handler content attribute or their event handler DOM attribute), they will either be null, or
have an EventListener object assigned to them.

In the ECMAScript DOM binding, the ECMAScript native Function type must
implement the EventListener interface such that invoking the handleEvent()

method of that interface on the object from another language binding invokes the
function itself, with the event argument as its only argument. In the ECMAScript binding
itself, however, the handleEvent() method of the interface is not directly accessible on
Function objects. Such functions, when invoked, must be called in the global scope
(page 301). If the function returns false, the event's preventDefault() method must
then invoked. Exception: for historical reasons, for the HTML mouseover event, the
preventDefault() method must be called when the function returns true instead.

Event handler content attributes, when specified, must contain valid ECMAScript code
matching the ECMAScript FunctionBody production. [ECMA262]

When an event handler content attribute is set, its new value must be interpreted as the
body of an anonymous function with a single argument called event, with the new
function's scope chain being linked from the activation object of the handler, to the
element, to the element's form element if it is a form control, to the Document object, to
the global scope (page 301). The function's this parameter must be the Element

object representing the element. The resulting function must then be set as the value of
the corresponding event handler attribute, and the new value must be set as the value of
the content attribute. If the given function body fails to compile, then the corresponding
event handler attribute must be set to null instead (the content attribute must still be
updated to the new value, though).

Note: See ECMA262 Edition 3, sections 10.1.6 and 10.2.3, for more details
on activation objects. [ECMA262]

Event handler DOM attributes, on setting, must set the corresponding event handler
attribute to their new value, and on getting, must return whatever the current value of the
corresponding event handler attribute is (possibly null).

The following are the event handler attributes that must be supported by all HTML
elements (page 21), as both content attributes and DOM attributes:

onabort

Must be invoked whenever an abort event is targeted at or bubbles through the
element.

onbeforeunload

Must be invoked whenever a beforeunload event is targeted at or bubbles
through the element.

How do we allow non-JS
event handlers?

▶
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onblur

Must be invoked whenever a blur event is targeted at or bubbles through the
element.

onchange

Must be invoked whenever a change event is targeted at or bubbles through the
element.

onclick

Must be invoked whenever a click event is targeted at or bubbles through the
element.

oncontextmenu

Must be invoked whenever a contextmenu event is targeted at or bubbles through
the element.

ondblclick

Must be invoked whenever a dblclick event is targeted at or bubbles through the
element.

ondrag

Must be invoked whenever a drag (page 337) event is targeted at or bubbles
through the element.

ondragend

Must be invoked whenever a dragend (page 338) event is targeted at or bubbles
through the element.

ondragenter

Must be invoked whenever a dragenter (page 338) event is targeted at or bubbles
through the element.

ondragleave

Must be invoked whenever a dragleave (page 338) event is targeted at or bubbles
through the element.

ondragover

Must be invoked whenever a dragover (page 338) event is targeted at or bubbles
through the element.

ondragstart

Must be invoked whenever a dragstart (page 337) event is targeted at or bubbles
through the element.

ondrop

Must be invoked whenever a drop (page 338) event is targeted at or bubbles
through the element.
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onerror

Must be invoked whenever an error event is targeted at or bubbles through the
element.

onfocus

Must be invoked whenever a focus event is targeted at or bubbles through the
element.

onkeydown

Must be invoked whenever a keydown event is targeted at or bubbles through the
element.

onkeypress

Must be invoked whenever a keypress event is targeted at or bubbles through the
element.

onkeyup

Must be invoked whenever a keyup event is targeted at or bubbles through the
element.

onload

Must be invoked whenever a load event is targeted at or bubbles through the
element.

onmessage

Must be invoked whenever a message (page 359) event is targeted at or bubbles
through the element.

onmousedown

Must be invoked whenever a mousedown event is targeted at or bubbles through
the element.

onmousemove

Must be invoked whenever a mousemove event is targeted at or bubbles through
the element.

onmouseout

Must be invoked whenever a mouseout event is targeted at or bubbles through the
element.

onmouseover

Must be invoked whenever a mouseover event is targeted at or bubbles through
the element.

onmouseup

Must be invoked whenever a mouseup event is targeted at or bubbles through the
element.
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onmousewheel

Must be invoked whenever a mousewheel event is targeted at or bubbles through
the element.

onresize

Must be invoked whenever a resize event is targeted at or bubbles through the
element.

onscroll

Must be invoked whenever a scroll event is targeted at or bubbles through the
element.

onselect

Must be invoked whenever a select (page 253) event is targeted at or bubbles
through the element.

onsubmit

Must be invoked whenever a submit event is targeted at or bubbles through the
element.

onunload

Must be invoked whenever an unload event is targeted at or bubbles through the
element.

When scripting is disabled (page 278), event handler attributes must do nothing.

When scripting is enabled (page 278), all event handler attributes on an element,
whether set to null or to a function, must be registered as event listeners on the element,
as if the addEventListenerNS() method on the Element object's EventTarget
interface had been invoked when the element was created, with the event type (type
argument) equal to the type described for the event handler attribute in the list above, the
namespace (namespaceURI argument) set to null, the listener set to be a target and
bubbling phase listener (useCapture argument set to false), the event group set to the
default group (evtGroup argument set to null), and the event listener itself (listener
argument) set to do nothing while the event handler attribute is null, and set to invoke the
function associated with the event handler attribute otherwise.

4.2.7.2. Event firing

maybe _this_ should be moved higher up (terminology? conformance? DOM?)

Certain operations and methods are defined as firing events on elements. For example,
the click() (page 79) method on the HTMLElement (page 28) interface is defined as
firing a click event on the element. [DOM3EVENTS]

Firing a click event means that a click event with no namespace, which bubbles
and is cancelable, and which uses the MouseEvent interface, must be dispatched at the
given element. The event object must have its screenX, screenY, clientX, clientY,
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and button attributes set to 0, its ctrlKey, shiftKey, altKey, and metaKey

attributes set according to the current state of the key input device, if any (false for any
keys that are not available), its detail attribute set to 1, and its relatedTarget
attribute set to null. The getModifierState() method on the object must return
values appropriately describing the state of the key input device at the time the event is
created.

Firing a change event means that a change event with no namespace, which bubbles
but is not cancelable, and which uses the Event interface, must be dispatched at the
given element. The event object must have its detail attribute set to 0.

Firing a contextmenu event means that a contextmenu event with no namespace,
which bubbles and is cancelable, and which uses the Event interface, must be
dispatched at the given element. The event object must have its detail attribute set to
0.

Firing a simple event called e means that an event with the name e, with no
namespace, which does not bubble but is cancelable, and which uses the Event

interface, must be dispatched at the given element.

Firing a show event means firing a simple event called show (page 286). Firing a load
event means firing a simple event called load (page 286). Firing an error event
means firing a simple event called error (page 286).

The default action of these event is to do nothing unless otherwise stated.

If you dispatch a custom "click" event at an element that would normally have default
actions, should they get triggered? If so, we need to go through the entire spec and
make sure that any default actions are defined in terms of any event of the right type
on that element, not those that are dispatched in expected ways.

4.3. Links

4.3.1. Hyperlink elements

The a (page 122), area (page 195), and link (page 84) elements can, in certain
situations described in the definitions of those elements, represent hyperlinks.

The href attribute on a hyperlink element must have a value that is a URI (or IRI). This
URI is the destination resource of the hyperlink.

The href (page 286) attribute on a (page 122) and area (page 195)
elements is not required; when those elements do not have href (page
286) attributes they do not represent hyperlinks.
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The href (page 85) attribute on the link (page 84) element is required,
but whether a link (page 84) element represents a hyperlink or not
depends on the value of the rel (page 85) attribute of that element.

The target attribute, if present, must be a valid browsing context name (page 328).
User agents use this name when following hyperlinks (page 287).

The ping attribute, if present, gives the URIs of the resources that are interested in
being notified if the user follows the hyperlink. The value must be a space separated list
of one or more URIs (or IRIs). The value is used by the user agent when following
hyperlinks (page 287).

For a (page 122) and area (page 195) elements that represent hyperlinks, the
relationship between the document containing the hyperlink and the destination resource
indicated by the hyperlink is given by the value of the element's rel attribute, which
must be an unordered set of space-separated tokens (page 63). The allowed values and
their meanings (page 289) are defined below. The rel (page 287) attribute has no
default value. If the attribute is omitted or if none of the values in the attribute are
recognised by the UA, then the document has no particular relationship with the
destination resource other than there being a hyperlink between the two.

The media attribute describes for which media the target document was designed. It is
purely advisory. The value must be a valid media query. [MQ] The default, if the media

(page 287) attribute is omitted or has an invalid value, is all.

The hreflang attribute on hyperlink elements, if present, gives the language of the
linked resource. It is purely advisory. The value must be a valid RFC 3066 language
code. [RFC3066] User agents must not consider this attribute authoritative — upon
fetching the resource, user agents must only use language information associated with
the resource to determine its language, not metadata included in the link to the resource.

The type attribute, if present, gives the MIME type of the linked resource. It is purely
advisory. The value must be a valid MIME type, optionally with parameters. [RFC2046]
User agents must not consider the type (page 287) attribute authoritative — upon
fetching the resource, user agents must only use the Content-Type information
associated with the resource (page 277) to determine its type, not metadata included in
the link to the resource.

4.3.2. Following hyperlinks

When a user follows a hyperlink, the user agent must navigate (page 269) a browsing
context (page 20) to the URI specified of the hyperlink.

The URI of the hyperlink is URI given by resolving the the href (page 286) attribute of
that hyperlink relative to the hyperlink's element. In the case of server-side image maps,
the URI of the hyperlink must further have its hyperlink suffix (page 124) appended to it.
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If the user indicated a specific browsing context when following the hyperlink, or if the
user agent is configured to follow hyperlinks by navigating a particular browsing context,
then that is the browsing context that must be navigated.

Otherwise, if the hyperlink element is an a (page 122) or area (page 195) element that
has a target (page 287) attribute, then the browsing context that is navigated must be
chosen by applying the rules for chosing a browsing context given a browsing context
name (page 328), using the value of the target (page 287) attribute as the browsing
context name.

Otherwise, if the hyperlink element is a sidebar hyperlink (page 297) and the user agent
implements a feature that can be considered a secondary browsing context, such a
secondary browsing context may be selected as the browsing context to be navigated.

Otherwise, if the hyperlink element is an a (page 122) or area (page 195) element with
no target (page 287) attribute, but there is a base (page 83) element with a target

(page 84) attribute in the document, then the browsing context that is navigated must be
chosen by applying the rules for chosing a browsing context given a browsing context
name (page 328), using the value of the target (page 84) attribute of the first such
base (page 83) element as the browsing context name.

Otherwise, the browsing context that must be navigated is the same browsing context as
the one which the hyperlink element itself is in.

4.3.2.1. Hyperlink auditing

If an a (page 122) or area (page 195) hyperlink element has a ping (page 287)
attribute and the user follows the hyperlink, the user agent must take the ping (page
287) attribute's value, strip leading and trailing spaces (page 47), split the value on
sequences of spaces, treat each resulting part as a URI (resolving relative URIs
according to element's base URI) and then should send a request to each of the
resulting URIs. This may be done in parallel with the primary request, and is independent
of the result of that request.

User agents should allow the user to adjust this behaviour, for example in conjunction
with a setting that disables the sending of HTTP Referrer headers. Based on the user's
preferences, UAs may either ignore (page 22) the ping (page 287) attribute altogether,
or selectively ignore URIs in the list (e.g. ignoring any third-party URIs).

For URIs that are HTTP URIs, the requests must be performed using the POST method
(with an empty entity body in the request). User agents must ignore any entity bodies
returned in the responses, but must, unless otherwise specified by the user, honour the
HTTP headers — in particular, HTTP cookie headers. [RFC2965]

Note: To save bandwidth, implementors might wish to consider omitting
optional headers such as Accept from these requests.
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When the ping (page 287) attribute is present, user agents should clearly indicate to the
user that following the hyperlink will also cause secondary requests to be sent in the
background, possibly including listing the actual target URIs.

The ping (page 287) attribute is redundant with pre-existing technologies
like HTTP redirects and JavaScript in allowing Web pages to track which
off-site links are most popular or allowing advertisers to track
click-through rates.

However, the ping (page 287) attribute provides these advantages to the
user over those alternatives:

• It allows the user to see the final target URI unobscured.

• It allows the UA to inform the user about the out-of-band notifications.

• It allows the paranoid user to disable the notifications without losing
the underlying link functionality.

• It allows the UA to optimise the use of available network bandwidth so
that the target page loads faster.

Thus, while it is possible to track users without this feature, authors are
encouraged to use the ping (page 287) attribute so that the user agent
can improve the user experience.

4.3.3. Link types

The following table summarises the link types that are defined by this specification. This
table is non-normative; the actual definitions for the link types are given in the next few
sections.

In this section, the term referenced document refers to the resource identified by the
element representing the link, and the term current document refers to the resource
within which the element representing the link finds itself.

To determine which link types apply to a link (page 84), a (page 122), or area (page
195) element, the element's rel attribute must be split on spaces (page 63). The
resulting tokens are the link types that apply to that element.

Effect on...Link type Brief description
link (page

84)
a (page 122)

and area
(page 195)

alternate

(page 291)
Hyperlink
(page 86)

Hyperlink
(page 286)

Gives alternate representations of
the current document.
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Effect on...Link type Brief description
link (page

84)
a (page 122)

and area
(page 195)

archives (page
292)

Hyperlink
(page 86)

Hyperlink
(page 286)

Provides a link to a collection of
records, documents, or other
materials of historical interest.

author (page
293)

Hyperlink
(page 86)

Hyperlink
(page 286)

Gives a link to the current
document's author.

bookmark (page
293)

not allowed Hyperlink
(page 286)

Gives the permalink for the nearest
ancestor section.

contact (page
294)

Hyperlink
(page 86)

Hyperlink
(page 286)

Gives a link to contact information
for the current document.

external (page
294)

not allowed Hyperlink
(page 286)

Indicates that the referenced
document is not part of the same site
as the current document.

feed (page 294) Hyperlink
(page 86)

Hyperlink
(page 286)

Gives the address of a syndication
feed for the current document.

first (page
298)

Hyperlink
(page 86)

Hyperlink
(page 286)

Indicates that the current document
is a part of a series, and that the first
document in the series is the
referenced document.

help (page 295) Hyperlink
(page 86)

Hyperlink
(page 286)

Provides a link to context-sensitive
help.

icon (page 295) External
Resource
(page 86)

not allowed Imports an icon to represent the
current document.

index (page
298)

Hyperlink
(page 86)

Hyperlink
(page 286)

Gives a link to the document that
provides a table of contents or index
listing the current document.

last (page 298) Hyperlink
(page 86)

Hyperlink
(page 286)

Indicates that the current document
is a part of a series, and that the last
document in the series is the
referenced document.

license (page
296)

Hyperlink
(page 86)

Hyperlink
(page 286)

Indicates that the current document
is covered by the copyright license
described by the referenced
document.

next (page 298) Hyperlink
(page 86)

Hyperlink
(page 286)

Indicates that the current document
is a part of a series, and that the
next document in the series is the
referenced document.
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Effect on...Link type Brief description
link (page

84)
a (page 122)

and area
(page 195)

nofollow (page
296)

not allowed Hyperlink
(page 286)

Indicates that the current document's
original author or publisher does not
endorse the referenced document.

pingback (page
296)

External
Resource
(page 86)

not allowed Gives the address of the pingback
server that handles pingbacks to the
current document.

prefetch (page
296)

External
Resource
(page 86)

not allowed Specifies that the target resource
should be pre-emptively cached.

prev (page 299) Hyperlink
(page 86)

Hyperlink
(page 286)

Indicates that the current document
is a part of a series, and that the
previous document in the series is
the referenced document.

search (page
296)

Hyperlink
(page 86)

Hyperlink
(page 286)

Gives a link to a resource that can
be used to search through the
current document and its related
pages.

stylesheet

(page 297)
External
Resource
(page 86)

not allowed Imports a stylesheet.

sidebar (page
297)

Hyperlink
(page 86)

Hyperlink
(page 286)

Specifies that the referenced
document, if retrieved, is intended to
be shown in the browser's sidebar (if
it has one).

tag (page 297) Hyperlink
(page 86)

Hyperlink
(page 286)

Gives a tag (identified by the given
address) that applies to the current
document.

up (page 299) Hyperlink
(page 86)

Hyperlink
(page 286)

Provides a link to a document giving
the context for the current document.

Some of the types described below list synonyms for these values. These are to be
handled as specified by user agents, but must not be used in documents.

4.3.3.1. Link type "alternate"

The alternate (page 291) keyword may be used with link (page 84), a (page 122),
and area (page 195) elements. For link (page 84) elements, if the rel (page 85)
attribute does not also contain the keyword stylesheet (page 297), it creates a
hyperlink (page 86); but if it does also contains the keyword stylesheet (page 297),
the alternate (page 291) keyword instead modifies the meaning of the stylesheet
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(page 297) keyword in the way described for that keyword, and the rest of this
subsection doesn't apply.

The alternate (page 291) keyword indicates that the referenced document is an
alternate representation of the current document.

The nature of the referenced document is given by the media (page 287), hreflang
(page 287), and type (page 287) attributes.

If the alternate (page 291) keyword is used with the media (page 287) attribute, it
indicates that the referenced document is intended for use with the media specified.

If the alternate (page 291) keyword is used with the hreflang (page 287) attribute,
and that attribute's value differs from the root element (page 21)'s language (page 74), it
indicates that the referenced document is a translation.

If the alternate (page 291) keyword is used with the type (page 287) attribute, it
indicates that the referenced document is a reformulation of the current document in the
specified format.

The media (page 287), hreflang (page 287), and type (page 287) attributes can be
combined when specified with the alternate (page 291) keyword.

For example, the following link is a French translation that uses the PDF format:

<link rel=alternate type=application/pdf hreflang=fr href=manual-fr>

If the alternate (page 291) keyword is used with the type (page 287) attribute set to
the value application/rss+xml or the value application/atom+xml, then the
user agent must treat the link as it would if it had the feed (page 294) keyword specified
as well.

The alternate (page 291) link relationship is transitive — that is, if a document links to
two other documents with the link type "alternate (page 291)", then, in addition to
implying that those documents are alternative representations of the first document, it is
also implying that those two documents are alternative representations of each other.

4.3.3.2. Link type "archives"

The archives (page 292) keyword may be used with link (page 84), a (page 122),
and area (page 195) elements. For link (page 84) elements, it creates a hyperlink
(page 86).

The archives (page 292) keyword indicates that the referenced document describes a
collection of records, documents, or other materials of historical interest.

A blog's index page could link to an index of the blog's past posts with
rel="archives".
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Synonyms: For historical reasons, user agents must also treat the keyword "archive"
like the archives (page 292) keyword.

4.3.3.3. Link type "author"

The author (page 293) keyword may be used with link (page 84), a (page 122), and
area (page 195) elements. For link (page 84) elements, it creates a hyperlink (page
86).

For a (page 122) and area (page 195) elements, the author (page 293) keyword
indicates that the referenced document provides further information about the author of
the section that the element defining the hyperlink applies (page 96) to.

For link (page 84) elements, the author (page 293) keyword indicates that the
referenced document provides further information about the author for the page as a
whole.

Note: The "referenced document" can be, and often is, a mailto: URI
giving the e-mail address of the author. [MAILTO]

Synonyms: For historical reasons, user agents must also treat link (page 84), a (page
122), and area (page 195) elements that have a rev attribute with the value "made" as
having the author (page 293) keyword specified as a link relationship.

4.3.3.4. Link type "bookmark"

The bookmark (page 293) keyword may be used with a (page 122) and area (page
195) elements.

The bookmark (page 293) keyword gives a permalink for the nearest ancestor article
(page 98) element of the linking element in question, or of the section the linking element
is most closely associated with (page 109), if there are no ancestor article (page 98)
elements.

The following snippet has three permalinks. A user agent could determine which
permalink applies to which part of the spec by looking at where the permalinks are
given.

...
<body>
<h1>Example of permalinks</h1>
<div id="a">
<h2>First example</h2>
<p><a href="a.html" rel="bookmark">This</a> permalink applies to
only the content from the first H2 to the second H2. The DIV isn't
exactly that section, but it roughly corresponds to it.</p>

</div>
<h2>Second example</h2>
<article id="b">
<p><a href="b.html" rel="bookmark">This</a> permalink applies to
the outer ARTICLE element (which could be, e.g., a blog post).</p>
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<article id="c">
<p><a href="c.html" rel="bookmark">This</a> permalink applies to
the inner ARTICLE element (which could be, e.g., a blog comment).</p>

</article>
</article>

</body>
...

4.3.3.5. Link type "contact"

The contact (page 294) keyword may be used with link (page 84), a (page 122),
and area (page 195) elements. For link (page 84) elements, it creates a hyperlink
(page 86).

For a (page 122) and area (page 195) elements, the contact (page 294) keyword
indicates that the referenced document provides further contact information for the
section that the element defining the hyperlink applies (page 96) to.

User agents must treat any hyperlink in an address (page 104) element as having the
contact (page 294) link type specified.

For link (page 84) elements, the contact (page 294) keyword indicates that the
referenced document provides further contact information for the page as a whole.

4.3.3.6. Link type "external"

The external (page 294) keyword may be used with a (page 122) and area (page
195) elements.

The external (page 294) keyword indicates that the link is leading to a document that
is not part of the site that the current document forms a part of.

4.3.3.7. Link type "feed"

The feed (page 294) keyword may be used with link (page 84), a (page 122), and
area (page 195) elements. For link (page 84) elements, it creates a hyperlink (page
86).

The feed (page 294) keyword indicates that the referenced document is a syndication
feed. If the alternate (page 291) link type is also specified, then the feed is
specifically the feed for the current document; otherwise, the feed is just a syndication
feed, not necessarily associated with a particular Web page.

The first link (page 84), a (page 122), or area (page 195) element in the document (in
tree order) that creates a hyperlink with the link type feed (page 294) must be treated
as the default syndication feed for the purposes of feed autodiscovery.

Note: The feed (page 294) keyword is implied by the alternate (page
291) link type in certain cases (q.v.).
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The following two link (page 84) elements are equivalent: both give the
syndication feed for the current page:

<link rel="alternate" type="application/atom+xml" href="data.xml">
<link rel="feed alternate" href="data.xml">

The following extract offers various different syndication feeds:

<p>You can access the planets database using Atom feeds:</p>
<ul>
<li><a href="recently-visited-planets.xml" rel="feed">Recently Visited

Planets</a></li>
<li><a href="known-bad-planets.xml" rel="feed">Known Bad Planets</a></li>
<li><a href="unexplored-planets.xml" rel="feed">Unexplored

Planets</a></li>
</ul>

4.3.3.8. Link type "help"

The help (page 295) keyword may be used with link (page 84), a (page 122), and
area (page 195) elements. For link (page 84) elements, it creates a hyperlink (page
86).

For a (page 122) and area (page 195) elements, the help (page 295) keyword
indicates that the referenced document provides further help information for the parent of
the element defining the hyperlink, and its children.

In the following example, the form control has associated context-sensitive help.
The user agent could use this information, for example, displaying the referenced
document if the user presses the "Help" or "F1" key.

<p><label> Topic: <input name=topic> <a href="help/topic.html"
rel="help">(Help)</a></label></p>

For link (page 84) elements, the help (page 295) keyword indicates that the
referenced document provides help for the page as a whole.

4.3.3.9. Link type "icon"

The icon (page 295) keyword may be used with link (page 84) elements, for which it
creates an external resource link (page 86).

The specified resource is an icon representing the page or site, and should be used by
the user agent when representing the page in the user interface.

Icons could be auditory icons, visual icons, or other kinds of icons. If multiple icons are
provided, the user agent must select the most appropriate icon according to the media

(page 86) attribute.
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4.3.3.10. Link type "license"

The license (page 296) keyword may be used with link (page 84), a (page 122),
and area (page 195) elements. For link (page 84) elements, it creates a hyperlink
(page 86).

The license (page 296) keyword indicates that the referenced document provides the
copyright license terms under which the current document is provided.

Synonyms: For historical reasons, user agents must also treat the keyword
"copyright" like the license (page 296) keyword.

4.3.3.11. Link type "nofollow"

The nofollow (page 296) keyword may be used with a (page 122) and area (page
195) elements.

The nofollow (page 296) keyword indicates that the link is not endorsed by the original
author or publisher of the page.

4.3.3.12. Link type "pingback"

The pingback (page 296) keyword may be used with link (page 84) elements, for
which it creates an external resource link (page 86).

For the semantics of the pingback (page 296) keyword, see the Pingback 1.0
specification. [PINGBACK]

4.3.3.13. Link type "prefetch"

The prefetch (page 296) keyword may be used with link (page 84) elements, for
which it creates an external resource link (page 86).

The prefetch (page 296) keyword indicates that preemptively fetching and caching the
specified resource is likely to be beneficial, as it is highly likely that the user will require
this resource.

4.3.3.14. Link type "search"

The search (page 296) keyword may be used with link (page 84), a (page 122), and
area (page 195) elements. For link (page 84) elements, it creates a hyperlink (page
86).

The search (page 296) keyword indicates that the referenced document provides an
interface specifically for searching the document and its related resources.

Note: OpenSearch description documents can be used with link (page
84) elements and the search (page 296) link type to enable user agents to
autodiscover search interfaces.
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4.3.3.15. Link type "stylesheet"

The stylesheet (page 297) keyword may be used with link (page 84) elements, for
which it creates an external resource link (page 86) that contributes to the styling
processing model (page 95).

The specified resource is a resource that describes how to present the document.
Exactly how the resource is to be processed depends on the actual type of the resource.

If the alternate (page 291) keyword is also specified on the link (page 84) element,
then the link is an alternative stylesheet.

4.3.3.16. Link type "sidebar"

The sidebar (page 297) keyword may be used with link (page 84), a (page 122),
and area (page 195) elements. For link (page 84) elements, it creates a hyperlink
(page 86).

The sidebar (page 297) keyword indicates that the referenced document, if retrieved,
is intended to be shown in a secondary browsing context (if possible), instead of in the
current browsing context.

A hyperlink element (page 286) with with the sidebar (page 297) keyword specified is
a sidebar hyperlink.

4.3.3.17. Link type "tag"

The tag (page 297) keyword may be used with link (page 84), a (page 122), and
area (page 195) elements. For link (page 84) elements, it creates a hyperlink (page
86).

The tag (page 297) keyword indicates that the tag that the referenced document
represents applies to the current document.

4.3.3.18. Hierarchical link types

Some documents form part of a hierarchical structure of documents.

A hierarchical structure of documents is one where each document can have various
subdocuments. A subdocument is said to be a child of the document it is a subdocument
of. The document of which it is a subdocument is said to be its parent. The children of a
document have a relative order; the subdocument that precedes another is its previous
sibling, and the one that follows it is its next sibling. A document with no parent forms the
top of the hierarchy.
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4.3.3.18.1. LINK TYPE "FIRST"

The first (page 298) keyword may be used with link (page 84), a (page 122), and
area (page 195) elements. For link (page 84) elements, it creates a hyperlink (page
86).

The first (page 298) keyword indicates that the document is part of a hierarchical
structure, and that the link is leading to the document that is the first child of the current
document's parent document.

Synonyms: For historical reasons, user agents must also treat the keywords "begin"
and "start" like the first (page 298) keyword.

4.3.3.18.2. LINK TYPE "INDEX"

The index (page 298) keyword may be used with link (page 84), a (page 122), and
area (page 195) elements. For link (page 84) elements, it creates a hyperlink (page
86).

The index (page 298) keyword indicates that the document is part of a hierarchical
structure, and that the link is leading to the document that is the top of the hierarchy.

Synonyms: For historical reasons, user agents must also treat the keywords "top",
"contents", and "toc" like the index (page 298) keyword.

4.3.3.18.3. LINK TYPE "LAST"

The last (page 298) keyword may be used with link (page 84), a (page 122), and
area (page 195) elements. For link (page 84) elements, it creates a hyperlink (page
86).

The last (page 298) keyword indicates that the document is part of a hierarchical
structure, and that the link is leading to the document that is the last child of the current
document's parent document.

Synonyms: For historical reasons, user agents must also treat the keyword "end" like
the last (page 298) keyword.

4.3.3.18.4. LINK TYPE "NEXT"

The next (page 298) keyword may be used with link (page 84), a (page 122), and
area (page 195) elements. For link (page 84) elements, it creates a hyperlink (page
86).

The next (page 298) keyword indicates that the document is part of a hierarchical
structure, and that the link is leading to the document that is the next sibling of the
current document.
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4.3.3.18.5. LINK TYPE "PREV"

The prev (page 299) keyword may be used with link (page 84), a (page 122), and
area (page 195) elements. For link (page 84) elements, it creates a hyperlink (page
86).

The prev (page 299) keyword indicates that the document is part of a hierarchical
structure, and that the link is leading to the document that is the previous sibling of the
current document.

Synonyms: For historical reasons, user agents must also treat the keyword "previous"
like the prev (page 299) keyword.

4.3.3.18.6. LINK TYPE "UP"

The up (page 299) keyword may be used with link (page 84), a (page 122), and area

(page 195) elements. For link (page 84) elements, it creates a hyperlink (page 86).

The up (page 299) keyword indicates that the document is part of a hierarchical
structure, and that the link is leading to the document that is the parent of the current
document.

4.3.3.19. Other link types

Other than the types defined above, only types defined as extensions in the WHATWG
Wiki RelExtensions page may be used with the rel attribute on link (page 84), a
(page 122), and area (page 195) elements. [WHATWGWIKI]

Anyone is free to edit the WHATWG Wiki RelExtensions page at any time to add a type.
Extension types must be specified with the following information:

Keyword
The actual value being defined. The value should not be confusingly similar to any
other defined value (e.g. differing only in case).

Effect on... link (page 84)
One of the following:

not allowed
The keyword is not allowed to be specified on link (page 84) elements.

Hyperlink
The keyword may be specified on a link (page 84) element; it creates a
hyperlink link (page 86).

External Resource
The keyword may be specified on a link (page 84) element; it creates a
external resource link (page 86).

Effect on... a (page 122) and area (page 195)
One of the following:
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not allowed
The keyword is not allowed to be specified on a (page 122) and area (page
195) elements.

Hyperlink
The keyword may be specified on a (page 122) and area (page 195)
elements; it creates a hyperlink (page 286).

Brief description
A short description of what the keyword's meaning is.

Link to more details
A link to a more detailed description of the keyword's semantics and requirements. It
could be another page on the Wiki, or a link to an external page.

Synonyms
A list of other keyword values that have exactly the same processing requirements.
Authors must not use the values defined to be synonyms, they are only intended to
allow user agents to support legacy content.

Status
One of the following:

Proposal
The keyword has not received wide peer review and approval. It is included for
completeness because pages use the keyword. Pages should not use the
keyword.

Accepted
The keyword has received wide peer review and approval. It has a specification
that unambiguously defines how to handle pages that use the keyword,
including when they use them in incorrect ways. Pages may use the keyword.

Rejected
The keyword has received wide peer review and it has been found to have
significant problems. Pages must not use the keyword. When a keyword has
this status, the "Effect on... link (page 84)" and "Effect on... a (page 122) and
area (page 195)" information should be set to "not allowed".

If a keyword is added with the "proposal" status and found to be redundant with
existing values, it should be removed and listed as a synonym for the existing value.
If a keyword is added with the "proposal" status and found to be harmful, then it
should be changed to "rejected" status, and its "Effect on..." information should be
changed accordingly.

Conformance checkers must use the information given on the WHATWG Wiki
RelExtensions page to establish if a value not explicitly defined in this specification is
allowed or not. When an author uses a new type not defined by either this specification
or the Wiki page, conformance checkers should offer to add the value to the Wiki, with
the details described above, with the "proposal" status.

This specification does not define how new values will get approved. It is expected that
the Wiki will have a community that addresses this.
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4.4. The global scope

Many of the APIs are part of the WindowHTML (page 301) interface. The WindowHTML

(page 301) interface must be obtainable from the Window object using binding-specific
casting methods. [WINDOW]

interface WindowHTML {

// defined in this section

readonly attribute History (page 303) history (page 302);
readonly attribute ClientInformation (page 308) navigator (page 308);
readonly attribute UndoManager (page 347) undoManager (page 347);
Selection (page 354) getSelection (page 354)();
readonly attribute Storage (page 314) sessionStorage (page 317);
readonly attribute StorageList (page 318) globalStorage (page 318);

// defined in other sections

attribute Object onerror (page 281);

// modal user prompts
void alert(in DOMString message);
boolean confirm(in DOMString message);
DOMString prompt(in DOMString message);
DOMString prompt(in DOMString message, in DOMString default);

// browsing contexts

readonly attribute Window window (page 328);
readonly attribute Window frames (page 328);
readonly attribute Window self (page 328);
readonly attribute unsigned long length (page 328);
readonly attribute Window opener (page 328);
Window open (page 327)();
Window open (page 327)(in DOMString url);
Window open (page 327)(in DOMString url, in DOMString target);
Window open (page 327)(in DOMString url, in DOMString target, in DOMString

features);

Window open (page 327)(in DOMString url, in DOMString target, in DOMString
features, in DOMString replace);
};

The WindowHTML (page 301) object must provide the following constructors:

Audio()

Constructs an Audio (page 381) object.

Image()

Image(in unsigned long w)

Image(in unsigned long w, in unsigned long h)

Constructs an HTMLImageElement (page 155) object (a new img (page 154)
element). If the h argument is present, the new object's height (page 156) content
attribute must be set to h. If the w argument is present, the new object's width
(page 156) content attribute must be set to w.
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Option()

Option(in DOMString name)

Option(in DOMString name, in DOMString value)

Constructs an HTMLOptionElement object (a new option element). need to

define argument processing

Note: Window objects also have an implicit [[Get]] method (page 328).

4.5. [SCS] Session history and navigation

4.5.1. The session history of browsing contexts

History (page 303) objects provide a representation of the pages in the session history
of their Window object's browsing context (page 20). Each browsing context (frame,
iframe (page 157), etc) has a distinct session history.

Each Document object in a browsing context's session history is associated with a
unique instance of the History (page 303) object, although they all must model the
same underlying session history.

The history attribute of the WindowHTML (page 301) interface must return the object
implementing the History (page 303) interface for that WindowHTML (page 301)
object's associated Document object.

History (page 303) objects represent their browsing context (page 20)'s session
history as a flat list of URIs and state objects (page 302). (This does not imply that the UI
need be linear. See the notes below (page 307).)

Typically, the history list will consist of only URIs. However, a page can add (page 305)
state objects between its entry in the session history and the next ("forward") entry.
These are then returned to the script (page 305) when the user (or script) goes back in
the history, thus enabling authors to use the "navigation" metaphor even in one-page
applications.

Entries that consist of state objects (page 302) share the same Document as the entry
for the URI itself. Contiguous entries that differ just by fragment identifier must also share
the same Document.

Note: All entries that share the same Document (and that are therefore
merely different states of one particular document) are contiguous by
definition.
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At any point, one of the entries in the session history is the current entry. This is the
entry representing the page in this browsing context (page 20) that is considered the
"current" page by the UA. The current entry (page 303) is usually an entry for the
location (page 307) of the Document. However, it can also be one of the entries for state
objects (page 302) added to the history by that document.

When the browser's navigation model differs significantly from the sequential model
represented by the History (page 303) interface, for example if separate Document

objects in the session history are all simulatenously displayed and active, then the
current entry (page 303) could even be an entry unrelated to the History (page 303)
object's own Document object. If, when a method is invoked on a History (page 303)
object, the current entry (page 303) for that browsing context (page 20)'s session history
has a different Document object than the History (page 303) object's own Document

object, then the user agent must raise a NO_MODIFICATION_ALLOWED_ERR DOM
exception. (This can only happen if scripts are allowed to run in documents that are not
the current document. Typically, however, user agents only allow scripts from the current
entry (page 303) to execute.)

User agents may discard the DOMs of entries other than the current entry (page 303),
reloading the pages afresh when the user or script navigates back to such pages. This
specification does not specify when user agents should discard pages' DOMs and when
they should cache them. See the section on the load and unload events for more
details.

Entries that have had their DOM discarded must, for the purposes of the algorithms
given below, act as if they had not. When the user or script navigates back or forwards to
a page which has no in-memory DOM objects, any other entries that shared the same
Document object with it must share the new object as well.

When a user agent discards the DOM from an entry in the session history, it must also
discard all the entries from the first state object entry for that Document object up to and
including the last entry for that Document object (including any non-state-object entries
in that range, such as entries where the user navigated using fragment identifiers).
These entries are not recreated if the user or script navigates back to the page. If there
are no state object entries for that Document object then no entries are removed.

4.5.2. The History (page 303) interface

interface History {

readonly attribute long length (page 303);
void go (page 304)(in long delta);
void go (page 305)();
void back (page 305)();
void forward (page 305)();
void pushState (page 305)(in DOMObject data);
void clearState (page 305)();

};

The length attribute of the History (page 303) interface must return the number of
entries in this session history.
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The actual entries are not accessible from script.

The go(delta) method causes the UA to move the number of steps specified by delta
in the session history.

If the index of the current entry (page 303) plus delta is less than zero or greater than or
equal to the number of items in the session history (page 303), then the user agent must
do nothing.

If the delta is zero, then the user agent must act as if the location.reload() method
was called instead.

Otherwise, the user agent must cause the current browsing context (page 20) to traverse
the history (page 304) to the specified entry, as described below. The specified entry is
the one whose index equals the index of the current entry (page 303) plus delta.

When a user agent is required to traverse the history to an entry target, the user agent
must act as follows:

1. If there are any entries with state objects between the current entry (page 303) and
the target entry (not inclusive), then the user agent must iterate through every entry
between the current entry and the target entry, starting with the entry closest to the
current entry, and ending with the one closest to the target entry. For each entry, if
the entry is a state object, the user agent must activate the state object (page 305).

2. If the specified entry has a different Document object than the current entry (page
303) then the user agent must make that Document object the user's "current" one
for that browsing context (page 20), and must update the browsing context's
Window object so that any properties that were added while the current entry's
Document was active are removed, and any properties that were added while the
target entry's Document was active are added back. (If the target entry is new, as it
is if the user agent should navigated (page 269) to it, then there are no such new
properties.) The user agent must also update the current location (page 306) object
to the new location.

3. If the specified entry is a state object, the user agent must activate that state object
(page 305).

4. User agents may also update other aspects of the document view when the location
changes in this way, for instance the scroll position, values of form fields, etc.

how does the changing of the global attributes affect .watch() when seen from other
Windows?

When the user navigates through a browsing context (page 20), e.g. using a browser's
back and forward buttons, the user agent must translate this action into the equivalent
invocations of the history.go(delta) (page 304) method on the various affected
window (page 328) objects.
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Some of the other members of the History (page 303) interface are defined in terms of
the go() (page 304) method, as follows:

Member Definition
go() Must do the same as go(0) (page 304)

back() Must do the same as go(-1) (page 304)

forward() Must do the same as go(1) (page 304)

The pushState(data) method adds a state object to the history.

When this method is invoked, the user agent must first remove from the session history
any entries for that Document from the entry after the current entry (page 303) up to the
last entry in the session history that references the same Document object, if any. If the
current entry (page 303) is the last entry in the session history, or if there are no entries
after the current entry (page 303) that reference the same Document object, then no
entries are removed.

Then, the user agent must add a state object entry to the session history, after the
current entry (page 303), with the specified data as the state object.

Finally, the user agent must update the current entry (page 303) to be the this newly
added entry.

There has been a suggestion that pushState() should take a URI and a string; the URI
to allow for the page to be bookmarked, and the string to allow the UA to give the
page a meaningful title in the history state, if it shows history state.

User agents may limit the number of state objects added to the session history per page.
If a page hits the UA-defined limit, user agents must remove the entry immediately after
the first entry for that Document object in the session history after having added the new
entry. (Thus the state history acts as a FIFO buffer for eviction, but as a LIFO buffer for
navigation.)

The clearState() method removes all the state objects for the Document object from
the session history.

When this method is invoked, the user agent must remove from the session history all
the entries from the first state object entry for that Document object up to the last entry
that references that same Document object, if any.

Then, if the current entry (page 303) was removed in the previous step, the current entry
(page 303) must be set to the last entry for that Document object in the session history.

4.5.3. Activating state objects

When a state object in the session history is activated (which happens in the cases
described above), the user agent must fire a popstate event in no namespace on the
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the body element (page 36) using the PopStateEvent (page 306) interface, with the
state object in the state (page 306) attribute. This event bubbles but is not cancelable
and has no default action.

interface PopStateEvent : Event {

readonly attribute DOMObject state (page 306);
void initPopStateEvent (page 306)(in DOMString typeArg, in boolean

canBubbleArg, in boolean cancelableArg, in DOMObject statetArg);

void initPopStateEventNS (page 306)(in DOMString namespaceURIArg, in
DOMString typeArg, in boolean canBubbleArg, in boolean cancelableArg, in
DOMObject stateArg);
};

The initPopStateEvent() and initPopStateEventNS() methods must initialise
the event in a manner analogous to the similarly-named methods in the DOM3 Events
interfaces. [DOM3EVENTS]

The state attribute represents the context information for the event.

Should we coalesce these events if they occur while the page is away? (e.g. during
traversal -- see above)

4.5.4. The Location (page 306) interface

The location attribute of the WindowHTML (page 301) interface must return an object
implementing the Location (page 306) interface.

For historical reasons, the location attribute of the HTMLDocument (page 26)
interface must return the same object as the location (page 306) attribute on its
associated WindowHTML (page 301) object.

Location (page 306) objects provide a representation of the URI of their document,
and allow the current entry (page 303) of the browsing context (page 20)'s session
history to be changed, by adding or replacing entries in the history (page 302) object.

interface Location {
readonly attribute DOMString hash;
readonly attribute DOMString host;
readonly attribute DOMString hostname;

readonly attribute DOMString href (page 307);
readonly attribute DOMString pathname;
readonly attribute DOMString port;
readonly attribute DOMString protocol;
readonly attribute DOMString search;

void assign (page 307)(in DOMString url);
void replace (page 307)(in DOMString url);
void reload();

};

In the ECMAScript DOM binding, objects implementing this interface must stringify to the
same value as the href (page 307) attribute.
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In the ECMAScript DOM binding, the location members of the HTMLDocument (page
26) and WindowHTML (page 301) interfaces behave as if they had a setter: user agents
must treats attempts to set these location attribute as attempts at setting the href

(page 307) attribute of the relevant Location (page 306) object instead.

The href attribute returns the address of the page represented by the associated
Document object, as an absolute IRI reference.

On setting, the user agent must act as if the assign() (page 307) method had been
called with the new value as its argument.

When the assign(url) method is invoked, the UA must navigate (page 269) to the
specified url.

When the replace(url) method is invoked, the UA must navigate (page 269) to the
specified url with replacement enabled (page 271).

Relative url arguments for assign() (page 307) and replace() (page 307) must be
resolved relative to the base URI of the script that made the method call.

The component parts and .reload() are yet to be defined. If anyone can come up with
a decent definition, let me know.

4.5.5. Implementation notes for session history

This section is non-normative.

The History (page 303) interface is not meant to place restrictions on how
implementations represent the session history to the user.

For example, session history could be implemented in a tree-like manner, with each
page having multiple "forward" pages. This specification doesn't define how the linear list
of pages in the history (page 302) object are derived from the actual session history
as seen from the user's perspective.

Similarly, a page containing two iframe (page 157)s has a history (page 302) object
distinct from the iframe (page 157)s' history (page 302) objects, despite the fact that
typical Web browsers present the user with just one "Back" button, with a session history
that interleaves the navigation of the two inner frames and the outer page.

Security: It is suggested that to avoid letting a page "hijack" the history navigation
facilities of a UA by abusing pushState() (page 305), the UA provide the user with a
way to jump back to the previous page (rather than just going back to the previous state).
For example, the back button could have a drop down showing just the pages in the
session history, and not showing any of the states. Similarly, an aural browser could
have two "back" commands, one that goes back to the previous state, and one that
jumps straight back to the previous page.
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In addition, a user agent could ignore calls to pushState() (page 305) that are invoked
on a timer, or from event handlers that do not represent a clear user action, or that are
invoked in rapid succession.

4.6. Browser state

The navigator attribute of the WindowHTML (page 301) interface must return an
instance of the ClientInformation (page 308) interface, which represents the
identity and state of the user agent (the client), and allows Web pages to register
themselves as potential protocol and content handlers:

interface ClientInformation {

readonly attribute boolean onLine (page 308);
void registerProtocolHandler (page 308)(in DOMString protocol, in DOMString

uri, in DOMString title);

void registerContentHandler (page 308)(in DOMString mimeType, in DOMString
uri, in DOMString title);
};

4.6.1. [SCS] Offline Web applications

The navigator.onLine attribute must return false if the user agent will not contact the
network when the user follows links or when a script requests a remote page (or knows
that such an attempt would fail), and must return true otherwise.

The offline event must be fired when the value of the navigator.onLine (page
308) attribute of the WindowHTML (page 301) changes from true to false.

The online event must be fired when the value of the navigator.onLine (page 308)
attribute of the WindowHTML (page 301) changes from false to true.

These events are in no namespace, do bubble, are not cancelable, have no default
action, and use the normal Event interface. They must be fired on the body element
(page 36). (As the events bubble, they will reach the WindowHTML (page 301) object.)

4.6.2. [SCS] Custom protocol and content handlers

The registerProtocolHandler() method allows Web sites to register themselves
as possible handlers for particular protocols. For example, an online fax service could
register itself as a handler of the fax: protocol ([RFC2806]), so that if the user clicks on
such a link, he is given the opportunity to use that Web site. Analogously, the
registerContentHandler() method allows Web sites to register themselves as
possible handlers for content in a particular MIME type. For example, the same online
fax service could register itself as a handler for image/g3fax files ([RFC1494]), so that
if the user has no native application capable of handling G3 Facsimile byte streams, his
Web browser can instead suggest he use that site to view the image.
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User agents may, within the constraints described in this section, do whatever they like
when the methods are called. A UA could, for instance, prompt the user and offer the
user the opportunity to add the site to a shortlist of handlers, or make the handlers his
default, or cancel the request. UAs could provide such a UI through modal UI or through
a non-modal transient notification interface. UAs could also simply silently collect the
information, providing it only when relevant to the user.

There is an example of how these methods could be presented to the user (page 312)
below.

The arguments to the methods have the following meanings:

protocol (registerProtocolHandler() (page 308) only)
A scheme, such as ftp or fax. The scheme must be treated case-insensitively by
user agents for the purposes of comparing with the scheme part of URIs that they
consider against the list of registered handlers.

The protocol value, if it contains a colon (as in "ftp:"), will never match anything,
since schemes don't contain colons.

mimeType (registerContentHandler() (page 308) only)
A MIME type, such as model/vrml or text/richtext. The MIME type must be
treated case-insensitively by user agents for the purposes of comparing with MIME
types of documents that they consider against the list of registered handlers.

User agents must compare the given values only to the MIME type/subtype parts of
content types, not to the complete type including parameters. Thus, if mimeType
values passed to this method include characters such as commas or whitespace, or
include MIME parameters, then the handler being registered will never be used.

uri
The URI of the page that will handle the requests. When the user agent uses this
URI, it must replace the first occurrence of the exact literal string "%s" with an
escaped version of the URI of the content in question (as defined below), and then
fetch the resulting URI using the GET method (or equivalent for non-HTTP URIs).

To get the escaped version of the URI, first, the domain part of the URI (if any) must
be converted to its punycode representation, and then, every character in the URI
that is not in the ranges given in the next paragraph must be replaced by its UTF-8
byte representation, each byte being represented by a U+0025 (%) character and
two digits in the range U+0030 (0) to U+0039 (9) and U+0041 (A) to U+0046 (F)
giving the hexadecimal representation of the byte.

The ranges of characters that must not be escaped are: U+002D (-), U+002E (.),
U+0030 (0) to U+0039 (9), U+0041 (A) to U+005A (Z), U+005F (_), U+0061 (a) to
U+007A (z), and U+007E (~).

If the user had visited a site that made the following call:
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navigator.registerContentHandler('application/x-soup',
'http://example.com/soup?url=%s', 'SoupWeb™')

...and then clicked on a link such as:

<a href="http://www.example.net/chickenkïwi.soup">Download our Chicken
Kiwi soup!</a>

...then, assuming this chickenkiwi.soup file was served with the MIME type
application/x-soup, the UA might instead navigate to the following URI:

http://example.com/
soup?url=http%3A%2F%2Fwww.example.net%2Fchickenk%C3%AFwi.soup

This site could then fetch the chickenkiwi.soup file and do whatever it is
that it does with soup (synthesise it and ship it to the user, or whatever).

title
A descriptive title of the handler, which the UA might use to remind the user what
the site in question is.

User agents should raise security exceptions (page 280) if the methods are called with
protocol or mimeType values that the UA deems to be "privileged". For example, a site
attempting to register a handler for http URIs or text/html content in a Web browser
would likely cause an exception to be raised.

User agents must raise a SYNTAX_ERR exception if the uri argument passed to one of
these methods does not contain the exact literal string "%s".

User agents must not raise any other exceptions (other than binding-specific exceptions,
such as for an incorrect number of arguments in an ECMAScript implementation).

This section does not define how the pages registered by these methods are used,
beyond the requirements on how to process the uri value (see above). To some extent,
the processing model for navigating across documents defines some cases where these
methods are relevant, but in general UAs may use this information wherever they would
otherwise consider handing content to native plugins or helper applications.

UAs must not use registered content handlers to handle content that was returned as
part of a non-GET transaction (or rather, as part of any non-idempotent transaction), as
the remote site would not be able to fetch the same data.

4.6.2.1. Security and privacy

These mechanisms can introduce a number of concerns, in particular privacy concerns.

Hijacking all Web usage. User agents should not allow protocols that are key to its
normal operation, such as http or https, to be rerouted through third-party sites. This
would allow a user's activities to be trivially tracked, and would allow user information,
even in secure connections, to be collected.

Hijacking defaults. It is strongly recommended that user agents do not automatically
change any defaults, as this could lead the user to send data to remote hosts that the
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user is not expecting. New handlers registering themselves should never automatically
cause those sites to be used.

Registration spamming. User agents should consider the possibility that a site will
attempt to register a large number of handlers, possibly from multiple domains (e.g. by
redirecting through a series of pages each on a different domain, and each registering a
handler for video/mpeg — analogous practices abusing other Web browser features
have been used by pornography Web sites for many years). User agents should
gracefully handle such hostile attempts, protecting the user.

Misleading titles. User agents should not rely wholy on the title argument to the
methods when presenting the registered handlers to the user, since sites could easily lie.
For example, a site hostile.example.net could claim that it was registering the
"Cuddly Bear Happy Content Handler". User agents should therefore use the handler's
domain in any UI along with any title.

Hostile handler metadata. User agents should protect against typical attacks against
strings embedded in their interface, for example ensuring that markup or escape
characters in such strings are not executed, that null bytes are properly handled, that
over-long strings do not cause crashes or buffer overruns, and so forth.

Leaking Intranet URIs. The mechanism described in this section can result in secret
Intranet URIs being leaked, in the following manner:

1. The user registers a third-party content handler as the default handler for a content
type.

2. The user then browses his corporate Intranet site and accesses a document that
uses that content type.

3. The user agent contacts the third party and hands the third party the URI to the
Intranet content.

No actual confidential file data is leaked in this manner, but the URIs themselves could
contain confidential information. For example, the URI could be
https://www.corp.example.com/upcoming-aquisitions/samples.egf,
which might tell the third party that Example Corporation is intending to merge with
Samples LLC. Implementors might wish to consider allowing administrators to disable
this feature for certain subdomains, content types, or protocols.

Leaking secure URIs. User agents should not send HTTPS URIs to third-party sites
registered as content handlers, in the same way that user agents do not send Referer

headers from secure sites to third-party sites.

Leaking credentials. User agents must never send username or password information
in the URIs that are escaped and included sent to the handler sites. User agents may
even avoid attempting to pass to Web-based handlers the URIs of resources that are
known to require authentication to access, as such sites would be unable to access the
resources in question without prompting the user for credentials themselves (a practice
that would require the user to know whether to trust the third-party handler, a decision
many users are unable to make or even understand).
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4.6.2.2. Sample user interface

This section is non-normative.

A simple implementation of this feature for a desktop Web browser might work as
follows.

The registerProtocolHandler() (page 308) method could display a modal dialog
box:

||[ Protocol Handler Registration ]|||||||||||||||||||||||||||
|                                                            |
| This Web page:                                             |
|                                                            |
|    Kittens at work                                         |
|    http://kittens.example.org/                             |
|                                                            |
| ...would like permission to handle the protocol "x-meow:"  |
| using the following Web-based application:                 |
|                                                            |
|    Kittens-at-work displayer                               |
|    http://kittens.example.org/?show=%s                     |
|                                                            |
| Do you trust the administrators of the "kittens.example.   |
| org" domain?                                               |
|                                                            |
|              ( Trust kittens.example.org )  (( Cancel ))   |
|____________________________________________________________|

...where "Kittens at work" is the title of the page that invoked the method,
"http://kittens.example.org/" is the URI of that page, "x-meow" is the string that was
passed to the registerProtocolHandler() (page 308) method as its first argument
(protocol), "http://kittens.example.org/?show=%s" was the second argument (uri), and
"Kittens-at-work displayer" was the third argument (title).

If the user clicks the Cancel button, then nothing further happens. If the user clicks the
"Trust" button, then the handler is remembered.

When the user then attempts to fetch a URI that uses the "x-meow:" scheme, then it
might display a dialog as follows:

||[ Unknown Protocol ]||||||||||||||||||||||||||||||||||||||||
|                                                            |
| You have attempted to access:                              |
|                                                            |
|    x-meow:S2l0dGVucyBhcmUgdGhlIGN1dGVzdCE%3D               |
|                                                            |
| How would you like FerretBrowser to handle this resource?  |
|                                                            |
|  (o) Contact the FerretBrowser plugin registry to see if   |
|      there is an official way to handle this resource.     |
|                                                            |
|  ( ) Pass this URI to a local application:                 |
|      [ /no application selected/             ] ( Choose )  |
|                                                            |
|  ( ) Pass this URI to the "Kittens-at-work displayer"      |
|      application at "kittens.example.org".                 |
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|                                                            |
|  [ ] Always do this for resources using the "x-meow"       |
|      protocol in future.                                   |
|                                                            |
|                                     ( Ok )  (( Cancel ))   |
|____________________________________________________________|

...where the third option is the one that was primed by the site registering itself earlier.

If the user does select that option, then the browser, in accordance with the requirements
described in the previous two sections, will redirect the user to
"http://kittens.example.org/
?show=x-meow%3AS2l0dGVucyBhcmUgdGhlIGN1dGVzdCE%253D".

The registerContentHandler() (page 308) method would work equivalently, but
for unknown MIME types instead of unknown protocols.

4.7. [SCS] Client-side session and persistent storage

4.7.1. Introduction

This section is non-normative.

This specification introduces two related mechanisms, similar to HTTP session cookies
[RFC2965], for storing structured data on the client side.

The first is designed for scenarios where the user is carrying out a single transaction, but
could be carrying out multiple transactions in different windows at the same time.

Cookies don't really handle this case well. For example, a user could be buying plane
tickets in two different windows, using the same site. If the site used cookies to keep
track of which ticket the user was buying, then as the user clicked from page to page in
both windows, the ticket currently being purchased would "leak" from one window to the
other, potentially causing the user to buy two tickets for the same flight without really
noticing.

To address this, this specification introduces the sessionStorage (page 317) DOM
attribute. Sites can add data to the session storage, and it will be accessible to any page
from that domain opened in that window.

For example, a page could have a checkbox that the user ticks to indicate that he
wants insurance:

<label>
<input type="checkbox" onchange="sessionStorage.insurance = checked">
I want insurance on this trip.

</label>

A later page could then check, from script, whether the user had checked the
checkbox or not:

if (sessionStorage.insurance) { ... }
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If the user had multiple windows opened on the site, each one would have its own
individual copy of the session storage object.

The second storage mechanism is designed for storage that spans multiple windows,
and lasts beyond the current session. In particular, Web applications may wish to store
megabytes of user data, such as entire user-authored documents or a user's mailbox, on
the clientside for performance reasons.

Again, cookies do not handle this case well, because they are transmitted with every
request.

The globalStorage (page 318) DOM attribute is used to access the global storage
areas.

The site at example.com can display a count of how many times the user has
loaded its page by putting the following at the bottom of its page:

<p>
You have viewed this page
<span id="count">an untold number of</span>
time(s).

</p>
<script>

var storage = globalStorage['example.com'];
if (!storage.pageLoadCount)

storage.pageLoadCount = 0;
storage.pageLoadCount = parseInt(storage.pageLoadCount, 10) + 1;
document.getElementById('count').textContent = storage.pageLoadCount;

</script>

Each domain and each subdomain has its own separate storage area. Subdomains can
access the storage areas of parent domains, and domains can access the storage areas
of subdomains.

• globalStorage[''] is accessible to all domains.
• globalStorage['com'] is accessible to all .com domains
• globalStorage['example.com'] is accessible to example.com and any of its

subdomains
• globalStorage['www.example.com'] is accessible to www.example.com and

example.com, but not www2.example.com.

Storage areas (both session storage and global storage) store strings. To store
structured data in a storage area, you must first convert it to a string.

4.7.2. The Storage (page 314) interface

interface Storage {

readonly attribute unsigned long length (page 315);
DOMString key (page 315)(in unsigned long index);
StorageItem (page 316) getItem (page 315)(in DOMString key);
void setItem (page 315)(in DOMString key, in DOMString data);
void removeItem (page 316)(in DOMString key);

};
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Each Storage (page 314) object provides access to a list of key/value pairs, which are
sometimes called items. Keys are strings, and any string (including the empty string) is a
valid key. Values are strings with associated metadata, represented by StorageItem
(page 316) objects.

Each Storage (page 314) object is associated with a list of key/value pairs when it is
created, as defined in the sections on the sessionStorage (page 317) and
globalStorage (page 318) attributes. Multiple separate objects implementing the
Storage (page 314) interface can all be associated with the same list of key/value pairs
simultaneously.

Key/value pairs have associated metadata. In particular, a key/value pair can be marked
as either "safe only for secure content", or as "safe for both secure and insecure
content".

A key/value pair is accessible if either it is marked as "safe for both secure and insecure
content", or it is marked as "safe only for secure content" and the script in question is
running in a secure scripting context.

The length attribute must return the number of key/value pairs currently present and
accessible (page 315) in the list associated with the object.

The key(n) method must return the name of the nth accessible key in the list. The order
of keys is user-agent defined, but must be consistent within an object between changes
to the number of keys. (Thus, adding (page 315) or removing (page 316) a key may
change the order of the keys, but merely changing the value of an existing key must not.)
If n is less than zero or greater than or equal to the number of key/value pairs in the
object, then this method must raise an INDEX_SIZE_ERR exception.

The getItem(key) method must return the StorageItem (page 316) object
representing the key/value pair with the given key. If the given key does not exist in the
list associated with the object, or is not accessible, then this method must return null.
Subsequent calls to this method with the same key from scripts running in the same
security context must return the same instance of the StorageItem (page 316)
interface. (Such instances must not be shared across security contexts, though.)

The setItem(key, value) method must first check if a key/value pair with the given
key already exists in the list associated with the object.

If it does not, then a new key/value pair must be added to the list, with the given key and
value, such that any current or future StorageItem (page 316) objects referring to this
key/value pair will return the value given in the value argument. If the script setting the
value is running in a secure scripting context, then the key/value pair must be marked as
"safe only for secure content", otherwise it must be marked as "safe for both secure and
insecure content".

If the given key does exist in the list, then, if the key/value pair with the given key is
accessible, it must have its value updated so that any current or future StorageItem

(page 316) objects referring to this key/value pair will return the value given in the value
argument. If it is not accessible, the method must raise a security exception (page 280).
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When the setItem() (page 315) method is successfully invoked (i.e. when it doesn't
raise an exception), events are fired on other HTMLDocument (page 26) objects that can
access the newly stored data, as defined in the sections on the sessionStorage

(page 317) and globalStorage (page 318) attributes.

The removeItem(key) method must cause the key/value pair with the given key to be
removed from the list associated with the object, if it exists and is accessible. If no item
with that key exists, the method must do nothing. If an item with that key exists but is not
accessible, the method must raise a security exception (page 280).

The setItem() (page 315) and removeItem() (page 316) methods must be atomic
with respect to failure. That is, changes to the data storage area must either be
successful, or the data storage area must not be changed at all.

In the ECMAScript DOM binding, enumerating a Storage (page 314) object must
enumerate through the currently stored and accessible keys in the list the object is
associated with. (It must not enumerate the values or the actual members of the
interface). In the ECMAScript DOM binding, Storage (page 314) objects must support
dereferencing such that getting a property that is not a member of the object (i.e. is
neither a member of the Storage (page 314) interface nor of Object) must invoke the
getItem() (page 315) method with the property's name as the argument, and setting
such a property must invoke the setItem() (page 315) method with the property's
name as the first argument and the given value as the second argument.

4.7.3. The StorageItem (page 316) interface

Items in Storage (page 314) objects are represented by objects implementing the
StorageItem (page 316) interface.

interface StorageItem {

attribute boolean secure (page 317);
attribute DOMString value (page 316);

};

In the ECMAScript DOM binding, StorageItem (page 316) objects must stringify to
their value (page 316) attribute's value.

The value attribute must return the current value of the key/value pair represented by
the object. When the attribute is set, the user agent must invoke the setItem() (page
315) method of the Storage (page 314) object that the StorageItem (page 316)
object is associated with, with the key that the StorageItem (page 316) object is
associated with as the first argument, and the new given value of the attribute as the
second argument.

StorageItem (page 316) objects must be live (page 22), meaning that as the
underlying Storage (page 314) object has its key/value pairs updated, the
StorageItem (page 316) objects must always return the actual value of the key/value
pair they represent.
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If the key/value pair has been deleted, the StorageItem (page 316) object must act as
if its value was the empty string. On setting, the key/value pair will be recreated.

The secure attribute must raise an INVALID_ACCESS_ERR exception when accessed
or set from a script whose script context is not considered secure. (Basically, if the page
is not an SSL page.)

If the scripting context is secure, then the secure (page 317) attribute must return true if
the key/value pair is considered "safe only for secure content", and false if it is
considered "safe for both secure and insecure content". If it is set to true, then the key/
value pair must be flagged as "safe only for secure content". If it is set to false, then the
key/value pair must be flagged as "safe for both secure and insecure content".

If a StorageItem (page 316) object is obtained by a script that is not running in a
secure scripting context, and the item is then marked with the "safe only for secure
content" flag by a script that is running in a secure context, the StorageItem (page
316) object must continue to be available to the first script, who will be able to read the
value of the object. However, any attempt to set the value would then start raising
exceptions as described in the previous section, and the key/value pair would no longer
appear in the appropriate Storage (page 314) object.

4.7.4. The sessionStorage (page 317) attribute

The sessionStorage attribute represents the storage area specific to the current
top-level browsing context (page 20).

Each top-level browsing context (page 20) has a unique set of session storage areas,
one for each domain.

User agents should not expire data from a browsing context's session storage areas, but
may do so when the user requests that such data be deleted, or when the UA detects
that it has limited storage space, or for security reasons. User agents should always
avoid deleting data while a script that could access that data is running. When a top-level
browsing context is destroyed (and therefore permanently inaccessible to the user) the
data stored in its session storage areas can be discarded with it, as the API described in
this specification provides no way for that data to ever be subsequently retrieved.

Note: The lifetime of a browsing context can be unrelated to the lifetime of
the actual user agent process itself, as the user agent may support
resuming sessions after a restart.

When a new HTMLDocument (page 26) is created, the user agent must check to see if
the document's top-level browsing context (page 20) has allocated a session storage
area for that document's domain (page 279). If it has not, a new storage area for that
document's domain must be created.

The Storage (page 314) object for the document's associated WindowHTML (page
301) object's sessionStorage (page 317) attribute must then be associated with the
domain's session storage area.
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When a new top-level browsing context (page 20) is created by cloning an existing
browsing context (page 20), the new browsing context must start with the same session
storage areas as the original, but the two sets must from that point on be considered
separate, not affecting each other in any way.

When a new top-level browsing context (page 20) is created by a script in an existing
browsing context (page 20), or by the user following a link in an existing browsing
context, or in some other way related to a specific HTMLDocument (page 26), then, if the
new context's first HTMLDocument (page 26) has the same domain (page 279) as the
HTMLDocument (page 26) from which the new context was created, the new browsing
context must start with a single session storage area. That storage area must be a copy
of that domain's session storage area in the original browsing context, which from that
point on must be considered separate, with the two storage areas not affecting each
other in any way.

When the setItem() (page 315) method is called on a Storage (page 314) object x
that is associated with a session storage area, then, if the method does not raise a
security exception (page 280), in every HTMLDocument (page 26) object whose
WindowHTML (page 301) object's sessionStorage (page 317) attribute's Storage
(page 314) object is associated with the same storage area, other than x, a storage

(page 320) event must be fired, as described below (page 320).

4.7.5. The globalStorage (page 318) attribute

interface StorageList {

Storage (page 314) namedItem (page 318)(in DOMString domain);
};

The globalStorage object provides a Storage (page 314) object for each domain.

In the ECMAScript DOM binding, StorageList (page 318) objects must support
dereferencing such that getting a property that is not a member of the object (i.e. is
neither a member of the StorageList (page 318) interface nor of Object) must
invoke the namedItem() (page 318) method with the property's name as the argument.

User agents must have a set of global storage areas, one for each domain.

User agents should only expire data from the global storage areas for security reasons
or when requested to do so by the user. User agents should always avoid deleting data
while a script that could access that data is running. Data stored in global storage areas
should be considered potentially user-critical. It is expected that Web applications will
use the global storage areas for storing user-written documents.

The namedItem(domain) method tries to returns a Storage (page 314) object
associated with the given domain, according to the rules that follow.

The domain must first be split into an array of strings, by splitting the string at "."
characters (U+002E FULL STOP). If the domain argument is the empty string, then the
array is empty as well. If the domain argument is not empty but has no dots, then the
array has one item, which is equal to the domain argument. If the domain argument
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contains consecutive dots, there will be empty strings in the array (e.g. the string
"hello..world" becomes split into the three strings "hello", "", and "world", with the middle
one being the empty string).

Each component of the array must then have the IDNA ToASCII algorithm applied to it,
with both the AllowUnassigned and UseSTD3ASCIIRules flags set. [RFC3490] If
ToASCII fails to convert one of the components of the string, e.g. because it is too long
or because it contains invalid characters, then the user agent must raise a SYNTAX_ERR

exception. [DOM3CORE] The components after this step consist of only US-ASCII
characters.

The components of the array must then be converted to lowercase. Since only US-ASCII
is involved at this step, this only requires converting characters in the range A-Z to the
corresponding characters in the range a-z.

The resulting array is used in a comparison with another array, as described below. In
addition, its components are concatenated together, each part separated by a dot
(U+002E), to form the normalised requested domain.

If the original domain was "Åsgård.Example.Com", then the resulting array would
have the three items "xn--sgrd-poac", "example", and "com", and the normalised
requested domain would be "xn--sgrd-poac.example.com".

Next, the script's own domain (page 280) is processed to find if it is allowed to access
the requested domain.

If the script's domain name in not known, e.g. if only the server's IP address is known,
and the normalised requested domain (page 319) is not the empty string, then the user
agent must raise a security exception (page 280).

Note: If the normalised requested domain (page 319) is the empty string,
then the rest of this algorithm can be skipped. This is because in that
situation, the comparison of the two arrays below will always find them to
be the same — the first array in such a situation is also empty and so
permission to access that storage area will always be given.

If the script's domain contains no dots (U+002E) then the string ".localdomain" must
be appended to the script's domain.

Then, the script's domain must be turned into an array, being split, converted to ASCII,
and lowercased as described for the domain argument above (page 318).

Of the two arrays, the longest one must then be shortened to the length of the shorter
one, by dropping items from the start of the array.

If the domain argument is "www.example.com" and the script's domain is
"example.com" then the first array will be a three item array ("www", "example",
"com"), and the second will be a two item array ("example", "com"). The first array is
therefore shortened, dropping the leading parts, making both into the same array
("example", "com").
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If the two arrays are not component-for-component identical in literal string comparisons,
then the user agent must then raise a security exception (page 280).

Otherwise, the user agent must check to see if it has allocated global storage area for
the normalised requested domain (page 319). If it has not, a new storage area for that
domain must be created.

The user agent must then create a Storage (page 314) object associated with that
domain's global storage area, and return it.

When the requested domain is a top level domain, or the empty string, or a
country-specific sub-domain like "co.uk" or "ca.us", the associated global storage area is
known as public storage area

The setItem() (page 315) method might be called on a Storage (page 314) object
that is associated with a global storage area for a domain d, created by a StorageList

(page 318) object associated with a WindowHTML (page 301) object x. Whenever this
occurs, if the method didn't raise an exception, a storage (page 320) event must be
fired, as described below, in every HTMLDocument (page 26) object that matches the
following conditions:

• Its WindowHTML (page 301) object is not x, and

• Its WindowHTML (page 301) object's globalStorage (page 317) attribute's
StorageList (page 318) object's namedItem() (page 318) method would not
raise a security exception (page 280) according to the rules above if it was invoked
with the domain d.

In other words, every other document that has access to that domain's global storage
area is notified of the change.

4.7.6. The storage (page 320) event

The storage event is fired in an HTMLDocument (page 26) when a storage area
changes, as described in the previous two sections (for session storage (page 318), for
global storage (page 320)).

When this happens, a storage (page 314) event in no namespace, which bubbles, is
not cancelable, has no default action, and which uses the StorageEvent (page 321)
interface described below, must be fired on the body element (page 36).

However, it is possible (indeed, for session storage areas, likely) that the target
HTMLDocument (page 26) object is not active at that time. For example, it might not be
the current entry (page 303) in the session history; user agents typically stop scripts from
running in pages that are in the history. In such cases, the user agent must instead delay
the firing of the event until such time as the HTMLDocument (page 26) object in question
becomes active again.
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When there are multiple delayed storage (page 314) events for the same
HTMLDocument (page 26) object, user agents should coalesce events with the same
domain (page 321) value (dropping duplicates).

If the DOM of a page that has delayed storage (page 314) events queued up is
discarded (page 303), then the delayed events are dropped as well.

interface StorageEvent : Event {

readonly attribute DOMString domain (page 321);
void initStorageEvent (page 321)(in DOMString typeArg, in boolean

canBubbleArg, in boolean cancelableArg, in DOMString domainArg);

void initStorageEventNS (page 321)(in DOMString namespaceURIArg, in DOMString
typeArg, in boolean canBubbleArg, in boolean cancelableArg, in DOMString
domainArg);
};

The initStorageEvent() and initStorageEventNS() methods must initialise the
event in a manner analogous to the similarly-named methods in the DOM3 Events
interfaces. [DOM3EVENTS] (page 0)

The domain attribute of the StorageEvent (page 321) event object must be set to the
name of the domain associated with the storage area that changed if that storage area is
a global storage area, or the string "#session" if it was a session storage area.

4.7.7. Miscellaneous implementation requirements for storage areas

4.7.7.1. Disk space

User agents should limit the total amount of space allowed for a domain based on the
domain of the page setting the value.

User agents should not limit the total amount of space allowed on a per-storage-area
basis, otherwise a site could just store data in any number of subdomains, e.g. storing up
to the limit in a1.example.com, a2.example.com, a3.example.com, etc, circumventing
per-domain limits.

User agents should consider additional quota mechanisms (for example limiting the
amount of space provided to a domain's subdomains as a group) so that hostile authors
can't run scripts from multiple subdomains all adding data to the global storage area in
an attempted denial-of-service attack.

User agents may prompt the user when per-domain space quotas are reached, allowing
the user to grant a site more space. This enables sites to store many user-created
documents on the user's computer, for instance.

User agents should allow users to see how much space each domain is using.

If the storage area space limit is reached during a setItem() (page 315) call, the user
agent should raise an exception.
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A mostly arbitrary limit of five megabytes per domain is recommended. Implementation
feedback is welcome and will be used to update this suggestion in future.

4.7.7.2. Threads

Multiple browsing contexts must be able to access the global storage areas
simultaneously in a predictable manner. Scripts must not be able to detect any
concurrent script execution.

This is required to guarentee that the length (page 315) attribute of a Storage (page
314) object never changes while a script is executing, other than in a way that is
predictable by the script itself.

There are various ways of implementing this requirement. One is that if a script running
in one browsing context accesses a global storage area, the UA blocks scripts in other
browsing contexts when they try to access any global storage area until the first script
has executed to completion. (Similarly, when a script in one browsing context accesses
its session storage area, any scripts that have the same top level browsing context and
the same domain would block when accessing their session storage area until the first
script has executed to completion.) Another (potentially more efficient but probably more
complex) implementation strategy is to use optimistic transactional script execution. This
specification does not require any particular implementation strategy, so long as the
requirement above is met.

4.7.8. Security and privacy

4.7.8.1. User tracking

A third-party advertiser (or any entity capable of getting content distributed to multiple
sites) could use a unique identifier stored in its domain's global storage area to track a
user across multiple sessions, building a profile of the user's interests to allow for highly
targeted advertising. In conjunction with a site that is aware of the user's real identity (for
example an e-commerce site that requires authenticated credentials), this could allow
oppressive groups to target individuals with greater accuracy than in a world with purely
anonymous Web usage.

The globalStorage (page 318) object also introduces a way for sites to cooperate to
track users over multiple domains, by storing identifying data in "public (page 320)"
top-level domain storage area, accessible by any domain.

There are a number of techniques that can be used to mitigate the risk of user tracking:

• Blocking third-party storage: user agents may restrict access to the
globalStorage (page 318) object to scripts originating at the domain of the
top-level document of the browsing context (page 20).

This blocks a third-party site from using its private storage area for tracking a user,
but top-level sites could still cooperate with third parties to perferm user tracking by
using the "public (page 320)" storage area.
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• Expiring stored data: user agents may automatically delete stored data after a
period of time.

For example, a user agent could treat the global storage area as session-only
storage, deleting the data once the user had closed all the browsing contexts that
could access it.

This can restrict the ability of a site to track a user, as the site would then only be
able to track the user across multiple sessions when he authenticates with the site
itself (e.g. by making a purchase or logging in to a service).

• Blocking access to the top-level domain ("public (page 320)") storage areas: user
agents may prevent domains from storing data in and reading data from the
top-level domain entries in the globalStorage (page 318) object.

In practice this requires a detailed list of all the "public" second-level (and third-level)
domains. For example, content at the domain www.example.com would be allowed
to access example.com data but not com data; content at the domain
example.co.uk would be allowed access to example.co.uk but not co.uk or
uk; and content at example.chiyoda.tokyo.jp would be allowed access to
example.chiyoda.tokyo.jp but not chiyoda.tokyo.jp, tokyo.jp, or jp,
while content at example.metro.tokyo.jp would be allowed access to both
example.metro.tokyo.jp and metro.tokyo.jp but not tokyo.jp or jp. The
problem is even more convoluted when one considers private domains with
third-party subdomains such as dyndns.org or uk.com.

Blocking access to the "public (page 320)" storage areas can also prevent innocent
sites from cooperating to provide services beneficial to the user.

• Treating persistent storage as cookies: user agents may present the persistent
storage feature to the user in a way that does not distinguish it from HTTP session
cookies. [RFC2965]

This might encourage users to view persistent storage with healthy suspicion.

• Site-specific white-listing of access to "public (page 320)" storage area: user agents
may allow sites to access persistent storage for their own domain and subdomains
in an unrestricted manner, but require the user to authorise access to the storage
area of higher-level domains.

For example, code at example.com would be always allowed to read and write
data for www.example.com and example.com, but if it tried to access com, the
user agent could display a non-modal message informing the user that the page
requested access to com and offering to allow it.

• Origin-tracking of persistent storage data: user agents may record the domain of the
script that caused data to be stored.

If this information is then used to present the view of data currently in persistent
storage, it would allow the user to make informed decisions about which parts of the
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persistent storage to prune. Combined with a blacklist ("delete this data and prevent
this domain from ever storing data again"), the user can restrict the use of persistent
storage to sites that he trusts.

• Shared blacklists: user agents may allow users to share their persistent storage
domain blacklists.

This would allow communities to act together to protect their privacy.

While these suggestions prevent trivial use of this API for user tracking, they do not block
it altogether. Within a single domain, a site can continue to track the user across multiple
sessions, and can then pass all this information to the third party along with any
identifying information (names, credit card numbers, addresses) obtained by the site. If a
third party cooperates with multiple sites to obtain such information, a profile can still be
created.

However, user tracking is to some extent possible even with no cooperation from the
user agent whatsoever, for instance by using session identifiers in URIs, a technique
already commonly used for innocuous purposes but easily repurposed for user tracking
(even retroactively). This information can then be shared with other sites, using using
visitors' IP addresses and other user-specific data (e.g. user-agent headers and
configuration settings) to combine separate sessions into coherent user profiles.

4.7.8.2. Cookie resurrection

If the user interface for persistent storage presents data in the persistent storage feature
separately from data in HTTP session cookies, then users are likely to delete data in one
and not the other. This would allow sites to use the two features as redundant backup for
each other, defeating a user's attempts to protect his privacy.

4.7.8.3. Integrity of "public" storage areas

Since the "public (page 320)" global storage areas are accessible by content from many
different parties, it is possible for third-party sites to delete or change information stored
in those areas in ways that the originating sites may not expect.

Authors must not use the "public (page 320)" global storage areas for storing sensitive
data. Authors must not trust information stored in "public (page 320)" global storage
areas.

4.7.8.4. Cross-protocol and cross-port attacks

This API makes no distinction between content served over HTTP, FTP, or other
host-based protocols, and does not distinguish between content served from different
ports at the same host.

Thus, for example, data stored in the global persistent storage for domain
"www.example.com" by a page served from HTTP port 80 will be available to a page
served in http://example.com:18080/, even if the latter is an experimental server
under the control of a different user.
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Since the data is not sent over the wire by the user agent, this is not a security risk in its
own right. However, authors must take proper steps to ensure that all hosts that have
fully qualified host names that are subsets of hosts dealing with sensitive information are
as secure as the originating hosts themselves.

Similarly, authors must ensure that all Web servers on a host, regardless of the port, are
equally trusted if any of them are to use persistent storage. For instance, if a Web server
runs a production service that makes use of the persistent storage feature, then other
users that have access to that machine and that can run a Web server on another port
will be able to access the persistent storage added by the production service (assuming
they can trick a user into visiting their page).

However, if one is able to trick users into visiting a Web server with the same host name
but on a different port as a production service used by these users, then one could just
as easily fake the look of the site and thus trick users into authenticating with the fake
site directly, forwarding the request to the real site and stealing the credentials in the
process. Thus, the persistent storage feature is considered to only minimally increase
the risk involved.

What about if someone is able to get a server up on a port, and can then send people
to that URI? They could steal all the data with no further interaction. How about
putting the port number at the end of the string being compared? (Implicitly.)

4.7.8.5. DNS spoofing attacks

Because of the potential for DNS spoofing attacks, one cannot guarentee that a host
claiming to be in a certain domain really is from that domain. The secure (page 317)
attribute is provided to mark certain key/value pairs as only being accessible to pages
that have been authenticated using secure certificates (or similar mechanisms).

Authors must ensure that they do not mark sensitive items as "safe for both secure and
insecure content". (To prevent the risk of a race condition, data stored by scripts in
secure contexts default to being marked as "safe only for secure content".)

4.7.8.6. Cross-directory attacks

Different authors sharing one host name, for example users hosting content on
geocities.com, all share one persistent storage object. There is no feature to restrict
the access by pathname. Authors on shared hosts are therefore recommended to avoid
using the persistent storage feature, as it would be trivial for other authors to read from
and write to the same storage area.

Note: Even if a path-restriction feature was made available, the usual DOM
scripting security model would make it trivial to bypass this protection
and access the data from any path.
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4.7.8.7. Public storage areas corresponding to hosts

If a "public (page 320)" global storage area corresponds to a host, as it typically does if
for private domains with third-party subdomains such as dyndns.org or uk.com, the host
corresponding to the "public" domain has access to all the storage areas of its third-party
subdomains. In general, authors are discouraged from using the globalStorage (page
318) API for sensitive data unless the operators of all the domains involved are trusted.

User agents may mitigate this problem by preventing hosts corresponding to "public
(page 320)" global storage areas from accessing any storage areas other than their own.

4.7.8.8. Storage areas in the face of untrusted higher-level domains that do not
correspond to public storage areas

Authors should not store sensitive data using the global storage APIs if there are hosts
with fully-qualified domain names that are subsets of their own which they do not trust.
For example, an author at finance.members.example.net should not store
sensitive financial user data in the finance.members.example.net storage area if
he does not trust the host that runs example.net.

4.7.8.9. Storage areas in the face of untrusted subdomains

If an author publishing content on one host, e.g. example.com, wishes to use the
globalStorage (page 318) API but does not wish any content on the host's
subdomains to access the data, the author should use an otherwise non-existent
subdomain name, e.g., private.example.com, to store the data. This will be
accessible only to that host (and its parent domains), and not to any of the real
subdomains (e.g. upload.example.com).

4.7.8.10. Implementation risks

The two primary risks when implementing this persistent storage feature are letting
hostile sites read information from other domains, and letting hostile sites write
information that is then read from other domains.

Letting third-party sites read data that is not supposed to be read from their domain
causes information leakage, For example, a user's shopping wishlist on one domain
could be used by another domain for targeted advertising; or a user's work-in-progress
confidential documents stored by a word-processing site could be examined by the site
of a competing company.

Letting third-party sites write data to the storage areas of other domains can result in
information spoofing, which is equally dangerous. For example, a hostile site could add
items to a user's wishlist; or a hostile site could set a user's session identifier to a known
ID that the hostile site can then use to track the user's actions on the victim site.

A risk is also presented by servers on local domains having host names matching
top-level domain names, for instance having a host called "com" or "net". Such hosts
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might, if implementations fail to correctly implement the .localdomain suffixing, have
full access to all the data stored in a UA's persistent storage for that top level domain.

Thus, strictly following the model described in this specification is important for user
security.

In addition, a number of optional restrictions related to the "public (page 320)" global
storage areas are suggested in the previous sections. The design of this API is intended
to be such that not supporting these restrictions, or supporting them less than perfectly,
does not result in critical security problems. However, implementations are still
encouraged to create and maintain a list of "public (page 320)" domains, and apply the
restrictions described above.

4.8. User prompts

window.alert(), .confirm(), .prompt()

4.9. Auxillary browsing contexts

The window.open() method provides a mechanism for navigating an existing browsing
context or opening and navigating an auxillary browsing context.

The method has four (optional) arguments.

The first argument, url, gives a URI (or IRI) for a page to load in the browsing context. If
no arguments are provided, then the url argument defaults to "about:blank". The

argument must be resolved to an absolute URI by ...

The second argument, target, specifies the name of the browsing context that is to be
navigated. Some of the values have special meanings, namely "_blank", "_self", and
"_top". If fewer than two arguments are provided, then the name argument defaults to
the value "_blank".

The third argument, features, has no effect and is supported for historical reasons only.

The fourth argument, replace, specifies whether or not the new page will replace the
page currently loaded in the browsing context, when target identifies an existing
browsing context. When three or fewer arguments are provided, replace defaults to false.

When the method is invoked, the user agent must first select a browsing context to
navigate by applying the rules for chosing a browsing context given a browsing context
name (page 328) using the target argument as the name, unless the user has indicated
a preference, in which case the browsing context to navigate may instead be the one
indicated by the user.
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For example, suppose there is a user agent that supports control-clicking a link to
open it in a new tab. If a user clicks in that user agent on an element whose
onclick (page 283) handler uses the window.open() (page 327) API to open a
page in an iframe, but, while doing so, holds the control key down, the user agent
could override the selection of the target browsing context to instead target a new
tab.

Then, the user agent must navigate (page 269) the selected browsing context to the URI
given in url. If the replace is true, then replacement must be enabled (page 271).

4.9.1. Accessing other browsing contexts

The opener DOM attribute on the Window object must return the Window object of the
browsing context from which the current browsing context was created, if there is one
and it is still available.

In ECMAScript implementations, objects that implement the WindowHTML (page 301)
interface must also have a [[Get]] method that, when invoked with a property name that
is a number i, returns the ith child browsing context of the current Document.

The length DOM attribute on the WindowHTML (page 301) interface must return the
number of child browsing contexts of the current Document.

The window, frames, self DOM attributes must all return the Window object itself.

4.9.2. Browsing context names

A valid browsing context name is any string that does not start with a U+005F LOW
LINE character, or, a string that case-insensitively matches one of: _blank, _self,
_parent, or _top. (Names starting with an underscore are reserved for special
keywords.)

The rules for chosing a browsing context given a browsing context name are as
follows:

1. If the given browsing context name is the empty string or _self, then the chosen
browsing context must be the current one.

2. If the given browsing context name is _parent, then the chosen browsing context
must be the parent browsing context of the current one.

3. If the given browsing context name is _top, then the chosen browsing context must
be the most removed ancestor browsing context of the current one.

4. If the given browsing context name is not _blank and there exists a browsing
context whose name is the same as the given browsing context name, and that
browsing context's document's domain (page 279) is the same as the current
browsing context's document's domain (page 279), then that browsing context
should be the chosen one. If there are multiple matching browsing contexts, the user
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agent should select one in some arbitrary consistent manner, such as the most
recently opened, or most recently focused.

5. Otherwise, the chosen browsing context must be a new auxillary browsing context. If
the given browsing context name is not _blank, then the new auxillary browsing
context's name must be the given browsing context name. Otherwise, it has no
name.

this section should move to somewhere where we define browsing contexts.
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5. Editing

This section describes various features that allow authors to enable users to edit
documents and parts of documents interactively.

5.1. [TBW] Introduction

This section is non-normative.

Would be nice to explain how these features work together.

5.2. [SCS] The contenteditable (page 331) attribute

The contenteditable attribute is a common attribute. User agents must support this
attribute on all HTML elements (page 21).

The contenteditable (page 331) attribute is an enumerated attribute (page 64)
whose keywords are the empty string, true, and false. The empty string and the true

keyword map to the true state. The false keyword maps to the false state, which is also
the invalid value default. There is no missing value default.

If an HTML element has a contenteditable (page 331) attribute set to the true state,
or if its nearest ancestor with the contenteditable (page 331) attribute set has its
attribute set to the true state, or if it has no ancestors with the contenteditable (page
331) attribute set but the Document has designMode (page 334) enabled, then the UA
must treat the element as editable (as described below).

Otherwise, either the HTML element has a contenteditable (page 331) attribute set
to the false state, or its nearest ancestor with the contenteditable (page 331)
attribute set is not editable (page 331), or it has no ancestor with the
contenteditable (page 331) attribute set and the Document itself has designMode
(page 334) disabled, and the element is thus not editable.

The contentEditable DOM attribute, on getting, must return the string "inherit" if
the content attribute isn't set, "true" if the attribute is set and has the true state, and
"false" otherwise. On setting, if the new value is case-insensitively equal to the string
"inherit" then the content attribute must be removed, if the new value is
case-insensitively equal to the string "true then the content attribute must be set to the
string "true, if the new value is case-insensitively equal to the string "false then the
content attribute must be set to the string "false, and otherwise the attribute setter must
raise a SYNTAX_ERR exception.

If an element is editable (page 331) and its parent element is not, or if an element is
editable (page 331) and it has no parent element, then the element is an editing host.
Editable elements can be nested. User agents must make editing hosts focusable (which

331



typicially means they enter the tab order). An editing host can contain non-editable
sections, these are handled as described below. An editing host can contain
non-editable sections that contain further editing hosts.

When an editing host has focus, it must have a caret position that specifies where the
current editing position is. It may also have a selection (page 353).

Note: How the caret and selection are represented depends entirely on the
UA.

5.2.1. User editing actions

There are several actions that the user agent should allow the user to perform while the
user is interacting with an editing host. How exactly each action is triggered is not
defined for every action, but when it is not defined, suggested key bindings are provided
to guide implementors.

Move the caret
User agents must allow users to move the caret to any position within an editing
host, even into nested editable elements. This could be triggered as the default
action of keydown events with various key identifiers and as the default action of
mouseydown events.

Change the selection
User agents must allow users to change the selection (page 353) within an editing
host, even into nested editable elements. This could be triggered as the default
action of keydown events with various key identifiers and as the default action of
mouseydown events.

Insert text
This action must be triggered as the default action of a textInput event, and may
be triggered by other commands as well. It must cause the user agent to insert the
specified text (given by the event object's data attribute in the case of the
textInput event) at the caret.

If the caret is positioned somewhere where inline-level content (page 69) is not
allowed (e.g. because the element accepts "both block-level and inline-level content
but not both", and the element already contains block-level content), then the user
agent must not insert the text directly at the caret position. In such cases the
behaviour is UA-dependent, but user agents must not, in response to a request to
insert text, generate a DOM that is less conformant than the DOM prior to the
request.

User agents should allow users to insert new paragraphs into elements that only
contain block-level content.

For example, given the markup:
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<section>
<dl>
<dt> Ben </dt>
<dd> Goat </dd>

</dl>
</section>

...the user agent should allow the user to insert p (page 112) elements before
and after the dl (page 119) element, as children of the section (page 97)
element.

Break block
UAs should offer a way for the user to request that the current block be broken at
the caret, e.g. as the default action of a keydown event whose identifier is the
"Enter" key and that has no modifiers set.

The exact behaviour is UA-dependent, but user agents must not, in response to a
request to break a block, generate a DOM that is less conformant than the DOM
prior to the request.

Insert a line separator
UAs should offer a way for the user to request an explicit line break at the caret
position without breaking the block, for example as in a poem verse or an address.
To insert a line break, the user agent must insert a br (page 113) element.

If the caret is positioned somewhere where inline-level content (page 69) is not
allowed (e.g. because the element accepts "both block-level and inline-level content
but not both", and the element already contains block-level content), then the user
agent must not insert the br (page 113) element directly at the caret position. In
such cases the behaviour is UA-dependent, but user agents must not, in response
to a request to insert a line separator, generate a DOM that is less conformant than
the DOM prior to the request.

Delete
UAs should offer a way for the user to delete text and elements, e.g. as the default
action of keydown events whose identifiers are "U+0008" or "U+007F".

Five edge cases in particular need to be considered carefully when implementing
this feature: backspacing at the start of an element, backspacing when the caret is
immediately after an element, forward-deleting at the end of an element,
forward-deleting when the caret is immediately before an element, and deleting a
selection (page 353) whose start and end points do not share a common parent
node.

In any case, the exact behaviour is UA-dependent, but user agents must not, in
response to a request to delete text or an element, generate a DOM that is less
conformant than the DOM prior to the request.
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Insert, and wrap text in, semantic elements
UAs should offer a way for the user to mark text as having stress emphasis (page
126) and as being important (page 128), and may offer the user the ability to mark
text and blocks with other semantics.

UAs should similarly offer a way for the user to insert empty semantic elements
(such as, again, em (page 126), strong (page 128), and others) to subsequently fill
by entering text manually.

UAs should also offer a way to remove those semantics from marked up text, and to
remove empty semantic element that have been inserted.

The exact behaviour is UA-dependent, but user agents must not, in response to a
request to wrap semantics around some text or to insert or remove a semantic
element, generate a DOM that is less conformant than the DOM prior to the request.

Select and move non-editable elements nested inside editing hosts
UAs should offer a way for the user to move images and other non-editable parts
around the content within an editing host. This may be done using the drag and drop
(page 335) mechanism. User agents must not, in response to a request to move
non-editable elements nested inside editing hosts, generate a DOM that is less
conformant than the DOM prior to the request.

Edit form controls nested inside editing hosts
When an editable (page 331) form control is edited, the changes must be reflected
in both its current value and its default value. For input elements this means
updating the defaultValue DOM attribute as well as the value DOM attribute; for
select elements it means updating the option elements' defaultSelected
DOM attribute as well as the selected DOM attribute; for textarea elements this
means updating the defaultValue DOM attribute as well as the value DOM
attribute. (Updating the default* DOM attributes causes content attributs to be
updated as well.)

User agents may perform several commands per user request; for example if the user
selects a block of text and hits Enter, the UA might interpret that as a request to delete
the content of the selection (page 353) followed by a request to break the block at that
position.

5.2.2. Making entire documents editable

Documents have a

designMode, which can be either enabled or disabled.

The designMode (page 334) DOM attribute on the Document object takes takes two
values, "on" and "off". When it is set, the new value must be case-insensitively
compared to these two values. If it matches the "on" value, then designMode (page
334) must be enabled, and if it matches the "off" value, then designMode (page 334)
must be disabled. Other values must be ignored.
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When designMode (page 334) is enabled, the DOM attribute must return the value
"on", and when it is disabled, it must return the value "off".

The last state set must persist until the document is destroyed or the state is changed.
Initially, documents must have their designMode (page 334) disabled.

Enabling designMode (page 334) causes scripts in general to be disabled and the
document to become editable.

When the Document has designMode (page 334) enabled, event listeners registered
on the document or any elements owned by the document must do nothing.

5.3. [SCS] Drag and drop

This section defines an event-based drag-and-drop mechanism.

This specification does not define exactly what a drag-and-drop operation actually is.

On a visual medium with a pointing device, a drag operation could be the default action
of a mousedown event that is followed by a series of mousemove events, and the drop
could be triggered by the mouse being released.

On media without a pointing device, the user would probably have to explicitly indicate
his intention to perform a drag-and-drop operation, stating what he wishes to drag and
what he wishes to drop, respectively.

However it is implemented, drag-and-drop operations must have a starting point (e.g.
where the mouse was clicked, or the start of the selection (page 353) or element that
was selected for the drag), may have any number of intermediate steps (elements that
the mouse moves over during a drag, or elements that the user picks as possible drop
points as he cycles through possibilities), and must either have an end point (the element
above which the mouse button was released, or the element that was finally selected), or
be canceled. The end point must be the last element selected as a possible drop point
before the drop occurs (so if the operation is not canceled, there must be at least one
element in the middle step).

5.3.1. The DragEvent (page 335) and DataTransfer (page 336) interfaces

The drag-and-drop processing model involves several events. They all use the
DragEvent (page 335) interface.

interface DragEvent : Event {

readonly attribute DataTransfer (page 336) dataTransfer (page 336);
void initDragEvent (page 336)(in DOMString typeArg, in boolean canBubbleArg,

in boolean cancelableArg);

void initDragEventNS (page 336)(in DOMString namespaceURIArg, in DOMString
typeArg, in boolean canBubbleArg, in boolean cancelableArg);
};
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The initDragEvent() and initDragEventNS() methods must initialise the event in
a manner analogous to the similarly-named methods in the DOM3 Events interfaces.
[DOM3EVENTS] (page 0)

The dataTransfer attribute of the DragEvent (page 335) interface represents the
context information for the event.

When a DragEvent (page 335) object is created, a new DataTransfer (page 336)
object must be created and assigned to the dataTransfer (page 336) context
information field of the event object.

interface DataTransfer {

attribute DOMString dropEffect (page 336);
attribute DOMString effectAllowed (page 336);

void clearData (page 337)(in DOMString format);
void setData (page 337)(in DOMString format, in DOMString data);
DOMString getData (page 337)(in DOMString format);
void setDragImage (page 337)(in Element image, in long x, in long y);
void addElement (page 337)(in Element element);

};

DataTransfer (page 336) objects can conceptually contain various kinds of data.

When a DragEvent (page 335) event object is initialised, the DataTransfer (page
336) object created for the event's dataTransfer (page 336) member must be
initialised as follows:

• The DataTransfer (page 336) object must initially contain no data, no elements,
and have no associated image.

• The DataTransfer (page 336) object's effectAllowed (page 336) attribute
must be set to "uninitialized".

• The dropEffect (page 336) attribute must be set to "none".

The dropEffect attribute controls the drag-and-drop feedback that the user is given
during a drag-and-drop operation.

The attribute must ignore any attempts to set it to a value other than none, copy, link,
and move. On getting, the attribute must return the last of those four values that it was
set to.

The effectAllowed attribute is used in the drag-and-drop processing model to
initialise the dropEffect (page 336) attribute during the dragenter (page 338) and
dragover (page 338) events.

The attribute must ignore any attempts to set it to a value other than none, copy,
copyLink, copyMove, link, linkMove, move, all, and uninitialized. On
getting, the attribute must return the last of those values that it was set to.
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DataTransfer (page 336) objects can hold pieces of data, each associated with a
unique format. Formats are generally given by MIME types, with some values
special-cased for legacy reasons.

The clearData(format) method must clear the DataTransfer (page 336) object of
any data associated with the given format. If format is the value "Text", then it must be
treated as "text/plain". If the format is "URL", then it must be treated as "text/
uri-list".

The setData(format, data) method must add data to the data stored in the
DataTransfer (page 336) object, labelled as being of the type format. This must
replace any previous data that had been set for that format. If format is the value "Text",
then it must be treated as "text/plain". If the format is "URL", then it must be treated
as "text/uri-list".

The getData(format) method must return the data that is associated with the type
format, if any, and must return the empty string otherwise. If format is the value "Text",
then it must be treated as "text/plain". If the format is "URL", then the data associated
with the "text/uri-list" format must be parsed as appropriate for text/uri-list
data, and the first URI from the list must be returned. If there is no data with that format,
or if there is but it has no URIs, then the method must return the empty string. [RFC2483]

The setDragImage(element, x, y) method sets which element to use to generate
the drag feedback (page 340). The element argument can be any Element; if it is an
img (page 154) element, then the user agent should use the element's image (at its
intrinsic size) to generate the feedback, otherwise the user agent should base the
feedback on the given element (but the exact mechanism for doing so is not specified).

The addElement(element) method is an alternative way of specifying how the user
agent is to render the drag feedback (page 340). It adds an element to the
DataTransfer (page 336) object.

5.3.2. Events fired during a drag-and-drop action

The following events are involved in the drag-and-drop model. Whenever the processing
model described below causes one of these events to be fired, the event fired must use
the DragEvent (page 335) interface defined above, must have the bubbling and
cancelable behaviours given in the table below, and must have the context information
set up as described after the table.

Event
Name

Target Bubbles? Cancelable? dataTransfer
(page 337)

effectAllowed
(page 336)

dropEffect
(page 336)

Default Action

dragstart Source node
(page 339)

✓ Bubbles ✓ Cancelable Contains source
node (page 339)
unless a selection is
being dragged, in
which case it is
empty

uninitialized none Initiate the
drag-and-drop
operation

drag Source node
(page 339)

✓ Bubbles ✓ Cancelable Empty Same as last
event (page 338)

none Continue the
drag-and-drop
operation
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Event
Name

Target Bubbles? Cancelable? dataTransfer
(page 337)

effectAllowed
(page 336)

dropEffect
(page 336)

Default Action

dragenter Immediate
user
selection
(page 340)
or the body
element
(page 36)

✓ Bubbles ✓ Cancelable Empty Same as last
event (page 338)

Based on
effectAllowed

value (page 338)

Reject immediate
user selection
(page 340) as
potential target
element (page
340)

dragleave Previous
target
element
(page 340)

✓ Bubbles — Empty Same as last
event (page 338)

none None

dragover Current
target
element
(page 340)

✓ Bubbles ✓ Cancelable Empty Same as last
event (page 338)

Based on
effectAllowed

value (page 338)

Reset the current
drag operation
(page 341) to
"none"

drop Current
target
element
(page 340)

✓ Bubbles ✓ Cancelable getData() returns
data set in
dragstart event

Same as last
event (page 338)

Current drag
operation (page
341)

Varies

dragend Source node
(page 339)

✓ Bubbles — Empty Same as last
event (page 338)

Current drag
operation (page
341)

Varies

The dataTransfer (page 336) object's contents are empty except for dragstart
(page 337) events and drop (page 338) events, for which the contents are set as
described in the processing model, below.

The effectAllowed (page 336) attribute must be set to "uninitialized" for
dragstart (page 337) events, and to whatever value the field had after the last
drag-and-drop event was fired for all other events (only counting events fired by the user
agent for the purposes of the drag-and-drop model described below).

The dropEffect (page 336) attribute must be set to "none" for dragstart (page
337), drag (page 337), dragleave (page 338), and dragend (page 338) events
(except when stated otherwise in the algorithms given in the sections below), to the
value corresponding to the current drag operation (page 341) for drop (page 338)
events, and to a value based on the effectAllowed (page 336) attribute's value and
to the drag-and-drop source, as given by the following table, for the remaining events
(dragenter (page 338) and dragover (page 338)):

effectAllowed (page 336) dropEffect (page 336)

none none

copy, copyLink, copyMove, all copy

link, linkMove link

move move

uninitialized when what is being dragged is a selection
from a text field

move

uninitialized when what is being dragged is a selection copy

uninitialized when what is being dragged is an a (page
122) element with an href attribute

link
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effectAllowed (page 336) dropEffect (page 336)

Any other case copy

5.3.3. Drag-and-drop processing model

When the user attempts to begin a drag operation, the user agent must first determine
what is being dragged. If the drag operation was invoked on a selection, then it is the
selection that is being dragged. Otherwise, it is the first element, going up the ancestor
chain, starting at the node that the user tried to drag, that has the DOM attribute
draggable (page 344) set to true. If there is no such element, then nothing is being
dragged, the drag-and-drop operation is never started, and the user agent must not
continue with this algorithm.

Note: img (page 154) elements and a (page 122) elements with an href
(page 286) attribute have their draggable (page 344) attribute set to true
by default.

If the user agent determines that something can be dragged, a dragstart (page 337)
event must then be fired.

If it is a selection that is being dragged, then this event must be fired on the node that the
user started the drag on (typically the text node that the user originally clicked). If the
user did not specify a particular node, for example if the user just told the user agent to
begin a drag of "the selection", then the event must be fired on the deepest node that is a
common ancestor of all parts of the selection.

If it is not a selection that is being dragged, then the event must be fired on the element
that is being dragged.

The node on which the event is fired is the source node. Multiple events are fired on this
node during the course of the drag-and-drop operation.

If it is a selection that is being dragged, the dataTransfer (page 336) member of the
event must be created with no nodes. Otherwise, it must be created containing just the
source node (page 339). Script can use the addElement() (page 337) method to add
further elements to the list of what is being dragged.

If it is a selection that is being dragged, the dataTransfer (page 336) member of the
event must have the text of the selection added to it as the data associated with the
text/plain format. Otherwise, if it is an img (page 154) element being dragged, then
the value of the element's src (page 157) DOM attribute must be added, associated
with the text/uri-list format. Otherwise, if it is an a (page 122) element being
dragged, then the value of the element's href (page 125) DOM attribute must be added,
associated with the text/uri-list format. Otherwise, no data is added to the object
by the user agent.

If the event is canceled, then the drag-and-drop operation must not occur; the user agent
must not continue with this algorithm.
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If it is not canceled, then the drag-and-drop operation must be initiated.

Note: Since events with no event handlers registered are, almost by
definition, never canceled, drag-and-drop is always available to the user if
the author does not specifically prevent it.

The drag-and-drop feedback must be generated from the first of the following sources
that is available:

1. The element specified in the last call to the setDragImage() (page 337) method
of the dataTransfer (page 336) object of the dragstart (page 337) event, if the
method was called. In visual media, if this is used, the x and y arguments that were
passed to that method should be used as hints for where to put the cursor relative to
the resulting image. The values are expressed as distances in CSS pixels from the
left side and from the top side of the image respectively. [CSS21]

2. The elements that were added to the dataTransfer (page 336) object, both
before the event was fired, and during the handling of the event using the
addElement() (page 337) method, if any such elements were indeed added.

3. The selection that the user is dragging.

The user agent must take a note of the data that was placed (page 337) in the
dataTransfer (page 336) object. This data will be made available again when the
drop (page 338) event is fired.

From this point until the end of the drag-and-drop operation, device input events (e.g.
mouse and keyboard events) must be suppressed. In addition, the user agent must track
all DOM changes made during the drag-and-drop operation, and add them to its undo
history (page 346) as one atomic operation once the drag-and-drop operation has
ended.

During the drag operation, the element directly indicated by the user as the drop target is
called the immediate user selection. (Only elements can be selected by the user; other
nodes must not be made available as drop targets.) However, the immediate user
selection (page 340) is not necessarily the current target element, which is the element
currently selected for the drop part of the drag-and-drop operation. The immediate user
selection (page 340) changes as the user selects different elements (either by pointing
at them with a pointing device, or by selecting them in some other way). The current
target element (page 340) changes when the immediate user selection (page 340)
changes, based on the results of event handlers in the document, as described below.

Both the current target element (page 340) and the immediate user selection (page 340)
can be null, which means no target element is selected. They can also both be elements
in other (DOM-based) documents, or other (non-Web) programs altogether. (For
example, a user could drag text to a word-processor.) The current target element (page
340) is initially null.
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In addition, there is also a current drag operation, which can take on the values "none",
"copy", "link", and "move". Initially it has the value "none". It is updated by the user agent
as described in the steps below.

User agents must, every 350ms (±200ms), perform the following steps in sequence. (If
the user agent is still performing the previous iteration of the sequence when the next
iteration becomes due, the user agent must not execute the overdue iteration, effectively
"skipping missed frames" of the drag-and-drop operation.)

1. First, the user agent must fire a drag (page 337) event at the source node (page
339). If this event is canceled, the user agent must set the current drag operation
(page 341) to none (no drag operation).

2. Next, if the drag (page 337) event was not canceled and the user has not ended
the drag-and-drop operation, the user agent must check the state of the
drag-and-drop operation, as follows:

1. First, if the user is indicating a different immediate user selection (page 340)
than during the last iteration (or if this is the first iteration), and if this immediate
user selection (page 340) is not the same as the current target element (page
340), then the current target element (page 340) must be updated, as follows:

1. If the new immediate user selection (page 340) is null, or is in a non-DOM
document or application, then set the current target element (page 340) to
the same value.

2. Otherwise, the user agent must fire a dragenter (page 338) event at the
immediate user selection (page 340).

3. If the event is canceled, then the current target element (page 340) must
be set to the immediate user selection (page 340).

4. Otherwise, if the current target element (page 340) is not the body element
(page 36), the user agent must fire a dragenter (page 338) event at the
body element (page 36), and the current target element (page 340) must
be set to the body element (page 36), regardless of whether that event was
canceled or not. (If the body element (page 36) is null, then the current
target element (page 340) would be set to null too in this case, it wouldn't
be set to the Document object.)

2. If the previous step caused the current target element (page 340) to change,
and if the previous target element was not null or a part of a non-DOM
document, the user agent must fire a dragleave (page 338) event at the
previous target element.

3. If the current target element (page 340) is a DOM element, the user agent must
fire a dragover (page 338) event at this current target element (page 340).

If the dragover (page 338) event is canceled, the current drag operation
(page 341) must be reset to "none".
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Otherwise, the current drag operation (page 341) must be set based on the
values the effectAllowed (page 336) and dropEffect (page 336)
attributes of the dataTransfer (page 336) object had after the event was
handled, as per the following table:

effectAllowed (page 336) dropEffect (page
336)

Drag operation

uninitialized, copy, copyLink,
copyMove, or all

copy "copy"

uninitialized, link, copyLink,
linkMove, or all

link "link"

uninitialized, move, copyMove,
linkMove, or all

move "move"

Any other case "none"

Then, regardless of whether the dragover (page 338) event was canceled or
not, the drag feedback (e.g. the mouse cursor) must be updated to match the
current drag operation (page 341), as follows:

Drag operation Feedback

"copy" Data will be copied if dropped here.

"link" Data will be linked if dropped here.

"move" Data will be moved if dropped here.

"none" No operation allowed, dropping here will cancel the
drag-and-drop operation.

4. Otherwise, if the current target element (page 340) is not a DOM element, the
user agent must use platform-specific mechanisms to determine what drag
operation is being performed (none, copy, link, or move). This sets the current
drag operation (page 341).

3. Otherwise, if the user ended the drag-and-drop operation (e.g. by releasing the
mouse button in a mouse-driven drag-and-drop interface), or if the drag (page 337)
event was canceled, then this will be the last iteration. The user agent must follow
the following steps, then stop looping.

1. If the current drag operation (page 341) is none (no drag operation), or, if the
user ended the drag-and-drop operation by canceling it (e.g. by hitting the
Escape key), or if the current target element (page 340) is null, then the drag
operation failed. If the current target element (page 340) is a DOM element, the
user agent must fire a dragleave (page 338) event at it; otherwise, if it is not
null, it must use platform-specific conventions for drag cancellation.

2. Otherwise, the drag operation was as success. If the current target element
(page 340) is a DOM element, the user agent must fire a drop (page 338)
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event at it; otherwise, it must use platform-specific conventions for indicating a
drop.

When the target is a DOM element, the dropEffect (page 336) attribute of
the event's dataTransfer (page 336) object must be given the value
representing the current drag operation (page 341) (copy, link, or move), and
the object must be set up so that the getData() (page 337) method will return
the data that was added during the dragstart (page 337) event.

If the event is canceled, the current drag operation (page 341) must be set to
the value of the dropEffect (page 336) attribute of the event's
dataTransfer (page 336) object as it stood after the event was handled.

Otherwise, the event is not canceled, and the user agent must perform the
event's default action, which depends on the exact target as follows:

↪ If the current target element (page 340) is a text field (e.g. textarea,
or an input element with type="text")

The user agent must insert the data associated with the text/plain

format, if any, into the text field in a manner consistent with
platform-specific conventions (e.g. inserting it at the current mouse
cursor position, or inserting it at the end of the field).

↪ Otherwise
Reset the current drag operation (page 341) to "none".

3. Finally, the user agent must fire a dragend (page 338) event at the source
node (page 339), with the dropEffect (page 336) attribute of the event's
dataTransfer (page 336) object being set to the value corresponding to the
current drag operation (page 341).

Note: The current drag operation (page 341) can change during
the processing of the drop (page 338) event, if one was fired.

The event is not cancelable. After the event has been handled, the user agent
must act as follows:

↪ If the current target element (page 340) is a text field (e.g. textarea,
or an input element with type="text"), and a drop (page 338) event
was fired in the previous step, and the current drag operation (page
341) is "move", and the source of the drag-and-drop operation is a
selection in the DOM

The user agent should delete the range representing the dragged
selection from the DOM.

↪ If the current target element (page 340) is a text field (e.g. textarea,
or an input element with type="text"), and a drop (page 338) event
was fired in the previous step, and the current drag operation (page

343



341) is "move", and the source of the drag-and-drop operation is a
selection in a text field

The user agent should delete the dragged selection from the relevant
text field.

↪ Otherwise
The event has no default action.

5.3.3.1. When the drag-and-drop operation starts or ends in another document

The model described above is independent of which Document object the nodes
involved are from; the events must be fired as described above and the rest of the
processing model must be followed as described above, irrespective of how many
documents are involved in the operation.

5.3.3.2. When the drag-and-drop operation starts or ends in another application

If the drag is initiated in another application, the source node (page 339) is not a DOM
node, and the user agent must use platform-specific conventions instead when the
requirements above involve the source node. User agents in this situation must act as if
the dragged data had been added to the DataTransfer (page 336) object when the
drag started, even though no dragstart (page 337) event was actually fired; user
agents must similarly use platform-specific conventions when deciding on what drag
feedback to use.

If a drag is started in a document but ends in another application, then the user agent
must instead replace the parts of the processing model relating to handling the target
according to platform-specific conventions.

In any case, scripts running in the context of the document must not be able to
distinguish the case of a drag-and-drop operation being started or ended in another
application from the case of a drag-and-drop operation being started or ended in another
document from another domain.

5.3.4. The draggable attribute

All elements may have the draggable (page 344) content attribute set. The
draggable (page 344) attribute is an enumerated attribute (page 64). It has three
states. The first state is true and it has the keyword true. The second state is false and
it has the keyword false. The third state is auto; it has no keywords but it is the missing
value default.

The draggable DOM attribute, whose value depends on the content attribute's in the
way described below, controls whether or not the element is draggable. Generally, only
text selections are draggable, but elements whose draggable (page 344) DOM
attribute is true become draggable as well.

If an element's draggable (page 344) content attribute has the state true, the
draggable (page 344) DOM attribute must return true.
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Otherwise, if the element's draggable (page 344) content attribute has the state false,
the draggable (page 344) DOM attribute must return false.

Otherwise, the element's draggable (page 344) content attribute has the state auto. If
the element is an img (page 154) element, or, if the element is an a (page 122) element
with an href (page 286) content attribute, the draggable (page 344) DOM attribute
must return true.

Otherwise, the draggable (page 344) DOM must return false.

If the draggable (page 344) DOM attribute is set to the value false, the draggable

(page 344) content attribute must be set to the literal value false. If the draggable

(page 344) DOM attribute is set to the value true, the draggable (page 344) content
attribute must be set to the literal value true.

5.3.5. Copy and paste

Copy-and-paste is a form of drag-and-drop: the "copy" part is equivalent to dragging
content to another application (the "clipboard"), and the "paste" part is equivalent to
dragging content from another application.

Select-and-paste (a model used by mouse operations in the X Window System) is
equivalent to a drag-and-drop operation where the source is the selection.

5.3.5.1. Copy to clipboard

When the user invokes a copy operation, the user agent must act as if the user had
invoked a drag on the current selection. If the drag-and-drop operation initiates, then the
user agent must act as if the user had indicated (as the immediate user selection (page
340)) a hypothetical application representing the clipbroad. Then, the user agent must
act as if the user had ended the drag-and-drop operation without canceling it. If the
drag-and-drop operation didn't get canceled, the user agent should then follow the
relevant platform-specific conventions for copy operations (e.g. updating the clipboard).

5.3.5.2. Cut to clipboard

When the user invokes a cut operation, the user agent must act as if the user had
invoked a copy operation (see the previous section), followed, if the copy was completed
successfully, by a selection delete operation (page 333).

5.3.5.3. Paste from clipboard

When the user invokes a clipboard paste operation, the user agent must act as if the
user had invoked a drag on a hypothetical application representing the clipboard, setting
the data associated with the drag as the text from the keyboard (either as text/plain
or text/uri-list). If the contents of the clipboard cannot be represented as text or
URIs, then the paste operation must not have any effect.
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Then, the user agent must act as if the user had indicated (as the immediate user
selection (page 340)) the element with the keyboard focus, and then ended the
drag-and-drop operation without canceling it.

5.3.5.4. Paste from selection

When the user invokes a selection paste operation, the user agent must act as if the
user had invoked a drag on the current selection, then indicated (as the immediate user
selection (page 340)) the element with the keyboard focus, and then ended the
drag-and-drop operation without canceling it.

If the contents of the selection cannot be represented as text or URIs, then the paste
operation must not have any effect.

5.3.6. Security risks in the drag-and-drop model

User agents must not make the data added to the DataTransfer (page 336) object
during the dragstart (page 337) event available to scripts until the drop (page 338)
event, because otherwise, if a user were to drag sensitive information from one
document to a second document, crossing a hostile third document in the process, the
hostile document could intercept the data.

For the same reason, user agents must only consider a drop to be successful if the user
specifically ended the drag operation — if any scripts end the drag operation, it must be
considered unsuccessful (canceled) and the drop (page 338) event must not be fired.

User agents should take care to not start drag-and-drop operations in response to script
actions. For example, in a mouse-and-window environment, if a script moves a window
while the user has his mouse button depressed, the UA would not consider that to start a
drag. This is important because otherwise UAs could cause data to be dragged from
sensitive sources and dropped into hostile documents without the user's consent.

5.4. [SCS] Undo history

There has got to be a better way of doing this, surely.

The user agent must associate an undo transaction history with each HTMLDocument

(page 26) object.

The undo transaction history (page 346) is a list of entries. The entries are of two type:
DOM changes (page 346) and undo objects (page 347).

Each DOM changes entry in the undo transaction history (page 346) consists of batches
of one or more of the following:

• Changes to the content attributes (page 21) of an Element node.

• Changes to the DOM attributes (page 21) of a Node.
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• Changes to the DOM hierarchy of nodes that are descendants of the
HTMLDocument (page 26) object (parentNode, childNodes).

Undo object entries consist of objects representing state that scripts running in the
document are managing. For example, a Web mail application could use an undo object
(page 347) to keep track of the fact that a user has moved an e-mail to a particular
folder, so that the user can undo the action and have the e-mail return to its former
location.

Broadly speaking, DOM changes (page 346) entries are handled by the UA in response
to user edits of form controls and editing hosts on the page, and undo object (page 347)
entries are handled by script in response to higher-level user actions (such as
interactions with server-side state, or in the implementation of a drawing tool).

5.4.1. The UndoManager (page 347) interface

This API sucks. Seriously. It's a terrible API. Really bad. I hate it. Here are the
requirements:

• Has to cope with cases where the server has undo state already when the page
is loaded, that can be stuffed into the undo buffer onload.

• Has to support undo/redo.

• Has to cope with the "undo" action being "contact the server and tell it to undo",
rather than it being the opposite of the "redo" action.

• Has to cope with some undo states expiring from the undo history (e.g. server
can only remember one undelete action) but other states not expiring (e.g. client
can undo arbitrary amounts of local edits).

To manage undo object (page 347) entries in the undo transaction history (page 346),
the UndoManager (page 347) interface can be used:

interface UndoManager {

unsigned long add (page 348)(in DOMObject data, in DOMStrong title);
void remove (page 349)(in unsigned long index);
void clearUndo (page 349)();
void clearRedo (page 349)();
DOMObject item (page 348)(in unsigned long index);
readonly attribute unsigned long length (page 348);
readonly attribute unsigned long position (page 348);

};

The undoManager attribute of the WindowHTML (page 301) interface must return the
object implementing the UndoManager (page 347) interface for that WindowHTML (page
301) object's associated HTMLDocument (page 26) object.
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In the ECMAScript DOM binding, objects implementing this interface must also support
being dereferenced using the square bracket notation, such that dereferencing with an
integer index is equivalent to invoking the item() (page 348) method with that index
(e.g. undoManager[1] returns the same as undoManager.item(1)).

UndoManager (page 347) objects represent their document's undo transaction history
(page 346). Only undo object (page 347) entries are visible with this API, but this does
not mean that DOM changes (page 346) entries are absent from the undo transaction
history (page 346).

The length attribute must return the number of undo object (page 347) entries in the
undo transaction history (page 346).

The item(n) method must return the nth undo object (page 347) entry in the undo
transaction history (page 346).

The undo transaction history (page 346) has a current position. This is the position
between two entries in the undo transaction history (page 346)'s list where the previous
entry represents what needs to happen if the user invokes the "undo" command (the
"undo" side, lower numbers), and the next entry represents what needs to happen if the
user invokes the "redo" command (the "redo" side, higher numbers).

The position attribute must return the index of the undo object (page 347) entry
nearest to the undo position (page 348), on the "redo" side. If there are no undo object
(page 347) entries on the "redo" side, then the attribute must return the same as the
length (page 348) attribute. If there are no undo object (page 347) entries on the
"undo" side of the undo position (page 348), the position (page 348) attribute returns
zero.

Note: Since the undo transaction history (page 346) contains both undo
object (page 347) entries and DOM changes (page 346) entries, but the
position (page 348) attribute only returns indices relative to undo object
(page 347) entries, it is possible for several "undo" or "redo" actions to be
performed without the value of the position (page 348) attribute
changing.

The add(data, title) method's behaviour depends on the current state. Normally, it
must insert the data object passed as an argument into the undo transaction history
(page 346) immediately before the undo position (page 348), optionally remembering
the given title to use in the UI. If the method is called during an undo operation (page
349), however, the object must instead be added immediately after the undo position
(page 348).

If the method is called and there is neither an undo operation in progress (page 349) nor
a redo operation in progress (page 350) then any entries in the undo transaction history
(page 346) after the undo position (page 348) must be removed (as if clearRedo()
(page 349) had been called).
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We could fire events when someone adds something to the undo history -- one event
per undo object entry before the position (or after, during redo addition), allowing the
script to decide if that entry should remain or not. Or something. Would make it
potentially easier to expire server-held state when the server limitations come into
play.

The remove(index) method must remove the undo object (page 347) entry with the
specified index. If the index is less than zero or greater than or equal to length (page
348) then the method must raise an INDEX_SIZE_ERR exception. DOM changes (page
346) entries are unaffected by this method.

The clearUndo() method must remove all entries in the undo transaction history (page
346) before the undo position (page 348), be they DOM changes (page 346) entries or
undo object (page 347) entries.

The clearRedo() method must remove all entries in the undo transaction history (page
346) after the undo position (page 348), be they DOM changes (page 346) entries or
undo object (page 347) entries.

Another idea is to have a way for scripts to say
"startBatchingDOMChangesForUndo()" and after that the changes to the DOM go in
as if the user had done them.

5.4.2. Undo: moving back in the undo transaction history

When the user invokes an undo operation, or when the execCommand() (page 351)
method is called with the undo (page 351) command, the user agent must perform an
undo operation.

If the undo position (page 348) is at the start of the undo transaction history (page 346),
then the user agent must do nothing.

If the entry immediately before the undo position (page 348) is a DOM changes (page
346) entry, then the user agent must remove that DOM changes (page 346) entry,
reverse the DOM changes that were listed in that entry, and, if the changes were
reversed with no problems, add a new DOM changes (page 346) entry (consisting of the
opposite of those DOM changes) to the undo transaction history (page 346) on the other
side of the undo position (page 348).

If the DOM changes cannot be undone (e.g. because the DOM state is no longer
consistent with the changes represented in the entry), then the user agent must simply
remove the DOM changes (page 346) entry, without doing anything else.

If the entry immediately before the undo position (page 348) is an undo object (page
347) entry, then the user agent must first remove that undo object (page 347) entry from
the undo transaction history (page 346), and then must fire an undo (page 351) event
on the Document object, using the undo object (page 347) entry's associated undo
object as the event's data.
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Any calls to add() (page 348) while the event is being handled will be used to populate
the redo history, and will then be used if the user invokes the "redo" command to undo
his undo.

5.4.3. Redo: moving forward in the undo transaction history

When the user invokes a redo operation, or when the execCommand() (page 351)
method is called with the redo (page 352) command, the user agent must perform a
redo operation.

This is mostly the opposite of an undo operation (page 349), but the full definition is
included here for completeness.

If the undo position (page 348) is at the end of the undo transaction history (page 346),
then the user agent must do nothing.

If the entry immediately after the undo position (page 348) is a DOM changes (page
346) entry, then the user agent must remove that DOM changes (page 346) entry,
reverse the DOM changes that were listed in that entry, and, if the changes were
reversed with no problems, add a new DOM changes (page 346) entry (consisting of the
opposite of those DOM changes) to the undo transaction history (page 346) on the other
side of the undo position (page 348).

If the DOM changes cannot be redone (e.g. because the DOM state is no longer
consistent with the changes represented in the entry), then the user agent must simply
remove the DOM changes (page 346) entry, without doing anything else.

If the entry immediately after the undo position (page 348) is an undo object (page 347)
entry, then the user agent must first remove that undo object (page 347) entry from the
undo transaction history (page 346), and then must fire a redo (page 351) event on the
Document object, using the undo object (page 347) entry's associated undo object as
the event's data.

5.4.4. The UndoManagerEvent (page 350) interface and the undo (page 351) and
redo (page 351) events

interface UndoManagerEvent : Event {

readonly attribute DOMObject data (page 350);
void initUndoManagerEvent (page 350)(in DOMString typeArg, in boolean

canBubbleArg, in boolean cancelableArg, in DOMObject dataArg);
void initUndoManagerEventNS(in DOMString namespaceURIArg, in DOMString

typeArg, in boolean canBubbleArg, in boolean cancelableArg, in DOMObject
dataArg);
};

The initUndoManagerEvent() and initUndoManagerEventNS() methods must
initialise the event in a manner analogous to the similarly-named methods in the DOM3
Events interfaces. [DOM3EVENTS] (page 0)

The data attribute represents the undo object (page 347) for the event.
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The undo and redo events do not bubble, cannot be canceled, and have no default
action. When the user agent fires one of these events it must use the
UndoManagerEvent (page 350) interface, with the data (page 350) field containing
the relevant undo object (page 347).

5.4.5. Implementation notes

How user agents present the above conceptual model to the user is not defined. The
undo interface could be a filtered view of the undo transaction history (page 346), it
could manipulate the undo transaction history (page 346) in ways not described above,
and so forth. For example, it is possible to design a UA that appears to have separate
undo transaction histories (page 346) for each form control; similarly, it is possible to
design systems where the user has access to more undo information than is present in
the offical (as described above) undo transaction history (page 346) (such as providing a
tree-based approach to document state). Such UI models should be based upon the
single undo transaction history (page 346) described in this section, however, such that
to a script there is no detectable difference.

5.5. Command APIs

The

execCommand(commandID, doShowUI, value) method on the HTMLDocument

(page 26) interface allows scripts to perform actions on the current selection (page 353)
or at the current caret position. Generally, these commands would be used to implement
editor UI, for example having a "delete" button on a toolbar.

There are three variants to this method, with one, two, and three arguments respectively.
The doShowUI and value parameters, even if specified, are ignored unless otherwise
stated.

Note: In this specification, in fact, the doShowUI parameter is always
ignored, regardless of its value. It is included for historical reasons only.

When any of these methods are invoked, user agents must act as described in the list
below.

For actions marked "editing hosts only", if the selection is not entirely within an editing
host (page 331), of if there is no selection and the caret is not inside an editing host
(page 331), then the user agent must do nothing.

If the commandID is undo

The user agent must move back one step (page 349) in its undo transaction history
(page 346), restoring the associated state. If there is no further undo information the
user agent must do nothing. See the undo history (page 346).
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If the commandID is redo

The user agent must move forward one step (page 350) in its undo transaction
history (page 346), restoring the associated state. If there is no further undo (well,
"redo") information the user agent must do nothing. See the undo history (page
346).

If the commandID is selectAll

The user agent must change the selection so that all the content in the currently
focused editing host (page 331) is selected. If no editing host (page 331) is focused,
then the content of the entire document must be selected.

If the commandID is unselect

The user agent must change the selection so that nothing is selected.

We need some sort of way in which the user can make a selection without risk of
script clobbering it.

If the commandID is superscript

Editing hosts only. (page 351) The user agent must act as if the user had requested
that the selection be wrapped in the semantics (page 334) of the sup (page 145)
element (or unwrapped, or, if there is no selection, have that semantic inserted or
removed — the exact behaviour is UA-defined).

If the commandID is subscript

Editing hosts only. (page 351) The user agent must act as if the user had requested
that the selection be wrapped in the semantics (page 334) of the sub (page 145)
element (or, again, unwrapped, or have that semantic inserted or removed, as
defined by the UA).

If the commandID is formatBlock

Editing hosts only. (page 351) This command changes the semantics of the blocks
containing the selection.

If there is no selection, then, where in the description below refers to the selection,
the user agent must act as if the selection was an empty range at the caret position.

If the value parameter is not specified or has a value other than one of the following
literal strings:

• <address>
• <aside>
• <h1>
• <h2>
• <h3>
• <h4>
• <h5>
• <h6>
• <nav>
• <p>
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• <pre>

...then the user agent must do nothing.

Otherwise, the user agent must, for every position in the selection, take the furthest
block-level element (page 68) ancestor of that position that contains only inline-level
content (page 69) and is not being used as a structured inline-level element (page
69), and, if that element is a descendant of the editing host, rename it according to
the value, by stripping the leading < character and the trailing > character and using
the rest as the new tag name.

If the commandID is delete

Editing hosts only. (page 351) The user agent must act as if the user had performed
a backspace operation (page 333).

If the commandID is forwardDelete

Editing hosts only. (page 351) The user agent must act as if the user had performed
a forward delete operation (page 333).

If the commandID is insertLineBreak

Editing hosts only. (page 351) The user agent must act as if the user had requested
a line separator (page 333).

If the commandID is insertParagraph

Editing hosts only. (page 351) The user agent must act as if the user had performed
a break block (page 333) editing action.

If the commandID is insertText

Editing hosts only. (page 351) The user agent must act as if the user had inserted
text (page 332) corresponding to the value parameter.

If the commandID is vendorID-customCommandID

User agents may implement vendor-specific extensions to this API. Vendor-specific
extensions to the list of commands should use the syntax
vendorID-customCommandID so as to prevent clashes between extensions from
different vendors and future additions to this specification.

If the commandID is something else
User agents must do nothing.

5.6. [SCS] The text selection APIs

Every browsing context (page 20) has a selection. The selection may be empty, and the
selection may have more than one range (a disjointed selection). The user should be
able to change the selection. User agents are not required to let the user select more
than one range, and may collapse multiple ranges in the selection to a single range
when the user interacts with the selection. (But, of course, the user agent may let the
user create selections with multiple ranges.)
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This one selection must be shared by all the content of the browsing context (though not
by nested browsing contexts (page 20)), including any editing hosts in the document.
(Editing hosts that are not inside a document cannot have a selection.)

If the selection is empty (collapsed, so that it has only one segment and that segment's
start and end points are the same) then the selection's position should equal the caret
position. When the selection is not empty, this specification does not define the caret
position; user agents should follow platform conventions in deciding whether the caret is
at the start of the selection, the end of the selection, or somewhere else.

On some platforms (such as those using Wordstar editing conventions), the caret
position is totally independent of the start and end of the selection, even when the
selection is empty. On such platforms, user agents may ignore the requirement that the
cursor position be linked to the position of the selection altogether.

Mostly for historical reasons, in addition to the browsing context (page 20)'s selection
(page 353), each textarea and input element has an independent selection. These
are the text field selections.

The datagrid (page 229) and select elements also have selections, indicating which
items have been picked by the user. These are not discussed in this section.

Note: This specification does not specify how selections are presented to
the user. The Selectors specification, in conjunction with CSS, can be
used to style text selections using the ::selection (page 354)
pseudo-element. [SELECTORS] [CSS21]

5.6.1. APIs for the browsing context selection

The getSelection() method on the WindowHTML (page 301) interface must return
the Selection (page 354) object representing the selection (page 353) of that
WindowHTML (page 301) object's browsing context (page 20).

For historical reasons, the getSelection() method on the HTMLDocument (page 26)
interface must return the same Selection (page 354) object.

interface Selection {

readonly attribute Node anchorNode (page 355);
readonly attribute long anchorOffset (page 355);
readonly attribute Node focusNode (page 355);
readonly attribute long focusOffset (page 355);
readonly attribute boolean isCollapsed (page 355);
void collapse (page 355)(in Node parentNode, in long offset);
void collapseToStart (page 355)();
void collapseToEnd (page 355)();
void selectAllChildren (page 356)(in Node parentNode);
void deleteFromDocument (page 356)();
readonly attribute long rangeCount (page 356);
Range getRangeAt (page 356)(in long index);
void addRange (page 356)(in Range range);
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void removeRange (page 356)(in Range range);
void removeAllRanges (page 356)();
DOMString toString (page 356)();

};

The Selection (page 354) interface is represents a list of Range objects. The first item
in the list has index 0, and the last item has index count-1, where count is the number of
ranges in the list. [DOM2RANGE]

All of the members of the Selection (page 354) interface are defined in terms of
operations on the Range objects represented by this object. These operations can raise
exceptions, as defined for the Range interface; this can therefore result in the members
of the Selection (page 354) interface raising exceptions as well, in addition to any
explicitly called out below.

The anchorNode attribute must return the value returned by the startContainer

attribute of the last Range object in the list, or null if the list is empty.

The anchorOffset attribute must return the value returned by the startOffset

attribute of the last Range object in the list, or 0 if the list is empty.

The focusNode attribute must return the value returned by the endContainer attribute
of the last Range object in the list, or null if the list is empty.

The focusOffset attribute must return the value returned by the endOffset attribute
of the last Range object in the list, or 0 if the list is empty.

The isCollapsed attribute must return true if there are zero ranges, or if there is
exactly one range and its collapsed attribute is itself true. Otherwise it must return
false.

The collapse(parentNode, offset) method must raise a WRONG_DOCUMENT_ERR

DOM exception if parentNode's ownerDocument is not the HTMLDocument (page 26)
object with which the Selection (page 354) object is associated. Otherwise it is, and
the method must remove all the ranges in the Selection (page 354) list, then create a
new Range object, add it to the list, and invoke its setStart() and setEnd()

methods with the parentNode and offset values as their arguments.

The collapseToStart() method must raise an INVALID_STATE_ERR DOM
exception if there are no ranges in the list. Otherwise, it must invoke the collapse()

(page 355) method with the startContainer and startOffset values of the first
Range object in the list as the arguments.

The collapseToEnd() method must raise an INVALID_STATE_ERR DOM exception if
there are no ranges in the list. Otherwise, it must invoke the collapse() (page 355)
method with the endContainer and endOffset values of the last Range object in the
list as the arguments.
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The selectAllChildren(parentNode) method must invoke the collapse()

(page 355) method with the parentNode value as the first argument and 0 as the second
argument, and must then invoke the selectNodeContents() method on the first (and
only) range in the list with the parentNode value as the argument.

The deleteFromDocument() method must invoke the deleteContents() method
on each range in the list, if any, from first to last.

The rangeCount attribute must return the number of ranges in the list.

The getRangeAt(index) method must return the indexth range in the list. If index is
less than zero or greater or equal to the value returned by the rangeCount (page 356)
attribute, then the method must raise an INDEX_SIZE_ERR DOM exception.

The addRange(range) method must add the given range Range object to the list of
selections, at the end (so the newly added range is the new last range). Duplicates are
not prevented; a range may be added more than once in which case it appears in the list
more than once, which (for example) will cause toString() (page 356) to return the
range's text twice.

The removeRange(range) method must remove the first occurrence of range in the
list of ranges, if it appears at all.

The removeAllRanges() method must remove all the ranges from the list of ranges,
such that the rangeCount (page 356) attribute returns 0 after the
removeAllRanges() (page 356) method is invoked (and until a new range is added to
the list, either through this interface or via user interaction).

The toString() method must return a concatenation of the results of invoking the
toString() method of the Range object on each of the ranges of the selection, in the
order they appear in the list (first to last).

In language bindings where this is supported, objects implementing the Selection

(page 354) interface must stringify to the value returned by the object's toString()
(page 356) method.

In the following document fragment, the emphasised parts indicate the selection.

<p>The cute girl likes the <cite>Oxford English Dictionary</cite>.</p>

If a script invoked window.getSelection().toString(), the return value
would be "the Oxford English".

Note: The Selection (page 354) interface has no relation to the
DataGridSelection (page 252) interface.

356



5.6.2. APIs for the text field selections

When we define HTMLTextAreaElement and HTMLInputElement we will have to add
the IDL given below to both of their IDLs.

The input and textarea elements define four members in their DOM interfaces for
handling their text selection:

void select (page 357)();
attribute unsigned long selectionStart (page 357);
attribute unsigned long selectionEnd (page 357);

void setSelectionRange (page 357)(in unsigned long start, in unsigned long
end);

These methods and attributes expose and control the selection of input and textarea

text fields.

The select() method must cause the contents of the text field to be fully selected.

The selectionStart attribute must, on getting, return the offset (in logical order) to
the character that immediately follows the start of the selection. If there is no selection,
then it must return the offset (in logical order) to the character that immediately follows
the text entry cursor.

On setting, it must act as if the setSelectionRange() (page 357) method had been
called, with the new value as the first argument, and the current value of the
selectionEnd (page 357) attribute as the second argument, unless the current value
of the selectionEnd (page 357) is less than the new value, in which case the second
argument must also be the new value.

The selectionEnd attribute must, on getting, return the offset (in logical order) to the
character that immediately follows the end of the selection. If there is no selection, then it
must return the offset (in logical order) to the character that immediately follows the text
entry cursor.

On setting, it must act as if the setSelectionRange() (page 357) method had been
called, with the current value of the selectionStart (page 357) attribute as the first
argument, and new value as the second argument.

The setSelectionRange(start, end) method must set the selection of the text
field to the sequence of characters starting with the character at the startth position (in
logical order) and ending with the character at the (end-1)th position. Arguments greater
than the length of the value in the text field must be treated as pointing at the end of the
text field. If end is less than or equal to start then the start of the selection and the end of
the selection must both be placed immediately before the character with offset end. In
UAs where there is no concept of an empty selection, this must set the cursor to be just
before the character with offset end.

To obtain the currently selected text, the following JavaScript suffices:
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var selectionText = control.value.substring(control.selectionStart,
control.selectionEnd);

...where control is the input or textarea element.

Characters with no visible rendering, such as U+200D ZERO WIDTH JOINER, still count
as characters. Thus, for instance, the selection can include just an invisible character,
and the text insertion cursor can be placed to one side or another of such a character.

When these methods and attributes are used with input elements that are not
displaying simple text fields, they must raise an INVALID_STATE_ERR exception.
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6. Communication

6.1. Event definitions

Messages in cross-document messaging (page 379) and, by default, in server-sent DOM
events (page 359), use the message event.

The following interface is defined for this event:

interface MessageEvent : Event {

readonly attribute DOMString data (page 359);
readonly attribute DOMString domain (page 359);
readonly attribute DOMString uri (page 359);
readonly attribute Document source (page 359);
void initMessageEvent (page 359)(in DOMString typeArg, in boolean

canBubbleArg, in boolean cancelableArg, in DOMString dataArg, in DOMString
domainArg, in DOMString uriArg, in Document documentArg);

void initMessageEventNS (page 359)(in DOMString namespaceURI, in DOMString
typeArg, in boolean canBubbleArg, in boolean cancelableArg, in DOMString
dataArg, in DOMString domainArg, in DOMString uriArg, in Document
documentArg);
};

The initMessageEvent() and initMessageEventNS() methods must initialise the
event in a manner analogous to the similarly-named methods in the DOM3 Events
interfaces. [DOM3EVENTS] (page 0)

The data attribute represents the message being sent.

The domain attribute represents, in cross-document messaging (page 379), the domain
of the document from which the message came.

The uri attribute represents, in cross-document messaging (page 379), the address of
the document from which the message came.

The source attribute represents, in cross-document messaging (page 379), the
Document from which the message came.

6.2. [SCS] Server-sent DOM events

This section describes a mechanism for allowing servers to dispatch DOM events into
documents that expect it. The event-source (page 227) element provides a simple
interface to this mechanism.

6.2.1. The RemoteEventTarget interface

Any object that implements the EventTarget interface must also implement the
RemoteEventTarget (page 360) interface.
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interface RemoteEventTarget {

void addEventSource (page 360)(in DOMString src);
void removeEventSource (page 360)(in DOMString src);

};

When the addEventSource(src) method is invoked, the user agent must add the URI
specified in src to the list of event sources (page 360) for that object. The same URI can
be registered multiple times.

When the removeEventSource(src) method is invoked, the user agent must remove
the URI specified in src from the list of event sources (page 360) for that object. If the
same URI has been registered multiple times, removing it must only remove one
instance of that URI for each invokation of the method.

Relative URIs must be resolved relative to ... .

6.2.2. Connecting to an event stream

Each object implementing the EventTarget and RemoteEventTarget (page 360)
interfaces has a list of event sources that are registered for that object.

When a new URI is added to this list, the user agent should, as soon as all currently
executing scripts (if any) have finished executing, and if the specified URI isn't removed
from the list before they do so, fetch the resource identified by that URI.

When an event source is removed from the list of event sources for an object, if that
resource is still being fetched, then the relevant connection must be closed.

Since connections established to remote servers for such resources are expected to be
long-lived, UAs should ensure that appropriate buffering is used. In particular, while line
buffering may be safe if lines are defined to end with a single U+000A LINE FEED
character, block buffering or line buffering with different expected line endings can cause
delays in event dispatch.

In general, the semantics of the transport protocol specified by the URIs for the event
sources must be followed, including HTTP caching rules.

For HTTP connections, the Accept header may be included; if included, it must only
contain formats of event framing that are supported by the user agent (one of which must
be application/x-dom-event-stream, as described below).

Other formats of event framing may also be supported in addition to application/

x-dom-event-stream, but this specification does not define how they are to be parsed
or processed.

Note: Such formats could include systems like SMS-push; for example
servers could use Accept headers and HTTP redirects to an SMS-push
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mechanism as a kind of protocol negotiation to reduce network load in
GSM environments.

User agents should use the Cache-Control: no-cache header in requests to bypass
any caches for requests of event sources.

For connections to domains other than the document's domain (page 279), the
semantics of the Access-Control HTTP header must be followed. [ACCESSCONTROL]

HTTP 200 OK responses with a Content-Type (page 277) header specifying the type
application/x-dom-event-stream that are either from the document's domain
(page 279) or explicitly allowed by the Access-Control HTTP headers must be processed
line by line as described below (page 363).

For the purposes of such successfully opened event streams only, user agents should
ignore HTTP cache headers, and instead assume that the resource indicates that it does
not wish to be cached.

If such a resource completes loading (i.e. the entire HTTP response body is received or
the connection itself closes), the user agent should request the event source resource
again after a delay of approximately five seconds.

HTTP 200 OK responses that have a Content-Type other than application/

x-dom-event-stream (or some other supported type), and HTTP responses whose
Access-Control headers indicate that the resource are not to be used, must be ignored
and must prevent the user agent from refetching the resource for that event source.

HTTP 201 Created, 202 Accepted, 203 Non-Authoritative Information, and 206 Partial
Content responses must be treated like HTTP 200 OK responses for the purposes of
reopening event source resources. They are, however, likely to indicate an error has
occurred somewhere and may cause the user agent to emit a warning.

HTTP 204 No Content, and 205 Reset Content responses must be treated as if they
were 200 OK responses with the right MIME type but no content, and should therefore
cause the user agent to refetch the resource after a short delay.

HTTP 300 Multiple Choices responses should be handled automatically if possible
(treating the responses as if they were 302 Found responses pointing to the appropriate
resource), and otherwise must be treated as HTTP 404 responses.

HTTP 301 Moved Permanently responses must cause the user agent to reconnect using
the new server specified URI instead of the previously specified URI for all subsequent
requests for this event source. (It doesn't affect other event sources with the same URI
unless they also receive 301 responses, and it doesn't affect future sessions, e.g. if the
page is reloaded.)

HTTP 302 Found, 303 See Other, and 307 Temporary Redirect responses must cause
the user agent to connect to the new server-specified URI, but if the user agent needs to
again request the resource at a later point, it must return to the previously specified URI
for this event source.
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HTTP 304 Not Modified responses should be handled like HTTP 200 OK responses, with
the content coming from the user agent cache. A new request should then be made after
a short delay of approximately five seconds.

HTTP 305 Use Proxy, HTTP 401 Unauthorized, and 407 Proxy Authentication Required
should be treated transparently as for any other subresource.

Any other HTTP response code not listed here should cause the user agent to stop
trying to process this event source.

DNS errors must be considered fatal, and cause the user agent to not open any
connection for that event source.

For non-HTTP protocols, UAs should act in equivalent ways.

6.2.3. Parsing an event stream

This event stream format's MIME type is application/x-dom-event-stream.

The event stream format is (in pseudo-BNF):

<stream>          ::= <bom>? <event>*
<event>           ::= [ <comment> | <command> | <field> ]* <newline>
<comment>         ::= ';' <any-char>* <newline>
<command>         ::= ':' <any-char>* <newline>
<field>           ::= <name> [ ':' <space>? <any-char>* ]? <newline>
<name>            ::= <name-start-char> <name-char>*

# characters:
<bom>             ::= a single U+FEFF BYTE ORDER MARK character
<space>           ::= a single U+0020 SPACE character (' ')
<newline>         ::= a U+000D CARRIAGE RETURN character

followed by a U+000A LINE FEED character
| a single U+000D CARRIAGE RETURN character
| a single U+000A LINE FEED character
| the end of the file

<name-start-char> ::= a single Unicode character other than
':', ';', U+000D CARRIAGE RETURN and U+000A LINE FEED

<name-char>       ::= a single Unicode character other than
':', U+000D CARRIAGE RETURN and U+000A LINE FEED

<any-char>        ::= a single Unicode character other than
U+000D CARRIAGE RETURN and U+000A LINE FEED

Event streams in this format must always be encoded as UTF-8. Lines must be
separated by either a U+000D CARRIAGE RETURN U+000A LINE FEED (CRLF)
character pair, a single U+000A LINE FEED (LF) character, or a single U+000D
CARRIAGE RETURN (CR) character. User agents must treat those three variants as
equivalent line terminators.

Bytes that are not valid UTF-8 sequences must be interpreted as the U+FFFD
REPLACEMENT CHARACTER.

A leading U+FEFF BYTE ORDER MARK character must be ignored if present.
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The stream must then be parsed by reading everything line by line, in blocks separated
by blank lines. Comment lines (those starting with the character ';') and command lines
(those starting with the character ':') must be ignored.

Command lines are reserved for future extensions.

For each non-blank, non-comment, non-command line, the field name must first be
taken. This is everything on the line up to but not including the first colon (':') or the line
terminator, whichever comes first. Then, if there was a colon, the data for that line must
be taken. This is everything after the colon, ignoring a single space after the colon if
there is one, up to the end of the line. If there was no colon the data is the empty string.

Examples:

Field name: Field data
This is a blank field
1. These two lines: have the same data
2. These two lines:have the same data
1. But these two lines: do not
2. But these two lines: do not

If a field name occurs multiple times in a block, the value for that field in that black must
consist of the data parts for each of those lines, concatenated with U+000A LINE FEED
characters between them (regardless of what the line terminators used in the stream
actually are).

For example, the following block:

Test: Line 1
Foo: Bar
Test: Line 2

...is treated as having two fields, one called Test with the value "Line 1\nLine
2" (where \n represents a newline), and one called Foo with the value " Bar" (note
the leading space character).

A block thus consists of all the name-value pairs for its fields. Command lines have no
effect on blocks and are not considered part of a block.

Note: Since any random stream of characters matches the above format,
there is no need to define any error handling.

6.2.4. Interpreting an event stream

Once the fields have been parsed, they are interpreted as follows (these are
case-sensitive exact comparisons):

Event field
This field gives the name of the event. For example, load, DOMActivate,
updateTicker. If there is no field with this name, the name message (page 359)
must be used.
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Namespace field
This field gives the DOM3 namespace for the event. (For normal DOM events this
would be null.) If it isn't specified the event namespace is null.

Class field
This field gives is the interface used for the event, for instance Event, UIEvent,
MutationEvent, KeyboardEvent, etc. For compatibility with DOM3 Events, the
values UIEvents, MouseEvents, MutationEvents, and HTMLEvents are valid
values and must be treated respectively as meaning the interfaces UIEvent,
MouseEvent, MutationEvent, and Event. (This value can therefore be used as
the argument to createEvent().)

If the value is not specified but the Namespace is null and the Event field exactly
matches one of the events specified by DOM3 Events in section 1.4.2 "Complete list
of event types", then the interface used must default to the interface relevant for that
event type. [DOM3EVENTS]

For example:

Event: click

...would cause Class to be treated as MouseEvent.

If the Namespace is null and the Event field is message (page 359) (including if it
was not specified explicitly), then the MessageEvent (page 359) interface must be
used.

Otherwise, the Event interface must be used.

It is quite possible to give the wrong class for an event. This is equivalent to creating
an event in the DOM using the DOM Event APIs, but using the wrong interface for it.

Bubbles field
This field specifies whether the event is to bubble. If it is specified and has the value
No, the event must not bubble. If it is specified and has any other value (including no

or NO) then the event must bubble.

If it is not specified but the Namespace field is null and the Event field exactly
matches one of the events specified by DOM3 Events in section 1.4.2 "Complete list
of event types", then the event must bubble if the DOM3 Events spec specifies that
that event bubbles, and musn't bubble if it specifies it does not. [DOM3EVENTS]

For example:

Event: load

...would cause Bubbles to be treated as No.

Otherwise, the event must bubble.
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Cancelable field
This field specifies whether the event can have its default action prevented. If it is
specified and has the value No, the event must not be cancelable. If it is specified
and has any other value (including no or NO) then the event must be cancelable.

If it is not specified, but the Namespace field is null and the Event field exactly
matches one of the events specified by DOM3 Events in section 1.4.2 "Complete list
of event types", then the event must be cancelable if the DOM3 Events specification
specifies that it is, and must not be cancelable otherwise. [DOM3EVENTS]

For example:

Event: load

...would cause Cancelable to be treated as No.

Otherwise, the event must be cancelable.

Target field
This field gives the node that the event is to be dispatched on.

If the object for which the event source is being processed is not a Node, but the
Target field is nonetheless specified, then the event must be dropped.

Otherwise, if field is specified and its value starts with a # character, then the
remainder of the value represents an ID, and the event must be dispatched on the
same node as would be obtained by the getElementById() method on the
ownerDocument of the node whose event source is being processed.

For example,

Target: #test

...would target the element with ID test.

Otherwise, if the field is specified and its value is the literal string "Document", then
the event must be dispatched at the ownerDocument of the node whose event
source is being processed.

Otherwise, the field (whether specified or not) is ignored and the event must be
dispatched at the object itself.

Other fields depend on the interface specified (or possibly implied) by the Class field. If
the specified interface has an attribute that exactly matches the name of the field, and
the value of the field can be converted (using the type conversions defined in
ECMAScript) to the type of the attribute, then it must be used. Any attributes (other than
the Event interface attributes) that do not have matching fields are initialised to zero,
null, false, or the empty string.

For example:
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Event: click
Class: MouseEvent
button: 2

...would result in a 'click' event using the MouseEvent interface that has button
set to 2 but screenX, screenY, etc, set to 0, false, or null as appropriate.

If a field does not match any of the attributes on the event, it must be ignored.

For example:

Event: keypress
Class: MouseEvent
keyIdentifier: 0

...would result in a MouseEvent event with its fields all at their default values, with
the event name being keypress. The keyIdentifier field would be ignored. (If
the author had not included the Class field explicitly, it would have just worked,
since the class would have defaulted as described above.)

Once a blank line or the end of the file is reached, an event of the type and namespace
given by the Event and Namespace fields respectively must be synthesized and
dispatched to the appropriate node as described by the fields above. No event must be
dispatched until a blank line has been received or the end of the file reached.

The event must be dispatched as if using the DOM dispatchEvent() method. Thus, if
the Event field was omitted, leaving the name as the empty string, or if the name had
invalid characters, then the dispatching of the event fails.

Events fired from event sources do not have user-agent default actions.

The following event stream, once followed by a blank line:

data: YHOO
data: -2
data: 10

...would cause an event message (page 359) with the interface MessageEvent

(page 359) to be dispatched on the event-source (page 227) element, which
would then bubble up the DOM, and whose data (page 359) attribute would
contain the string YHOO\n-2\n10 (where \n again represents a newline).

This could be used as follows:

<event-source src="http://stocks.example.com/ticker.php"
onmessage="var data = event.data.split('\n');

updateStocks(data[0], data[1], data[2]);">

...where updateStocks() is a function defined as:

function updateStocks(symbol, delta, value) { ... }

...or some such.
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The following stream contains four blocks and therefore fires four events. The first
block has just a comment, and will fire a message (page 359) event with all the
fields set to the empty string or null. The second block has two fields with names
"load" and "Target" respectively; since there is no "load" member on the
MessageEvent (page 359) object that field is ignored, leaving the event as a
second message (page 359) event with all the fields set to the empty string or null,
but this time the event is targetted at an element with ID "image1". The third block is
empty (no lines between two blank lines), and the fourth block has only two
comments, so they both yet again fire message (page 359) events with all the fields
set to the empty string or null.

; test

load
Target: #image1

; if any more events follow this block, they will not be affected by
; the "Target" and "load" fields above.

6.2.5. Notes

Legacy proxy servers are known to, in certain cases, drop HTTP connections after a
short timeout. To protect against such proxy servers, authors can include a comment line
(one starting with a ';' character) every 15 seconds or so.

Authors wishing to relate event source connections to each other or to specific
documents previously served might find that relying on IP addresses doesn't work, as
individual clients can have multiple IP addresses (due to having multiple proxy servers)
and individual IP addresses can have multiple clients (due to sharing a proxy server). It
is better to include a unique identifier in the document when it is served and then pass
that identifier as part of the URI in the src (page 227) attribute of the event-source

(page 227) element.

Implementations that support HTTP's per-server connection limitation might run into
trouble when opening multiple pages from a site if each page has an event-source

(page 227) to the same domain. Authors can avoid this using the relatively complex
mechanism of using unique domain names per connection, or by allowing the user to
enable or disable the event-source (page 227) functionality on a per-page basis.

6.3. [SCS] Network connections

To enable Web applications to communicate with each other in local area networks, and
to maintain bidirectional communications with their originating server, this specification
introduces the Connection (page 368) interface.

The WindowHTML (page 301) interface provides three constructors for creating
Connection (page 368) objects: TCPConnection() (page 370), for creating a direct
(possibly encrypted) link to another node on the Internet using TCP/IP;
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LocalBroadcastConnection() (page 371), for creating a connection to any listening
peer on a local network (which could be a local TCP/IP subnet using UDP, a Bluetooth
PAN, or another kind of network infrastructure); and PeerToPeerConnection() (page
374), for a direct peer-to-peer connection (which could again be over TCP/IP, Bluetooth,
IrDA, or some other type of network).

Note: This interface does not allow for raw access to the underlying
network. For example, this interface could not be used to implement an
IRC client without proxying messages through a custom server.

6.3.1. [TBW] Introduction

This section is non-normative.

An introduction to the client-side and server-side of using the direct connection APIs.

An example of a party-line implementation of a broadcast service, and direct
peer-to-peer chat for direct local connections.

6.3.2. The Connection (page 368) interface

interface Connection {

readonly attribute DOMString network (page 368);
readonly attribute DOMString peer (page 368);
readonly attribute int readyState (page 369);

attribute EventListener onopen (page 369);
attribute EventListener onread (page 369);
attribute EventListener onclose (page 369);

void send (page 369)(in DOMString data);
void disconnect (page 369)();

};

Connection (page 368) objects must also implement the EventTarget interface.
[DOM3EVENTS]

When a Connection (page 368) object is created, the UA must try to establish a
connection, as described in the sections below describing each connection type.

The network attribute represents the name of the network connection (the value
depends on the kind of connection being established). The peer attribute identifies the
remote host for direct (non-broadcast) connections.

The network (page 368) attribute must be set as soon as the Connection (page 368)
object is created, and keeps the same value for the lifetime of the object. The peer

(page 368) attribute must initially be set to the empty string and must be updated once,
when the connection is established, after which point it must keep the same value for the
lifetime of the object.
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The readyState attribute represents the state of the connection. When the object is
created it must be set to 0. It can have the following values:

0 Connecting
The connection has not yet been established.

1 Connected
The connection is established and communication is possible.

2 Closed
The connection has been closed.

Once a connection is established, the readyState (page 369) attribute's value must be
changed to 1, and the open (page 369) event must be fired on the Connection (page
368) object.

When data is received, the read (page 370) event will be fired on the Connection

(page 368) object.

When the connection is closed, the readyState (page 369) attribute's value must be
changed to 2, and the close (page 369) event must be fired on the Connection (page
368) object.

The onopen, onread, and onclose attributes must, when set, register their new value
as an event listener for their respective events (namely open (page 369), read (page
370), and close (page 369)), and unregister their previous value if any.

The send() method transmits data using the connection. If the connection is not yet
established, it must raise an INVALID_STATE_ERR exception. If the connection is
established, then the behaviour depends on the connection type, as described below.

The disconnect() method must close the connection, if it is open. If the connection is
already closed, it must do nothing. Closing the connection causes a close (page 369)
event to be fired and the readyState (page 369) attribute's value to change, as
described above (page 369).

6.3.3. Connection Events

All the events described in this section are events in no namespace, which do not
bubble, are not cancelable, and have no default action.

The open event is fired when the connection is established. UAs must use the normal
Event interface when firing this event.

The close event is fired when the connection is closed (whether by the author, calling
the disconnect() (page 369) method, or by the server, or by a network error). UAs
must use the normal Event interface when firing this event as well.
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Note: No information regarding why the connection was closed is passed
to the application in this version of this specification.

The read event is fired when when data is received for a connection. UAs must use the
ConnectionReadEvent (page 370) interface for this event.

interface ConnectionReadEvent : Event {

readonly attribute DOMString data (page 370);
readonly attribute DOMString source (page 370);
void initConnectionReadEvent (page 370)(in DOMString typeArg, in boolean

canBubbleArg, in boolean cancelableArg, in DOMString dataArg);

void initConnectionReadEventNS (page 370)(in DOMString namespaceURI, in
DOMString typeArg, in boolean canBubbleArg, in boolean cancelableArg, in
DOMString dataArg);
};

The initConnectionReadEvent() and initConnectionReadEventNS()
methods must initialise the event in a manner analogous to the similarly-named methods
in the DOM3 Events interfaces. [DOM3EVENTS] (page 0)

The data attribute represents the data that was transmitted from the peer.

The source attribute represents the name of the peer. This is primarily useful on
broadcast connections; on direct connections it is equal to the peer (page 368) attribute
on the Connection (page 368) object.

Events that would be fired during script execution (e.g. between the connection object
being created — and thus the connection being established — and the current script
completing; or, during the execution of a read (page 370) event handler) must be
buffered, and those events queued up and each one individually fired after the script has
completed.

6.3.4. TCP connections

The TCPConnection(subdomain, port, secure) constructor on the WindowHTML

(page 301) interface returns a new object implementing the Connection (page 368)
interface, set up for a direct connection to a specified host on the page's domain.

When this constructor is invoked, the following steps must be followed.

First, if the script's domain (page 280) is not a host name (e.g. it is an IP address) then
the UA must raise a security exception (page 280).

Then, if the subdomain argument is null or the empty string, the target host is the script's
domain (page 280). Otherwise, the subdomain argument is prepended to the script's
domain (page 280) with a dot separating the two strings, and that is the target host.

If either:

• the target host is not a valid host name, or

We currently don't allow
connections to be set up
back to an originating IP
address, but we could, if
the subdomain is the
empty string.

▶
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• the port argument is neither equal to 80, nor equal to 443, nor greater than or equal
to 1024 and less than or equal to 65535,

...then the UA must raise a security exception (page 280).

Otherwise, the user agent must verify that the the string representing the script's domain
in IDNA format (page 280) can be obtained without errors. If it cannot, then the user
agent must raise a security exception (page 280).

The user agent may also raise a security exception (page 280) at this time if, for some
reason, permission to create a direct TCP connection to the relevant host is denied.
Reasons could include the UA being instructed by the user to not allow direct
connections, or the UA establishing (for instance using UPnP) that the network topology
will cause connections on the specified port to be directed at the wrong host.

If no exceptions are raised by the previous steps, then a new Connection (page 368)
object must be created, its peer (page 368) attribute must be set to a string consisting
of the name of the target host, a colon (U+003A COLON), and the port number as
decimal digits, and its network (page 368) attribute must be set to the same value as
the peer (page 368) attribute.

This object must then be returned.

The user agent must then begin trying to establish a connection with the target host and
specified port. (This typically would begin in the backgound, while the script continues to
execute.)

If the secure boolean argument is set to true, then the user agent must establish a
secure connection with the target host and specified port using TLS or another protocol,
negotiated with the server. [RFC2246] If this fails the user agent must act as if it had
closed the connection (page 369).

Once a secure connection is established, or if the secure boolean argument is not set to
true, then the user agent must continue to connect to the server using the protocol
described in the section entitled clients connecting over TCP (page 376). All data on
connections made using TLS must be sent as "application data".

Once the connection is established, the UA must act as described in the section entitled
sending and receiving data over TCP (page 378).

User agents should allow multiple TCP connections to be established per host. In
particular, user agents should not apply per-host HTTP connection limits to connections
established with the TCPConnection (page 370) constructor.

6.3.5. Broadcast connections

The LocalBroadcastConnection() constructor on the WindowHTML (page 301)
interface returns a new object implementing the Connection (page 368) interface, set
up to broadcast on the local network.
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When this constructor is invoked, a new Connection (page 368) object must be
created.

The network (page 368) attribute of the object must be set to the string representing
the script's domain in IDNA format (page 280). If this string cannot be obtained, then the
user agent must raise a security exception (page 280) exception when the constructor is
called.

The peer (page 368) attribute must be set to the empty string.

The object must then be returned, unless, for some reason, permission to broadcast on
the local network is to be denied. In the latter case, a security exception (page 280) must
be raised instead. User agents may deny such permission for any reason, for example a
user preference.

If the object is returned (i.e. if no exception is raised), the user agent must the begin
broadcasting and listening on the local network, in the background, as described below.
The user agent may define "the local network" in any way it considers appropriate and
safe; for instance the user agent may ask the user which network (e.g. Bluetooth, IrDA,
Ethernet, etc) the user would like to broadcast on before beginning broadcasting.

UAs may broadcast and listen on multiple networks at once. For example, the UA could
broadcast on both Bluetooth and Wifi at the same time.

As soon as the object is returned, the connection has been established (page 369),
which implies that the open (page 369) event must be fired. Broadcast connections are
never closed.

6.3.5.1. Broadcasting over TCP/IP

Should we drop this altogether? Letting people fill the local network with garbage
seems unwise.

We need to register a UDP port for this. For now this spec refers to port 18080/udp.

Note: Since this feature requires that the user agent listen to a particular
port, some platforms might prevent more than one user agent per IP
address from using this feature at any one time.

On TCP/IP networks, broadcast connections transmit data using UDP over port 18080.

When the send(data) (page 369) method is invoked on a Connection (page 368)
object that was created by the LocalBroadcastConnection() (page 371)
constructor, the user agent must follow these steps:

1. Create a string consisting of the value of the network (page 368) attribute of the
Connection (page 368) object, a U+0020 SPACE character, a U+0002 START OF
TEXT character, and the data argument.
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2. Encode the string as UTF-8.

3. If the resulting byte stream is longer than 65487 bytes, raise an INDEX_SIZE_ERR

DOM exception and stop.

4. Create a UDP packet whose data is the byte stream, with the source and destination
ports being 18080, and with appropriate length and checksum fields. Transmit this
packet to IPv4 address 255.255.255.255 or IPv6 address ff02::1, as appropriate.

IPv6 applications will also have to enable reception from this address.

When a broadcast connection is opened on a TCP/IP network, the user agent should
listen for UDP packets on port 18080.

When the user agent receives a packet on port 18080, the user agent must attempt to
decode that packet's data as UTF-8. If the data is not fully correct UTF-8 (i.e. if there are
decoding errors) then the packet must be ignored. Otherwise, the user agent must check
to see if the decoded string contains a U+0020 SPACE character. If it does not, then the
packet must again be ignored (it might be a peer discovery packet from a
PeerToPeerConnection() (page 374) constructor). If it does then the user agent
must split the string at the first space character. All the characters before the space are
then known as d, and all the characters after the space are known as s. If s is not at least
one character long, or if the first character of s is not a U+0002 START OF TEXT
character, then the packet must be ignored. (This allows for future extension of this
protocol.)

Otherwise, for each Connection (page 368) object that was created by the
LocalBroadcastConnection() (page 371) constructor and whose network (page
368) attribute exactly matches d, a read (page 370) event must be fired on the
Connection (page 368) object. The string s, with the first character removed, must be
used as the data (page 370), and the source IP address of the packet as the source

(page 370).

Making the source IP available means that if two or more machines in a private
network can be made to go to a hostile page simultaneously, the hostile page can
determine the IP addresses used locally (i.e. on the other side of any NAT router). Is
there some way we can keep link-local IP addresses secret while still allowing for
applications to distinguish between multiple participants?

6.3.5.2. [TBW] Broadcasting over Bluetooth

Does anyone know enough about Bluetooth to write this section?

6.3.5.3. [TBW] Broadcasting over IrDA

Does anyone know enough about IrDA to write this section?
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6.3.6. Peer-to-peer connections

The PeerToPeerConnection() constructor on the WindowHTML (page 301) interface
returns a new object implementing the Connection (page 368) interface, set up for a
direct connection to a user-specified host.

When this constructor is invoked, a new Connection (page 368) object must be
created.

The network (page 368) attribute of the object must be set to the string representing
the script's domain in IDNA format (page 280). If this string cannot be obtained, then the
user agent must raise a security exception (page 280) exception when the constructor is
called.

The peer (page 368) attribute must be set to the empty string.

The object must then be returned, unless, for some reason, permission to establish
peer-to-peer connections is generally disallowed, for example due to administrator
settings. In the latter case, a security exception (page 280) must be raised instead.

The user agent must then, typically while the script resumes execution, find a remote
host to establish a connection to. To do this it must start broadcasting and listening for
peer discovery messages and listening for incoming connection requests on all the
supported networks. How this is performed depends on the type of network and is
described below.

The UA should inform the user of the clients that are detected, and allow the user to
select one to connect to. UAs may also allow users to explicit specify hosts that were not
detected, e.g. by having the user enter an IP address.

If an incoming connection is detected before the user specifies a target host, the user
agent should ask the user to confirm that this is the host they wish to connect to. If it is,
the connection should be accepted and the UA will act as the server in this connection.
(Which UA acts as the server and which acts as the client is not discernible at the DOM
API level.)

If no incoming connection is detected and if the user specifies a particular target host, a
connection should be established to that host, with the UA acting as the client in the
connection.

No more than one connection must be established per Connection (page 368) object,
so once a connection has been established, the user agent must stop listening for further
connections (unless, or until such time as, another Connection (page 368) object is
being created).

If at any point the user cancels the connection process or the remote host refuses the
connection, then the user agent must act as if it had closed the connection (page 369),
and stop trying to connect.
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6.3.6.1. Peer-to-peer connections over TCP/IP

Should we replace this section with something that uses Rendez-vous/zeroconf or
equivalent?

We need to register ports for this. For now this spec refers to port 18080/udp and
18080/tcp.

Note: Since this feature requires that the user agent listen to a particular
port, some platforms might prevent more than one user agent per IP
address from using this feature at any one time.

When using TCP/IP, broadcasting peer discovery messages must be done by creating
UDP packets every few seconds containing as their data the value of the connection's
network (page 368) attribute, encoded as UTF-8, with the source and destination ports
being set to 18080 and appropriate length and checksum fields, and sending these
packets to address (in IPv4) 255.255.255.255 or (in IPv6) ff02::1, as appropriate.

Listening for peer discovery messages must be done by examining incoming UDP
packets on port 18080. IPv6 applications will also have to enable reception
from the ff02::1 address. If their payload is exactly byte-for-byte equal to a UTF-8
encoded version of the value of the connection's network (page 368) attribute, then the
source address of that packet represents the address of a host that is ready to accept a
peer-to-peer connection, and it should therefore be offered to the user.

Incoming connection requests must be listened for on TCP port 18080. If an incoming
connection is received, the UA must act as a server, as described in the section entitled
servers accepting connections over TCP (page 377).

If no incoming connection requests are accepted and the user instead specifies a target
host to connect to, the UA acts as a client: the user agent must attempt to connect to the
user-specified host on port 18080, as described in the section entitled clients connecting
over TCP (page 376).

Once the connection is established, the UA must act as described in the section entitled
sending and receiving data over TCP (page 378).

Note: This specification does not include a way to establish secure

(encrypted) peer-to-peer connections at this time. If you can see a good

way to do this, let me know.
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6.3.6.2. [TBW] Peer-to-peer connections over Bluetooth

Does anyone know enough about Bluetooth to write this section?

6.3.6.3. [TBW] Peer-to-peer connections over IrDA

Does anyone know enough about IrDA to write this section?

6.3.7. The common protocol for TCP-based connections

The same protocol is used for TCPConnection (page 370) and
PeerToPeerConnection (page 374) connection types. This section describes how
such connections are established from the client and server sides, and then describes
how data is sent and received over such connections (which is the same for both clients
and servers).

6.3.7.1. Clients connecting over TCP

This section defines the client-side requirements of the protocol used by the
TCPConnection (page 370) and PeerToPeerConnection (page 374) connection
types.

If a TCP connection to the specified target host and port cannot be established, for
example because the target host is a domain name that cannot be resolved to an IP
address, or because packets cannot be routed to the host, the user agent should retry
creating the connection. If the user agent gives up trying to connect, the user agent must
act as if it had closed the connection (page 369).

Note: No information regarding the state of the connection is passed to
the application while the connection is being established in this version of
this specification.

Once a TCP/IP connection to the remote host is established, the user agent must
transmit the following sequence of bytes, represented here in hexadecimal form:

0x48 0x65 0x6C 0x6C 0x6F 0x0A

Note: This represents the string "Hello" followed by a newline, encoded in
UTF-8.

The user agent must then read all the bytes sent from the remote host, up to the first
0x0A byte (inclusive). That string of bytes is then compared byte-for-byte to the following
string of bytes:

0x57 0x65 0x6C 0x63 0x6F 0x6E 0x65 0x0A
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Note: This says "Welcome".

If the server sent back a string in any way different to this, then the user agent must
close the connection (page 369) and give up trying to connect.

Otherwise, the user agent must then take the string representing the script's domain in
IDNA format (page 280), encode it as UTF-8, and send that to the remote host, followed
by a 0x0A byte (a U+000A LINE FEED in UTF-8).

The user agent must then read all the bytes sent from the remote host, up to the first
0x0A byte (inclusive). That string of bytes must then be compared byte-for-byte to the
string that was just sent to the server (the one with the IDNA domain name and ending
with a newline character). If the server sent back a string in any way different to this, then
the user agent must close the connection (page 369) and give up trying to connect.

Otherwise, the connection has been established (page 369) (and events and so forth get
fired, as described above).

If at any point during this process the connection is closed prematurely, then the user
agent must close the connection (page 369) and give up trying to connect.

6.3.7.2. Servers accepting connections over TCP

This section defines the server side of the protocol described in the previous section. For
authors, it should be used as a guide for how to implement servers that can
communicate with Web pages over TCP. For UAs these are the requirements for the
server part of PeerToPeerConnection (page 374)s.

Once a TCP/IP connection from a remote host is established, the user agent must
transmit the following sequence of bytes, represented here in hexadecimal form:

0x57 0x65 0x6C 0x63 0x6F 0x6E 0x65 0x0A

Note: This says "Welcome" and a newline in UTF-8.

The user agent must then read all the bytes sent from the remote host, up to the first
0x0A byte (inclusive). That string of bytes is then compared byte-for-byte to the following
string of bytes:

0x48 0x65 0x6C 0x6C 0x6F 0x0A

Note: "Hello" and a newline.

If the remote host sent back a string in any way different to this, then the user agent must
close the connection (page 369) and give up trying to connect.

Otherwise, the user agent must then take the string representing the script's domain in
IDNA format (page 280), encode it as UTF-8, and send that to the remote host, followed
by a 0x0A byte (a U+000A LINE FEED in UTF-8).
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The user agent must then read all the bytes sent from the remote host, up to the first
0x0A byte (inclusive). That string of bytes must then be compared byte-for-byte to the
string that was just sent to that host (the one with the IDNA domain name and ending
with a newline character). If the remote host sent back a string in any way different to
this, then the user agent must close the connection (page 369) and give up trying to
connect.

Otherwise, the connection has been established (page 369) (and events and so forth get
fired, as described above).

Note: For author-written servers (as opposed to the server side of a
peer-to-peer connection), the script's domain would be replaced by the
hostname of the server. Alternatively, such servers might instead wait for
the client to send its domain string, and then simply echo it back. This
would allow connections from pages on any domain, instead of just pages
originating from the same host. The client compares the two strings to
ensure they are the same before allowing the connection to be used by
author script.

If at any point during this process the connection is closed prematurely, then the user
agent must close the connection (page 369) and give up trying to connect.

6.3.7.3. Sending and receiving data over TCP

When the send(data) (page 369) method is invoked on the connection's
corresponding Connection (page 368) object, the user agent must take the data
argument, replace any U+0000 NULL and U+0017 END OF TRANSMISSION BLOCK
characters in it with U+FFFD REPLACEMENT CHARACTER characters, then transmit a
U+0002 START OF TEXT character, this new data string and a single U+0017 END OF
TRANSMISSION BLOCK character (in that order) to the remote host, all encoded as
UTF-8.

When the user agent receives bytes on the connection, the user agent must buffer
received bytes until it receives a 0x17 byte (a U+0017 END OF TRANSMISSION BLOCK
character). If the first buffered byte is not a 0x02 byte (a U+0002 START OF TEXT
character encoded as UTF-8) then all the data up to the 0x17 byte, inclusive, must be
dropped. (This allows for future extension of this protocol.) Otherwise, all the data from
(but not including) the 0x02 byte and up to (but not including) the 0x17 byte must be
taken, interpreted as a UTF-8 string, and a read (page 370) event must be fired on the
Connection (page 368) object with that string as the data (page 370). If that string
cannot be decoded as UTF-8 without errors, the packet should be ignored.

Note: This protocol does not yet allow binary data (e.g. an image or media
data (page 169)) to be efficiently transmitted. A future version of this
protocol might allow this by using the prefix character U+001F
INFORMATION SEPARATOR ONE, followed by binary data which uses a
particular byte (e.g. 0xFF) to encode byte 0x17 somehow (since otherwise
0x17 would be treated as transmission end by down-level UAs).

378



6.3.8. [TBW] Security

Need to write this section.

If you have an unencrypted page that is (through a man-in-the-middle attack)
changed, it can access a secure service that is using IP authentication and then send
that data back to the attacker. Ergo we should probably stop unencrypted pages from
accessing encrypted services, on the principle that the actual level of security is zero.
Then again, if we do that, we prevent insecure sites from using SSL as a tunneling
mechanism.

Should consider dropping the subdomain-only restriction. It doesn't seem to add
anything, and prevents cross-domain chatter.

6.3.9. [TBW] Relationship to other standards

Should have a section talking about the fact that we blithely ignoring IANA's port
assignments here.

Should explain why we are not reusing HTTP for this. (HTTP is too heavy-weight for
such a simple need; requiring authors to implement an HTTP server just to have a
party line is too much of a barrier to entry; cannot rely on prebuilt components; having
a simple protocol makes it much easier to do RAD; HTTP doesn't fit the needs and
doesn't have the security model needed; etc)

6.4. [SCS] Cross-document messaging

Web browsers, for security and privacy reasons, prevent documents in different domains
from affecting each other; that is, cross-site scripting is disallowed.

While this is an important security feature, it prevents pages from different domains from
communicating even when those pages are not hostile. This section introduces a
messaging system that allows documents to communicate with each other regardless of
their source domain, in a way designed to not enable cross-site scripting attacks.

6.4.1. Processing model

When a script invokes the postMessage(message) method on a Document object,
the user agent must create an event that uses the MessageEvent (page 359) interface,
with the event name message (page 359), which bubbles, is cancelable, and has no
default action. The data (page 359) attribute must be set to the value passed as the
message argument to the postMessage() (page 379) method, the domain (page 359)
attribute must be set to the domain of the document that the script that invoked the
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methods is associated with, the uri (page 359) attribute must be set to the URI of that
document, and the source (page 359) attribute must be set to the Document object
representing that document.

The event must then be dispatched at the Document object itself.

⚠Warning! Authors should check the domain (page 359) attribute to
ensure that messages are only accepted from domains that they expect to
receive messages from. Otherwise, bugs in the author's message
handling code could be exploited by hostile sites.

For example, if document A contains an object (page 160) element that contains
document B, and script in document A calls postMessage() (page 379) on
document B, then a message event will be fired on that element, marked as
originating from document A. The script in document A might look like:

var o = document.getElementsByTagName('object')[0];

o.contentDocument.postMessage (page 379)('Hello world');

To register an event handler for incoming events, the script would use
addEventListener() (or similar mechanisms). For example, the script in
document B might look like:

document.addEventListener('message', receiver, false);
function receiver(e) {

if (e.domain == 'example.com') {
if (e.data == 'Hello world') {

e.source.postMessage('Hello');
} else {

alert(e.data);
}

}
}

This script first checks the domain is the expected domain, and then looks at the
message, which it either displays to the user, or responds to by sending a message
back to the document which sent the message in the first place.

Note: Implementors are urged to take extra care in the implementation of
this feature. It allows authors to transmit information from one domain to
another domain, which is normally disallowed for security reasons. It also
requires that UAs be careful to allow access to certain properties but not
others.
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7. Miscellaneous APIs

7.1. [TBW] Repetition templates

See WF2 for now

7.2. [SCS] Sound

This section is about to be collapsed into the new audio (page 381) element section.

The Audio (page 381) interface allows scripts to play sound clips. This interface is
intended for sound effects, not for streaming audio or multimedia; for the latter, the
object (page 160) element is more appropriate.

There is no markup element that corresponds to Audio (page 381) objects, they are
only accessible from script.

User agents should allow users to dynamically enable and disable sound output, but
doing so must not affect how Audio (page 381) objects act in any way other than
whether sounds are physically played back or not. For instance, sound files must still be
downloaded, load and error events must still fire, and if two identical clips are started
with a two second interval then when the sound is reenabled they must still be two
seconds out of sync.

When multiple sounds are played simultaneously, the user agent must mix the sounds
together.

interface Audio {
attribute EventListener onload;
attribute EventListener onerror;

void play();
void loop();
void loop(in unsigned long playCount);
void stop();

};

Audio (page 381) objects must also implement the EventTarget interface.
[DOM3EVENTS]

In ECMAScript, an instance of Audio (page 381) can be created using the Audio(uri)
constructor:

var a = new Audio("test.wav");

The Audio() constructor takes a single argument, a URI (or IRI), which is resolved
using the script context's window.location.href value as the base, and which

We need to add an API for
object to support pausing,
etc, of streaming APIs.

▶
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returns an Audio (page 381) object that will, at the completion of the current script, start
loading that URI.

Once the URI is loaded, a load event must be fired on the Audio (page 381) object.

Audio (page 381) objects have a current position and a play count. Both are initially
zero.

The Audio (page 381) interface has the following members:

onload
An event listener that is invoked along with any other appropriate event listeners that
are registered on this object when a load event is fired on it.

play()
Begins playing the sound at the current position, setting the play count to 1.

loop()
Begins playing the sound at the current position, setting the play count to infinity.

loop(playCount)
Begins playing the sound at the current position, setting the play count to playCount.

stop()
Stops playing the clip and resets the current position and play count to zero.

When playback of the sound reaches the end of the available data, its current position is
reset to the start of the clip, and the play count is decreased by one (unless it is infinite).
If the play count is greater than zero, then the sound is played again.
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8. The HTML syntax

8.1. Writing HTML documents

This section only applies to documents, authoring tools, and markup generators. In
particular, it does not apply to conformance checkers; conformance checkers must use
the requirements given in the next section ("parsing HTML documents").

Documents must consist of the following parts, in the given order:

1. Optionally, a single U+FEFF BYTE ORDER MARK (BOM) character.

2. Any number of comments (page 391) and space characters (page 47).

3. A DOCTYPE (page 383).

4. Any number of comments (page 391) and space characters (page 47).

5. The root element, in the form of an html (page 81) element (page 384).

6. Any number of comments (page 391) and space characters (page 47).

The various types of content mentioned above are described in the next few sections.

In addition, there are some restrictions on how character encoding declarations (page
93) are to be serialised, as discussed in the section on that topic.

8.1.1. The DOCTYPE

A DOCTYPE is a mostly useless, but required, header.

Note: DOCTYPEs are required for legacy reasons. When omitted,
browsers tend to use a different rendering mode that is incompatible with
some specifications. Including the DOCTYPE in a document ensures that
the browser makes a best-effort attempt at following the relevant
specifications.

A DOCTYPE must consist of the following characters, in this order:

1. A U+003C LESS-THAN SIGN (<) character.

2. A U+0021 EXCLAMATION MARK (!) character.

3. A U+0044 LATIN CAPITAL LETTER D or U+0064 LATIN SMALL LETTER D
character.

4. A U+004F LATIN CAPITAL LETTER O or U+006F LATIN SMALL LETTER O
character.

5. A U+0043 LATIN CAPITAL LETTER C or U+0063 LATIN SMALL LETTER C
character.
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6. A U+0054 LATIN CAPITAL LETTER T or U+0074 LATIN SMALL LETTER T
character.

7. A U+0059 LATIN CAPITAL LETTER Y or U+0079 LATIN SMALL LETTER Y
character.

8. A U+0050 LATIN CAPITAL LETTER P or U+0070 LATIN SMALL LETTER P
character.

9. A U+0045 LATIN CAPITAL LETTER E or U+0065 LATIN SMALL LETTER E
character.

10. One or more space characters (page 47).

11. A U+0048 LATIN CAPITAL LETTER H or U+0068 LATIN SMALL LETTER H
character.

12. A U+0054 LATIN CAPITAL LETTER T or U+0074 LATIN SMALL LETTER T
character.

13. A U+004D LATIN CAPITAL LETTER M or U+006D LATIN SMALL LETTER M
character.

14. A U+004C LATIN CAPITAL LETTER L or U+006C LATIN SMALL LETTER L
character.

15. Zero or more space characters (page 47).

16. A U+003E GREATER-THAN SIGN (>) character.

Note: In other words, <!DOCTYPE HTML>, case-insensitively.

8.1.2. Elements

There are four different kinds of elements: void elements, CDATA elements, RCDATA
elements, and normal elements.

Void elements
base (page 83), link (page 84), meta (page 88), hr (page 113), br (page 113),
img (page 154), embed (page 158), param (page 164), area (page 195), col
(page 205), input

CDATA elements
style (page 93), script (page 220)

RCDATA elements
title (page 82), textarea

Normal elements
All other allowed HTML elements are normal elements.
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Tags are used to delimit the start and end of elements in the markup. CDATA, RCDATA,
and normal elements have a start tag (page 385) to indicate where they begin, and an
end tag (page 386) to indicate where they end. The start and end tags of certain normal
elements can be omitted (page 388), as described later. Those that cannot be omitted
must not be omitted. Void elements only have a start tag; end tags must not be specified
for void elements.

The contents of the element must be placed between just after the start tag (which might
be implied, in certain cases (page 388)) and just before the end tag (which again, might
be implied in certain cases (page 388)). The exact allowed contents of each individual
element depends on the content model of that element, as described earlier in this
specification. Elements must not contain content that their content model disallows. In
addition to the restrictions placed on the contents by those content models, however, the
four types of elements have additional syntactic requirements.

Void elements can't have any contents (since there's no end tag, no content can be put
between the start tag and the end tag.)

CDATA elements can have text (page 390), but the text must not contain the two
character sequence "</" (U+003C LESS-THAN SIGN, U+002F SOLIDUS).

RCDATA elements can have text (page 390) and character entity references (page
391), but the text must not contain the character U+003C LESS-THAN SIGN (<) or the
character U+0026 AMPERSAND (&).

Normal elements can have text (page 390), character entity references (page 391),
other elements (page 384), and comments (page 391), but the text must not contain the
character U+003C LESS-THAN SIGN (<) or the character U+0026 AMPERSAND (&).
Some normal elements also have yet more restrictions (page 390) on what content they
are allowed to hold, beyond the restrictions imposed by the content model and those
described in this paragraph. Those restrictions are described below.

Tags contain a tag name, giving the element's name. HTML elements all have names
that only use characters in the range U+0061 LATIN SMALL LETTER A .. U+007A
LATIN SMALL LETTER Z, or, in uppercase, U+0041 LATIN CAPITAL LETTER A ..
U+005A LATIN CAPITAL LETTER Z, and U+002D HYPHEN-MINUS (-). In the HTML
syntax, tag names may be written with any mix of lower- and uppercase letters that,
when converted to all-lowercase, matches the element's tag name; tag names are
case-insensitive.

8.1.2.1. Start tags

Start tags must have the following format:

1. The first character of a start tag must be a U+003C LESS-THAN SIGN (<).

2. The next few characters of a start tag must be the element's tag name (page 385).

3. If there are to be any attributes in the next step, there must first be one or more
space characters (page 47).
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4. Then, the start tag may have a number of attributes, the syntax for which (page 386)
is described below. Attributes may be separated from each other by one or more
space characters (page 47).

5. After the attributes, there may be one or more space characters (page 47). (Some
attributes are required to be followed by a space. See the attributes section (page
386) below.)

6. Then, if the element is one of the void elements, then there may be a single U+002F
SOLIDUS (/) character. This character has no effect except to appease the markup
gods. As this character is therefore just a symbol of faith, atheists should omit it.

7. Finally, start tags must be closed by a U+003E GREATER-THAN SIGN (>)
character.

8.1.2.2. End tags

End tags must have the following format:

1. The first character of an end tag must be a U+003C LESS-THAN SIGN (<).

2. The second character of an end tag must be a U+002F SOLIDUS (/).

3. The next few characters of an end tag must be the element's tag name (page 385).

4. After the tag name, there may be one or more space characters (page 47).

5. Finally, end tags must be closed by a U+003E GREATER-THAN SIGN (>)
character.

8.1.2.3. Attributes

Attributes for an element are expressed inside the element's start tag.

Attributes have a name and a value. Attribute names use characters in the range
U+0061 LATIN SMALL LETTER A .. U+007A LATIN SMALL LETTER Z, or, in
uppercase, U+0041 LATIN CAPITAL LETTER A .. U+005A LATIN CAPITAL LETTER Z,
and U+002D HYPHEN-MINUS (-). In the HTML syntax, attribute names may be written
with any mix of lower- and uppercase letters that, when converted to all-lowercase,
matches the attribute's name; attribute names are case-insensitive.

Attribute values are a mixture of text (page 390) and character entity references (page
391), except with the additional restriction that the text cannot contain a U+0026
AMPERSAND (&) character.

Attributes can be specified in four different ways:

Empty attribute syntax
Just the attribute name (page 386).

386



In the following example, the disabled attribute is given with the empty
attribute syntax:

<input disabled>

If an attribute using the empty attribute syntax is to be followed by another attribute,
then there must be a space character (page 47) separating the two.

Unquoted attribute value syntax
The attribute name (page 386), followed by zero or more space characters (page
47), followed by a single U+003D EQUALS SIGN character, followed by zero or
more space characters (page 47), followed by the attribute value (page 386), which,
in addition to the requirements given above for attribute values, must not contain
any literal space characters (page 47), U+003E GREATER-THAN SIGN (>)
characters, or U+003C LESS-THAN SIGN (<) characters, and must not,
furthermore, start with either a literal U+0022 QUOTATION MARK (") character or a
literal U+0027 APOSTROPHE (') character.

In the following example, the value attribute is given with the unquoted
attribute value syntax:

<input value=yes>

If an attribute using the unquoted attribute syntax is to be followed by another
attribute or by one of the optional U+002F SOLIDUS (/) characters allowed in step 6
of the start tag syntax above, then there must be a space character (page 47)
separating the two.

Single-quoted attribute value syntax
The attribute name (page 386), followed by zero or more space characters (page
47), followed by a single U+003D EQUALS SIGN character, followed by zero or
more space characters (page 47), followed by a single U+0027 APOSTROPHE (')
character, followed by the attribute value (page 386), which, in addition to the
requirements given above for attribute values, must not contain any literal U+0027
APOSTROPHE (') characters, and finally followed by a second single U+0027
APOSTROPHE (') character.

In the following example, the type attribute is given with the single-quoted
attribute value syntax:

<input type='checkbox'>

Double-quoted attribute value syntax
The attribute name (page 386), followed by zero or more space characters (page
47), followed by a single U+003D EQUALS SIGN character, followed by zero or
more space characters (page 47), followed by a single U+0022 QUOTATION MARK
(") character, followed by the attribute value (page 386), which, in addition to the
requirements given above for attribute values, must not contain any literal U+0022
QUOTATION MARK (") characters, and finally followed by a second single U+0022
QUOTATION MARK (") character.
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In the following example, the name attribute is given with the double-quoted
attribute value syntax:

<input name="be evil">

8.1.2.4. Optional tags

Certain tags can be omitted.

An html (page 81) element's start tag may be omitted if the first thing inside the html

(page 81) element is not a space character (page 47) or a comment (page 391).

An html (page 81) element's end tag may be omitted if the html (page 81) element is
not immediately followed by a space character (page 47) or a comment (page 391).

A head (page 82) element's start tag may be omitted if the first thing inside the head

(page 82) element is an element.

A head (page 82) element's end tag may be omitted if the head (page 82) element is
not immediately followed by a space character (page 47) or a comment (page 391).

A body (page 96) element's start tag may be omitted if the first thing inside the body

(page 96) element is not a space character (page 47) or a comment (page 391), except
if the first thing inside the body (page 96) element is a script (page 220) or style
(page 93) element and the node immediately preceding the body (page 96) element is a
head (page 82) element whose end tag has been omitted.

A body (page 96) element's end tag may be omitted if the body (page 96) element is
not immediately followed by a space character (page 47) or a comment (page 391).

A li (page 118) element's end tag may be omitted if the li (page 118) element is
immediately followed by another li (page 118) element or if there is no more content in
the parent element.

A dt (page 121) element's end tag may be omitted if the dt (page 121) element is
immediately followed by another dt (page 121) element or a dd (page 122) element.

A dd (page 122) element's end tag may be omitted if the dd (page 122) element is
immediately followed by another dd (page 122) element or a dt (page 121) element, or
if there is no more content in the parent element.

A p (page 112) element's end tag may be omitted if the p (page 112) element is
immediately followed by an address (page 104), blockquote (page 99), dl (page
119), fieldset, form, h1 (page 101), h2 (page 101), h3 (page 101), h4 (page 101),
h5 (page 101), h6 (page 101), hr (page 113), menu (page 257), ol (page 116), p
(page 112), pre (page 116), table (page 201), or ul (page 117) element, or if there is
no more content in the parent element.
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An optgroup element's end tag may be omitted if the optgroup element is
immediately followed by another optgroup element, or if there is no more content in the
parent element.

An option element's end tag may be omitted if the option element is immediately
followed by another option element, or if there is no more content in the parent
element.

A colgroup (page 204) element's start tag may be omitted if the first thing inside the
colgroup (page 204) element is a col (page 205) element, and if the element is not
immediately preceeded by another colgroup (page 204) element whose end tag has
been omitted.

A colgroup (page 204) element's end tag may be omitted if the colgroup (page 204)
element is not immediately followed by a space character (page 47) or a comment (page
391).

A thead (page 207) element's end tag may be omitted if the thead (page 207) element
is immediately followed by a tbody (page 206) or tfoot (page 208) element.

A tbody (page 206) element's start tag may be omitted if the first thing inside the tbody

(page 206) element is a tr (page 208) element, and if the element is not immediately
preceeded by a tbody (page 206), thead (page 207), or tfoot (page 208) element
whose end tag has been omitted.

A tbody (page 206) element's end tag may be omitted if the tbody (page 206) element
is immediately followed by a tbody (page 206) or tfoot (page 208) element, or if there
is no more content in the parent element.

A tfoot (page 208) element's end tag may be omitted if the tfoot (page 208) element
is immediately followed by a tbody (page 206) element, or if there is no more content in
the parent element.

A tr (page 208) element's end tag may be omitted if the tr (page 208) element is
immediately followed by another tr (page 208) element, or if there is no more content in
the parent element.

A td (page 210) element's end tag may be omitted if the td (page 210) element is
immediately followed by a td (page 210) or th (page 211) element, or if there is no
more content in the parent element.

A th (page 211) element's end tag may be omitted if the th (page 211) element is
immediately followed by a td (page 210) or th (page 211) element, or if there is no
more content in the parent element.

However, a start tag must never be omitted if it has any attributes.
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8.1.2.5. Restrictions on content models

For historical reasons, certain elements have extra restrictions beyond even the
restrictions given by their content model.

A p (page 112) element must not contain blockquote (page 99), dl (page 119), menu
(page 257), ol (page 116), pre (page 116), table (page 201), or ul (page 117)
elements, even though these elements are technically allowed inside p (page 112)
elements according to the content models described in this specification. (In fact, if one
of those elements is put inside a p (page 112) element in the markup, it will instead imply
a p (page 112) element end tag before it.)

An optgroup element must not contain optgroup elements, even though these
elements are technically allowed to be nested according to the content models described
in this specification. (If an optgroup element is put inside another in the markup, it will
in fact imply an optgroup end tag before it.)

A table (page 201) element must not contain tr (page 208) elements, even though
these elements are technically allowed inside table (page 201) elements according to
the content models described in this specification. (If a tr (page 208) element is put
inside a table (page 201) in the markup, it will in fact imply a tbody (page 206) start
tag before it.)

A single U+000A LINE FEED (LF) character may be placed immediately after a pre

(page 116) element's start tag. This does not affect the processing of the element. The
otherwise optional U+000A LINE FEED (LF) character must be included if the element's
contents start with that character (because otherwise the leading newline in the contents
would be treated like the optional newline, and ignored).

The following two pre (page 116) blocks are equivalent:

<pre>Hello</pre>
<pre>
Hello</pre>

8.1.3. Text

Text is allowed inside elements, attributes, and comments. Text must consist of valid
Unicode characters other than U+0000. Text should not contain control characters other
than space characters (page 47). Extra constraints are placed on what is and what is not
allowed in text based on where the text is to be put, as described in the other sections.

8.1.3.1. Newlines

Newlines in HTML may be represented either as U+000D CARRIAGE RETURN (CR)
characters, U+000A LINE FEED (LF) characters, or pairs of U+000D CARRIAGE
RETURN (CR), U+000A LINE FEED (LF) characters in that order.
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8.1.4. Character entity references

In certain cases described in other sections, text (page 390) may be mixed with
character entity references. These can be used to escape characters that couldn't
otherwise legally be included in text (page 390).

Character entity references must start with a U+0026 AMPERSAND (&). Following this,
there are three possible kinds of character entity references:

Named entities
The ampersand must be followed by one of the names given in the entities (page
455) section, using the same case. Finally, after the name, the entity must be
terminated by a U+003B SEMICOLON character (;).

Decimal numeric entities
The ampersand must be followed by a U+0023 NUMBER SIGN (#) character,
followed by one or more digits in the range U+0030 DIGIT ZERO .. U+0039 DIGIT
NINE, representing a base-ten integer that itself is a valid Unicode code point that
isn't U+0000. The digits must then be followed by a U+003B SEMICOLON character
(;).

Hexadecimal numeric entities
The ampersand must be followed by a U+0023 NUMBER SIGN (#) character, which
must be followed by either a U+0078 LATIN SMALL LETTER X or a U+0058 LATIN
CAPITAL LETTER X character, which must then be followed by one or more digits
in the range U+0030 DIGIT ZERO .. U+0039 DIGIT NINE, U+0061 LATIN SMALL
LETTER A .. U+0066 LATIN SMALL LETTER F, and U+0041 LATIN CAPITAL
LETTER A .. U+0046 LATIN CAPITAL LETTER F, representing a base-sixteen
integer that itself is a valid Unicode code point that isn't U+0000. The digits must
then be followed by a U+003B SEMICOLON character (;).

8.1.5. Comments

Comments must start with the four character sequence U+003C LESS-THAN SIGN,
U+0021 EXCLAMATION MARK, U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS
(<!--). Following this sequence, the comment may have text (page 390), with the
additional restriction that the text must not contain two consecutive U+002D
HYPHEN-MINUS (-) characters, nor end with a U+002D HYPHEN-MINUS (-) character.
Finally, the comment must be ended by the three character sequence U+002D
HYPHEN-MINUS, U+002D HYPHEN-MINUS, U+003E GREATER-THAN SIGN (-->).

8.2. [SCS] Parsing HTML documents

This section only applies to user agents, data mining tools, and conformance checkers.

The rules for parsing XML documents (page 25) (and thus XHTML (page 18)
documents) into DOM trees are covered by the XML and Namespaces in XML
specifications, and are out of scope of this specification. [XML] [XMLNS]
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For HTML documents (page 25), user agents must use the parsing rules described in
this section to generate the DOM trees. Together, these rules define what is referred to
as the HTML parser.

While the HTML form of HTML5 bears a close resemblance to SGML and
XML, it is a separate language with its own parsing rules.

Some earlier versions of HTML (in particular from HTML2 to HTML4) were
based on SGML and used SGML parsing rules. However, few (if any) web
browsers ever implemented true SGML parsing for HTML documents; the
only user agents to strictly handle HTML as an SGML application have
historically been validators. The resulting confusion — with validators
claiming documents to have one representation while widely deployed
Web browsers interoperably implemented a different representation —
has resulted in this version of HTML returning to a non-SGML basis.

Authors interested in using SGML tools in their authoring pipeline are
encouraged to use the XML serialisation of HTML5 instead of the HTML
serialisation.

This specification defines the parsing rules for HTML documents, whether they are
syntactically valid or not. Certain points in the parsing algorithm are said to be parse
errors. The error handling for parse errors is well-defined: user agents must either act as
described below when encountering such problems, or must abort processing at the first
error that they encounter for which they do not wish to apply the rules described below.

Conformance checkers must report at least one parse error condition to the user if one
or more parse error conditions exist in the document and must not report parse error
conditions if none exist in the document. Conformance checkers may report more than
one parse error condition if more than one parse error conditions exist in the document.
Conformance checkers are not required to recover from parse errors.

Note: Parse errors are only errors with the syntax of HTML. In addition to
checking for parse errors, conformance checkers will also verify that the
document obeys all the other conformance requirements described in this
specification.

8.2.1. Overview of the parsing model

The input to the HTML parsing process consists of a stream of Unicode characters,
which is passed through a tokenisation (page 400) stage (lexical analysis) followed by a
tree construction (page 413) stage (semantic analysis). The output is a Document

object.

Note: Implementations that do not support scripting (page 16) do not have
to actually create a DOM Document object, but the DOM tree in such cases
is still used as the model for the rest of the specification.
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In the common case, the data handled by the tokenisation stage comes from the
network, but it can also come from script (page 38), e.g. using the document.write()

(page 40) API.

There is only one set of state for the tokeniser stage and the tree construction stage, but
the tree construction stage is reentrant, meaning that while the tree construction stage is
handling one token, the tokeniser might be resumed, causing further tokens to be
emitted and processed before the first token's processing is complete.

In the following example, the tree construction stage will be called upon to handle a
"p" start tag token while handling the "script" start tag token:

...
<script>
document.write('<p>');

</script>
...
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8.2.2. The input stream

The stream of Unicode characters that consists the input to the tokenisation stage will be
initially seen by the user agent as a stream of bytes (typically coming over the network or
from the local file system). The bytes encode the actual characters according to a
particular character encoding, which the user agent must use to decode the bytes into
characters.

For HTML, user agents must use the following algorithm in determining the character
encoding of a document:

1. If the transport layer specifies an encoding, use that, and abort these steps.

2. The user agent may wait for 512 or more bytes of the resource to be available.

3. Let n be the smaller of either 512 or the number of bytes already available.

4. For each of the rows in the following table, starting with the first one and going
down, if n is equal to or greater than the number of bytes in the first column, and the
first bytes of the file match the bytes given in the first column, then use the encoding
given in the cell in the second column of that row, and abort these steps:

Bytes in Hexadecimal Description

00 00 FE FF UTF-32BE BOM

FF FE 00 00 UTF-32LE BOM

FE FF UTF-16BE BOM

FF FE UTF-16LE BOM

EF BB BF UTF-8 BOM

5. Otherwise, the user agent will have to search for explicit character encoding
information in the file itself. This must proceed as follows:

Let position be a pointer to a byte in the input stream, initially pointing at the first
byte. If at any point during these steps the position pointer points beyond the nth
byte of the input stream, then skip to the next step of the overall character encoding
detection algorithm (the step which mentions frequency analysis below).

Now, repeat the following "two" steps until the algorithm aborts (either because
position reaches beyond the nth byte, or because a character encoding is found):

1. If position points to:

↪ A sequence of bytes starting with: 0x3C 0x21 0x2D 0x2D (ASCII '<!--')
Advance the position pointer so that it points at the first 0x3E byte
which is preceeded by two 0x2D bytes (i.e. at the end of an ASCII '-->'
sequence) and comes after the second 0x2D byte that was found.
(The two 0x2D bytes cannot be the same as the those in the '<!--'
sequence.) If no such byte is found before the nth byte, abort this "two
step" algorithm.
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↪ A sequence of bytes starting with: 0x3C, 0x4D or 0x6D, 0x45 or 0x65,
0x54 or 0x74, 0x41 or 0x61, and finally one of 0x09, 0x0A, 0x0B, 0x0C,
0x0D, 0x20 (case-insensitive ASCII '<meta' followed by a space)

1. Advance the position pointer so that it points at the next 0x09,
0x0A, 0x0B, 0x0C, 0x0D, or 0x20 byte (the one in sequence of
characters matched above), if there is one before the nth byte. If
there isn't, abort the "two step" algorithm.

2. Get an attribute (page 397) and its value. If no attribute was
sniffed, then skip this inner set of steps, and jump to the second
step in the overall "two step" algorithm.

Note: As required above, if the position pointer
points beyond the nth byte after the "get an
attribute" step, the "two step" algorithm will abort.

3. Examine the attribute's name:

↪ If it is 'charset'
If the attribute's value is a supported character encoding,
then use the given encoding, and abort all these steps.
Otherwise, do nothing with this attribute.

↪ If it is 'content'
The attribute's value is now parsed.

1. Skip characters in the attribute's value up to and
including the first U+003B SEMICOLON (;)
character.

2. Skip any U+0009, U+000A, U+000B, U+000C,
U+000D, or U+0020 characters (i.e. spaces) that
immediately follow the semicolon.

3. If the next six characters are not 'charset', abort this
very inner set of steps (parsing the attribute's value),
and continue looking for other attributes.

4. Skip any U+0009, U+000A, U+000B, U+000C,
U+000D, or U+0020 characters that immediately
follow the word 'charset' (there might not be any).

5. If the next character is not a U+003D EQUALS SIGN
('='), abort this very inner set of steps (parsing the
attribute's value), and continue looking for other
attributes.
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6. Skip any U+0009, U+000A, U+000B, U+000C,
U+000D, or U+0020 characters that immediately
follow the word equals sign (there might not be any).

7. Process the next character as follows:

↪ If it is a U+0022 QUOTATION MARK ('"') and
there is a later U+0022 QUOTATION MARK
('"') in the attribute's value

Let tentative encoding be the string
between the two quotation marks.

↪ If it is a U+0027 APOSTROPHE ("'") and
there is a later U+0027 APOSTROPHE ("'") in
the attribute's value

Let tentative encoding be the string
between the two apostrophes.

↪ If it is an unmatched U+0022 QUOTATION
MARK ('"')

↪ If it is an unmatched U+0027 APOSTROPHE
("'")

There is no tentative encoding.

↪ Otherwise
Let tentative encoding be the string from
this character to the first U+0009, U+000A,
U+000B, U+000C, U+000D, or U+0020
character or the end of the attribute's value,
whichever comes first.

8. If there is a tentative encoding and it is the name of
a supported character encoding, then use that
encoding; abort all these steps.

9. Otherwise, skip this 'content' attribute and continue
on with any other attributes.

↪ Any other name
Do nothing with that attribute.

4. Return to step 1 in these inner steps.

↪ A sequence of bytes starting with a 0x3C byte (ASCII '<'), optionally a
0x2F byte (ASCII '/'), and finally a byte in the range 0x41-0x5A or
0x61-0x7A (an ASCII letter)

1. Advance the position pointer so that it points at the next 0x09
(ASCII TAB), 0x0A (ASCII LF), 0x0B (ASCII VT), 0x0C (ASCII
FF), 0x0D (ASCII CR), 0x20 (ASCII space), 0x3E (ASCII '>'),
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0x3C (ASCII '<') byte, if there is one before the nth byte. If there
isn't, abort the "two step" algorithm.

2. If the pointer points to a 0x3C (ASCII '<') byte, then return to the
first step in the overall "two step" algorithm.

3. Repeatedly get an attribute (page 397) until no further attributes
can be found, then jump to the second step in the overall "two
step" algorithm.

↪ A sequence of bytes starting with: 0x3C 0x2D (ASCII '<!')
↪ A sequence of bytes starting with: 0x3C 0x2F (ASCII '</')
↪ A sequence of bytes starting with: 0x3C 0x3F (ASCII '<?')

Advance the position pointer so that it points at the first 0x3E byte
(ASCII '>') that comes after the 0x3C byte that was found. If no such
byte is found before the nth byte, abort this "two step" algorithm.

↪ Any other byte
Do nothing with that byte.

2. Move position so it points at the next byte in the input stream, and return to the
first step of this "two step" algorithm.

When the above "two step" algorithm says to get an attribute, it means doing this:

1. If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0B (ASCII
VT), 0x0C (ASCII FF), 0x0D (ASCII CR), 0x20 (ASCII space), or 0x2F (ASCII '/')
then advance position to the next byte and start over.

2. If the byte at position is 0x3C (ASCII '<'), then move position back to the
previous byte, and stop looking for an attribute. There isn't one.

3. If the byte at position is 0x3E (ASCII '>'), then stop looking for an attribute.
There isn't one.

4. Otherwise, the byte at position is the start of the attribute name. Let attribute
name and attribute value be the empty string.

5. Attribute name: Process the byte at position as follows:

↪ If it is 0x3D (ASCII '='), and the attribute name is longer than the empty
string

Advance position to the next byte and jump to the step below labelled
value.

↪ If it is 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0B (ASCII VT), 0x0C
(ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space)

Jump to the step below labelled spaces.
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↪ If it is 0x2F (ASCII '/'), 0x3C (ASCII '<'), or 0x3E (ASCII '>').
Stop looking for an attribute. The attribute's name is the value of
attribute name, its value is the empty string.

↪ If it is in the range 0x41 (ASCII 'A') to 0x5A (ASCII 'Z')
Append the Unicode character with codepoint b+0x20 to attribute
name (where b is the value of the byte at position).

↪ Anything else
Append the Unicode character with the same codepoint as the value of
the byte at position) to attribute name. (It doesn't actually matter how
bytes outside the ASCII range are handled here, since only ASCII
characters can contribute to the detection of a character encoding.)

6. Advance position to the next byte and return to the previous step.

7. Spaces. If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF),
0x0B (ASCII VT), 0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space)
then advance position to the next byte, then, repeat this step.

8. If the byte at position is not 0x3D (ASCII '='), stop looking for an attribute. Move
position back to the previous byte. The attribute's name is the value of attribute
name, its value is the empty string.

9. Advance position past the 0x3D (ASCII '=') byte.

10. Value. If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0B
(ASCII VT), 0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space) then
advance position to the next byte, then, repeat this step.

11. Process the byte at position as follows:

↪ If it is 0x22 (ASCII '"') or 0x27 ("'")

1. Let b be the value of the byte at position.

2. Advance position to the next byte.

3. If the value of the byte at position is the value of b, then stop
looking for an attribute. The attribute's name is the value of
attribute name, and its value is the value of attribute value.

4. Otherwise, if the value of the byte at position is in the range 0x41
(ASCII 'A') to 0x5A (ASCII 'Z'), then append a Unicode character
to attribute value whose codepoint is 0x20 more than the value of
the byte at position.

5. Otherwise, append a Unicode character to attribute value whose
codepoint is the same as the value of the byte at position.

6. Return to the second step in these substeps.
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↪ If it is 0x3C (ASCII '<'), or 0x3E (ASCII '>').
Stop looking for an attribute. The attribute's name is the value of
attribute name, its value is the empty string.

↪ If it is in the range 0x41 (ASCII 'A') to 0x5A (ASCII 'Z')
Append the Unicode character with codepoint b+0x20 to attribute
value (where b is the value of the byte at position).

↪ Anything else
Append the Unicode character with the same codepoint as the value of
the byte at position) to attribute value.

12. Process the byte at position as follows:

↪ If it is 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0B (ASCII VT), 0x0C
(ASCII FF), 0x0D (ASCII CR), 0x20 (ASCII space), 0x3C (ASCII '<'), or
0x3E (ASCII '>').

Stop looking for an attribute. The attribute's name is the value of
attribute name and its value is the value of attribute value.

↪ If it is in the range 0x41 (ASCII 'A') to 0x5A (ASCII 'Z')
Append the Unicode character with codepoint b+0x20 to attribute
value (where b is the value of the byte at position).

↪ Anything else
Append the Unicode character with the same codepoint as the value of
the byte at position) to attribute value.

13. Advance position to the next byte and return to the previous step.

6. The user agent may attempt to autodetect the character encoding from applying
frequency analysis or other algorithms to the data stream. If autodetection succeeds
in determining a character encoding, then use that; abort these steps.
[UNIVCHARDET]

7. Otherwise, use an implementation-defined or user-specified default character
encoding. Due to its use in legacy content, windows-1252 is recommended as a
default in predominantly Western demographics. In non-legacy environments, the
more comprehensive UTF-8 encoding is recommended instead. Since these
encodings can in many cases be distinguished by inspection, a user agent may
heuristically decide which to use as a default.

Note: For XML documents, the algorithm user agents must use to
determine the character encoding is given by the XML specification. This
section does not apply to XML documents. [XML]

When a user agent would otherwise use the ISO-8859-1 encoding, it must instead use
the Windows-1252 encoding. User agents must not support the CESU-8, UTF-7,
BOCU-1 and SCSU encodings. [CESU8] [UTF7] [BOCU1] [SCSU]
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Bytes or sequences of bytes in the original byte stream that could not be converted to
Unicode characters must be converted to U+FFFD REPLACEMENT CHARACTER code
points.

A leading U+FEFF BYTE ORDER MARK (BOM) must be dropped if present.

All U+0000 NULL characters in the input must be replaced by U+FFFD REPLACEMENT
CHARACTERs.

U+000D CARRIAGE RETURN (CR) characters, and U+000A LINE FEED (LF)
characters, are treated specially. Any CR characters that are followed by LF characters
must be removed, and any CR characters not followed by LF characters must be
converted to LF characters. Thus, newlines in HTML DOMs are represented by LF
characters, and there are never any CR characters in the input to the tokenisation (page
400) stage.

The next input character is the first character in the input stream that has not yet been
consumed. Initially, the next input character (page 400) is the first character in the input.

The insertion point is the position (just before a character or just before the end of the
input stream) where content inserted using document.write() (page 40) is actually
inserted. The insertion point is relative to the position of the character immediately after
it, it is not an absolute offset into the input stream. Initially, the insertion point is
uninitialised.

The "EOF" character in the tables below is a conceptual character representing the end
of the input stream (page 394). If the parser is a script-created parser (page 39), then
the end of the input stream (page 394) is reached when an explicit "EOF" character
(inserted by the document.close() (page 40) method) is consumed. Otherwise, the
"EOF" character is not a real character in the stream, but rather the lack of any further
characters.

8.2.3. Tokenisation

Implementations must act as if they used the following state machine to tokenise HTML.
The state machine must start in the data state (page 401). Most states consume a single
character, which may have various side-effects, and either switches the state machine to
a new state to reconsume the same character, or switches it to a new state (to consume
the next character), or repeats the same state (to consume the next character). Some
states have more complicated behaviour and can consume several characters before
switching to another state.

The exact behaviour of certain states depends on a content model flag that is set after
certain tokens are emitted. The flag has several states: PCDATA, RCDATA, CDATA,
and PLAINTEXT. Initially it is in the PCDATA state.

The output of the tokenisation step is a series of zero or more of the following tokens:
DOCTYPE, start tag, end tag, comment, character, end-of-file. DOCTYPE tokens have
names and can be either correct or in error. Start and end tag tokens have a tagname
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and a list of attributes, each of which has a name and a value. Comment and character
tokens have data.

When a token is emitted, it must immediately be handled by the tree construction (page
413) stage. The tree construction stage can affect the state of the content model flag
(page 400), and can insert additional characters into the stream. (For example, the
script (page 220) element can result in scripts executing and using the dynamic
markup insertion (page 38) APIs to insert characters into the stream being tokenised.)

Before each step of the tokeniser, the user agent may check to see if either one of the
scripts in the list of scripts that will execute as soon as possible (page 224) or the first
script in the list of scripts that will execute asynchronously (page 224), has completed
loading. If one has, then it must be executed (page 224) and removed from its list.

The tokeniser state machine is as follows:

Data state
Consume the next input character (page 400):

↪ U+0026 AMPERSAND (&)
When the content model flag (page 400) is set to one of the PCDATA or
RCDATA states: switch to the entity data state (page 401).
Otherwise: treat it as per the "anything else" entry below.

↪ U+003C LESS-THAN SIGN (<)
When the content model flag (page 400) is set to a state other than the
PLAINTEXT state: switch to the tag open state (page 401).
Otherwise: treat it as per the "anything else" entry below.

↪ EOF
Emit an end-of-file token.

↪ Anything else
Emit the input character as a character token. Stay in the data state (page
401).

Entity data state
(This cannot happen if the content model flag (page 400) is set to the CDATA state.)

Attempt to consume an entity (page 412).

If nothing is returned, emit a U+0026 AMPERSAND character token.

Otherwise, emit the character token that was returned.

Finally, switch to the data state (page 401).

Tag open state
The behaviour of this state depends on the content model flag (page 400).

If the content model flag (page 400) is set to the RCDATA or CDATA states
If the next input character (page 400) is a U+002F SOLIDUS (/) character,
consume it and switch to the close tag open state (page 402). If the next input
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character (page 400) is not a U+002F SOLIDUS (/) character, emit a U+003C
LESS-THAN SIGN character token and reconsume the current input character
in the data state (page 401).

If the content model flag (page 400) is set to the PCDATA state
Consume the next input character (page 400):

↪ U+0021 EXCLAMATION MARK (!)
Switch to the markup declaration open state (page 408).

↪ U+002F SOLIDUS (/)
Switch to the close tag open state (page 402).

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN
CAPITAL LETTER Z

Create a new start tag token, set its tag name to the lowercase version
of the input character (add 0x0020 to the character's code point), then
switch to the tag name state (page 403). (Don't emit the token yet;
further details will be filled in before it is emitted.)

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL
LETTER Z

Create a new start tag token, set its tag name to the input character,
then switch to the tag name state (page 403). (Don't emit the token
yet; further details will be filled in before it is emitted.)

↪ U+003E GREATER-THAN SIGN (>)
Parse error (page 392). Emit a U+003C LESS-THAN SIGN character
token and a U+003E GREATER-THAN SIGN character token. Switch
to the data state (page 401).

↪ U+003F QUESTION MARK (?)
Parse error (page 392). Switch to the bogus comment state (page
408).

↪ Anything else
Parse error (page 392). Emit a U+003C LESS-THAN SIGN character
token and reconsume the current input character in the data state
(page 401).

Close tag open state
If the content model flag (page 400) is set to the RCDATA or CDATA states then
examine the next few characters. If they do not match the tag name of the last start
tag token emitted (case insensitively), or if they do but they are not immediately
followed by one of the following characters:

• U+0009 CHARACTER TABULATION
• U+000A LINE FEED (LF)
• U+000B LINE TABULATION
• U+000C FORM FEED (FF)
• U+0020 SPACE
• U+003E GREATER-THAN SIGN (>)
• U+002F SOLIDUS (/)
• U+003C LESS-THAN SIGN (<)
• EOF
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...then there is a parse error (page 392). Emit a U+003C LESS-THAN SIGN
character token, a U+002F SOLIDUS character token, and reconsume the current
input character in the data state (page 401).

Otherwise, if the content model flag (page 400) is set to the PCDATA state, or if the
next few characters do match that tag name, consume the next input character
(page 400):

↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL
LETTER Z

Create a new end tag token, set its tag name to the lowercase version of
the input character (add 0x0020 to the character's code point), then switch
to the tag name state (page 403). (Don't emit the token yet; further details
will be filled in before it is emitted.)

↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL
LETTER Z

Create a new end tag token, set its tag name to the input character, then
switch to the tag name state (page 403). (Don't emit the token yet; further
details will be filled in before it is emitted.)

↪ U+003E GREATER-THAN SIGN (>)
Parse error (page 392). Switch to the data state (page 401).

↪ EOF
Parse error (page 392). Emit a U+003C LESS-THAN SIGN character token
and a U+002F SOLIDUS character token. Reconsume the EOF character
in the data state (page 401).

↪ Anything else
Parse error (page 392). Switch to the bogus comment state (page 408).

Tag name state
Consume the next input character (page 400):

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000B LINE TABULATION
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before attribute name state (page 404).
↪ U+003E GREATER-THAN SIGN (>)

Emit the current tag token. Switch to the data state (page 401).
↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL

LETTER Z
Append the lowercase version of the current input character (add 0x0020
to the character's code point) to the current tag token's tag name. Stay in
the tag name state (page 403).
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↪ U+003C LESS-THAN SIGN (<)
↪ EOF

Parse error (page 392). Emit the current tag token. Reconsume the
character in the data state (page 401).

↪ U+002F SOLIDUS (/)
Parse error (page 392) unless this is a permitted slash (page 412). Switch
to the before attribute name state (page 404).

↪ Anything else
Append the current input character to the current tag token's tag name.
Stay in the tag name state (page 403).

Before attribute name state
Consume the next input character (page 400):

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000B LINE TABULATION
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the before attribute name state (page 404).
↪ U+003E GREATER-THAN SIGN (>)

Emit the current tag token. Switch to the data state (page 401).
↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL

LETTER Z
Start a new attribute in the current tag token. Set that attribute's name to
the lowercase version of the current input character (add 0x0020 to the
character's code point), and its value to the empty string. Switch to the
attribute name state (page 404).

↪ U+002F SOLIDUS (/)
Parse error (page 392) unless this is a permitted slash (page 412). Stay in
the before attribute name state (page 404).

↪ U+003C LESS-THAN SIGN (<)
↪ EOF

Parse error (page 392). Emit the current tag token. Reconsume the
character in the data state (page 401).

↪ Anything else
Start a new attribute in the current tag token. Set that attribute's name to
the current input character, and its value to the empty string. Switch to the
attribute name state (page 404).

Attribute name state
Consume the next input character (page 400):
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↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000B LINE TABULATION
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the after attribute name state (page 405).
↪ U+003D EQUALS SIGN (=)

Switch to the before attribute value state (page 406).
↪ U+003E GREATER-THAN SIGN (>)

Emit the current tag token. Switch to the data state (page 401).
↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL

LETTER Z
Append the lowercase version of the current input character (add 0x0020
to the character's code point) to the current attribute's name. Stay in the
attribute name state (page 404).

↪ U+002F SOLIDUS (/)
Parse error (page 392) unless this is a permitted slash (page 412). Switch
to the before attribute name state (page 404).

↪ U+003C LESS-THAN SIGN (<)
↪ EOF

Parse error (page 392). Emit the current tag token. Reconsume the
character in the data state (page 401).

↪ Anything else
Append the current input character to the current attribute's name. Stay in
the attribute name state (page 404).

When the user agent leaves the attribute name state (and before emitting the tag
token, if appropriate), the complete attribute's name must be compared to the other
attributes on the same token; if there is already an attribute on the token with the
exact same name, then this is a parse error (page 392) and the new attribute must
be dropped, along with the value that gets associated with it (if any).

After attribute name state
Consume the next input character (page 400):

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000B LINE TABULATION
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the after attribute name state (page 405).
↪ U+003D EQUALS SIGN (=)

Switch to the before attribute value state (page 406).
↪ U+003E GREATER-THAN SIGN (>)

Emit the current tag token. Switch to the data state (page 401).
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↪ U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL
LETTER Z

Start a new attribute in the current tag token. Set that attribute's name to
the lowercase version of the current input character (add 0x0020 to the
character's code point), and its value to the empty string. Switch to the
attribute name state (page 404).

↪ U+002F SOLIDUS (/)
Parse error (page 392) unless this is a permitted slash (page 412). Switch
to the before attribute name state (page 404).

↪ U+003C LESS-THAN SIGN (<)
↪ EOF

Parse error (page 392). Emit the current tag token. Reconsume the
character in the data state (page 401).

↪ Anything else
Start a new attribute in the current tag token. Set that attribute's name to
the current input character, and its value to the empty string. Switch to the
attribute name state (page 404).

Before attribute value state
Consume the next input character (page 400):

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000B LINE TABULATION
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the before attribute value state (page 406).
↪ U+0022 QUOTATION MARK (")

Switch to the attribute value (double-quoted) state (page 406).
↪ U+0026 AMPERSAND (&)

Switch to the attribute value (unquoted) state (page 407) and reconsume
this input character.

↪ U+0027 APOSTROPHE (')
Switch to the attribute value (single-quoted) state (page 407).

↪ U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data state (page 401).

↪ U+003C LESS-THAN SIGN (<)
↪ EOF

Parse error (page 392). Emit the current tag token. Reconsume the
character in the data state (page 401).

↪ Anything else
Append the current input character to the current attribute's value. Switch
to the attribute value (unquoted) state (page 407).

Attribute value (double-quoted) state
Consume the next input character (page 400):
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↪ U+0022 QUOTATION MARK (")
Switch to the before attribute name state (page 404).

↪ U+0026 AMPERSAND (&)
Switch to the entity in attribute value state (page 408).

↪ EOF
Parse error (page 392). Emit the current tag token. Reconsume the
character in the data state (page 401).

↪ Anything else
Append the current input character to the current attribute's value. Stay in
the attribute value (double-quoted) state (page 406).

Attribute value (single-quoted) state
Consume the next input character (page 400):

↪ U+0027 APOSTROPHE (')
Switch to the before attribute name state (page 404).

↪ U+0026 AMPERSAND (&)
Switch to the entity in attribute value state (page 408).

↪ EOF
Parse error (page 392). Emit the current tag token. Reconsume the
character in the data state (page 401).

↪ Anything else
Append the current input character to the current attribute's value. Stay in
the attribute value (single-quoted) state (page 407).

Attribute value (unquoted) state
Consume the next input character (page 400):

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000B LINE TABULATION
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before attribute name state (page 404).
↪ U+0026 AMPERSAND (&)

Switch to the entity in attribute value state (page 408).
↪ U+003E GREATER-THAN SIGN (>)

Emit the current tag token. Switch to the data state (page 401).
↪ U+003C LESS-THAN SIGN (<)
↪ EOF

Parse error (page 392). Emit the current tag token. Reconsume the
character in the data state (page 401).

↪ Anything else
Append the current input character to the current attribute's value. Stay in
the attribute value (unquoted) state (page 407).
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Entity in attribute value state
Attempt to consume an entity (page 412).

If nothing is returned, append a U+0026 AMPERSAND character to the current
attribute's value.

Otherwise, append the returned character token to the current attribute's value.

Finally, switch back to the attribute value state that you were in when were switched
into this state.

Bogus comment state
(This can only happen if the content model flag (page 400) is set to the PCDATA
state.)

Consume every character up to the first U+003E GREATER-THAN SIGN character
(>) or the end of the file (EOF), whichever comes first. Emit a comment token whose
data is the concatenation of all the characters starting from and including the
character that caused the state machine to switch into the bogus comment state, up
to and including the last consumed character before the U+003E character, if any, or
up to the end of the file otherwise. (If the comment was started by the end of the file
(EOF), the token is empty.)

Switch to the data state (page 401).

If the end of the file was reached, reconsume the EOF character.

Markup declaration open state
(This can only happen if the content model flag (page 400) is set to the PCDATA
state.)

If the next two characters are both U+002D HYPHEN-MINUS (-) characters,
consume those two characters, create a comment token whose data is the empty
string, and switch to the comment state (page 408).

Otherwise if the next seven chacacters are a case-insensitive match for the word
"DOCTYPE", then consume those characters and switch to the DOCTYPE state
(page 409).

Otherwise, is is a parse error (page 392). Switch to the bogus comment state (page
408). The next character that is consumed, if any, is the first character that will be in
the comment.

Comment state
Consume the next input character (page 400):

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment dash state (page 409)

408



↪ EOF
Parse error (page 392). Emit the comment token. Reconsume the EOF
character in the data state (page 401).

↪ Anything else
Append the input character to the comment token's data. Stay in the
comment state (page 408).

Comment dash state
Consume the next input character (page 400):

↪ U+002D HYPHEN-MINUS (-)
Switch to the comment end state (page 409)

↪ EOF
Parse error (page 392). Emit the comment token. Reconsume the EOF
character in the data state (page 401).

↪ Anything else
Append a U+002D HYPHEN-MINUS (-) character and the input character
to the comment token's data. Switch to the comment state (page 408).

Comment end state
Consume the next input character (page 400):

↪ U+003E GREATER-THAN SIGN (>)
Emit the comment token. Switch to the data state (page 401).

↪ U+002D HYPHEN-MINUS (-)
Parse error (page 392). Append a U+002D HYPHEN-MINUS (-) character
to the comment token's data. Stay in the comment end state (page 409).

↪ EOF
Parse error (page 392). Emit the comment token. Reconsume the EOF
character in the data state (page 401).

↪ Anything else
Parse error (page 392). Append two U+002D HYPHEN-MINUS (-)
characters and the input character to the comment token's data. Switch to
the comment state (page 408).

DOCTYPE state
Consume the next input character (page 400):

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000B LINE TABULATION
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the before DOCTYPE name state (page 410).
↪ Anything else

Parse error (page 392). Reconsume the current character in the before
DOCTYPE name state (page 410).
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Before DOCTYPE name state
Consume the next input character (page 400):

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000B LINE TABULATION
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the before DOCTYPE name state (page 410).
↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL

LETTER Z
Create a new DOCTYPE token. Set the token's name name to the
uppercase version of the current input character (subtract 0x0020 from the
character's code point), and mark it as being in error. Switch to the
DOCTYPE name state (page 410).

↪ U+003E GREATER-THAN SIGN (>)
Parse error (page 392). Emit a DOCTYPE token whose name is the empty
string and that is marked as being in error. Switch to the data state (page
401).

↪ EOF
Parse error (page 392). Emit a DOCTYPE token whose name is the empty
string and that is marked as being in error. Reconsume the EOF character
in the data state (page 401).

↪ Anything else
Create a new DOCTYPE token. Set the token's name name to the current
input character, and mark it as being in error. Switch to the DOCTYPE
name state (page 410).

DOCTYPE name state
First, consume the next input character (page 400):

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000B LINE TABULATION
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Switch to the after DOCTYPE name state (page 411).
↪ U+003E GREATER-THAN SIGN (>)

Emit the current DOCTYPE token. Switch to the data state (page 401).
↪ U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL

LETTER Z
Append the uppercase version of the current input character (subtract
0x0020 from the character's code point) to the current DOCTYPE token's
name. Stay in the DOCTYPE name state (page 410).
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↪ EOF
Parse error (page 392). Emit the current DOCTYPE token. Reconsume the
EOF character in the data state (page 401).

↪ Anything else
Append the current input character to the current DOCTYPE token's name.
Stay in the DOCTYPE name state (page 410).

Then, if the name of the DOCTYPE token is exactly the four letters "HTML", then
mark the token as being correct. Otherwise, mark it as being in error.

Note: Because lowercase letters in the name are uppercased by the
algorithm above, the "HTML" letters are actually case-insensitive
relative to the markup.

After DOCTYPE name state
Consume the next input character (page 400):

↪ U+0009 CHARACTER TABULATION
↪ U+000A LINE FEED (LF)
↪ U+000B LINE TABULATION
↪ U+000C FORM FEED (FF)
↪ U+0020 SPACE

Stay in the after DOCTYPE name state (page 411).
↪ U+003E GREATER-THAN SIGN (>)

Emit the current DOCTYPE token. Switch to the data state (page 401).
↪ EOF

Parse error (page 392). Emit the current DOCTYPE token. Reconsume the
EOF character in the data state (page 401).

↪ Anything else
Parse error (page 392). Mark the DOCTYPE token as being in error, if it is
not already. Switch to the bogus DOCTYPE state (page 411).

Bogus DOCTYPE state
Consume the next input character (page 400):

↪ U+003E GREATER-THAN SIGN (>)
Emit the current DOCTYPE token. Switch to the data state (page 401).

↪ EOF
Parse error (page 392). Emit the current DOCTYPE token. Reconsume the
EOF character in the data state (page 401).

↪ Anything else
Stay in the bogus DOCTYPE state (page 411).

When an end tag token is emitted, the content model flag (page 400) must be switched
to the PCDATA state.

When an end tag token is emitted with attributes, that is a parse error (page 392).
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A permitted slash is a U+002F SOLIDUS character that is immediately followed by a
U+003E GREATER-THAN SIGN, if, and only if, the current token being processed is a
start tag token whose tag name is one of the following: base (page 83), link (page 84),
meta (page 88), hr (page 113), br (page 113), img (page 154), embed (page 158),
param (page 164), area (page 195), col (page 205), input

8.2.3.1. Tokenising entities

This section defines how to consume an entity. This definition is used when parsing
entities in text (page 401) and in attributes (page 408).

The behaviour depends on the identity of the next character (the one immediately after
the U+0026 AMPERSAND character):

↪ U+0023 NUMBER SIGN (#)
Consume the U+0023 NUMBER SIGN.

The behaviour further depends on the character after the U+0023 NUMBER
SIGN:

↪ U+0078 LATIN SMALL LETTER X
↪ U+0058 LATIN CAPITAL LETTER X

Consume the X.

Follow the steps below, but using the range of characters U+0030
DIGIT ZERO through to U+0039 DIGIT NINE, U+0061 LATIN SMALL
LETTER A through to U+0078 LATIN SMALL LETTER F, and U+0041
LATIN CAPITAL LETTER A, through to U+0058 LATIN CAPITAL
LETTER F (in other words, 0-9, A-F, a-f).

When it comes to interpreting the number, interpret it as a hexadecimal
number.

↪ Anything else
Follow the steps below, but using the range of characters U+0030
DIGIT ZERO through to U+0039 DIGIT NINE (i.e. just 0-9).

When it comes to interpreting the number, interpret it as a decimal
number.

Consume as many characters as match the range of characters given above.

If no characters match the range, then don't consume any characters (and
unconsume the U+0023 NUMBER SIGN character and, if appropriate, the X
character). This is a parse error (page 392); nothing is returned.

Otherwise, if the next character is a U+003B SEMICOLON, consume that too. If
it isn't, there is a parse error (page 392).

If one or more characters match the range, then take them all and interpret the
string of characters as a number (either hexadecimal or decimal as
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appropriate), and return a character token for the Unicode character whose
code point is that number. If the number is not a valid Unicode character (e.g. if
the number is higher than 1114111), or if the number is zero, then return a
character token for the U+FFFD REPLACEMENT CHARACTER character
instead.

↪ Anything else
Consume the maximum number of characters possible, with the consumed
characters case-sensitively matching one of the identifiers in the first column of
the entities (page 455) table.

If no match can be made, then this is a parse error (page 392). No characters
are consumed, and nothing is returned.

Otherwise, if the next character is a U+003B SEMICOLON, consume that too. If
it isn't, there is a parse error (page 392).

Return a character token for the character corresponding to the entity name (as
given by the second column of the entities (page 455) table).

If the markup contains I'm &notit without you, the entity is parsed
as "not", as in, I'm ¬it without you. But if the markup was I'm
&notin without you, the entity would be parsed as "notin", resulting in
I'm ∉ without you.

This isn't quite right. For some entities, UAs require a semicolon, for others they don't.
We probably need to do the same for backwards compatibility. If we do that we might
be able to add more entities, e.g. for mathematics. Probably the way to mark whether
or not an entity requires a semicolon is with an additional column in the entity table
lower down (page 455).

8.2.4. Tree construction

The input to the tree construction stage is a sequence of tokens from the tokenisation
(page 400) stage. The tree construction stage is associated with a DOM Document

object when a parser is created. The "output" of this stage consists of dynamically
modifying or extending that document's DOM tree.

Tree construction passes through several phases. Initially, UAs must act according to the
steps described as being those of the initial phase (page 414).

This specification does not define when an interactive user agent has to render the
Document available to the user, or when it has to begin accepting user input.

When the steps below require the UA to append a character to a node, the UA must
collect it and all subsequent consecutive characters that would be appended to that
node, and insert one Text node whose data is the concatenation of all those characters.
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DOM mutation events must not fire for changes caused by the UA parsing the document.
(Conceptually, the parser is not mutating the DOM, it is constructing it.) This includes the
parsing of any content inserted using document.write() (page 40) and
document.writeln() (page 38) calls. [DOM3EVENTS]

Note: Not all of the tag names mentioned below are conformant tag names
in this specification; many are included to handle legacy content. They
still form part of the algorithm that implementations are required to
implement to claim conformance.

Note: The algorithm described below places no limit on the depth of the
DOM tree generated, or on the length of tag names, attribute names,
attribute values, text nodes, etc. While implementators are encouraged to
avoid arbitrary limits, it is recognised that practical concerns (page 18)
will likely force user agents to impose nesting depths.

8.2.4.1. The initial phase

Initially, the tree construction stage must handle each token emitted from the
tokenisation (page 400) stage as follows:

↪ A DOCTYPE token that is marked as being in error
↪ A comment token
↪ A start tag token
↪ An end tag token
↪ A character token that is not one of one of U+0009 CHARACTER

TABULATION, U+000A LINE FEED (LF), U+000B LINE TABULATION, U+000C
FORM FEED (FF), or U+0020 SPACE

↪ An end-of-file token
This specification does not define how to handle this case. In particular, user
agents may ignore the entirety of this specification altogether for such
documents, and instead invoke special parse modes with a greater emphasis
on backwards compatibility.

Browsers in particular have generally used DOCTYPE-based
sniffing to invoke an "alternative conformance mode" known as
quirks mode on certain documents. In this mode, emphasis is put
on legacy compatibility rather than on standards compliance.
This specification takes no position on this behaviour;
documents without DOCTYPEs or with DOCTYPEs that do not
conform to the syntax allowed by this specification are
considered to be out of scope of this specification.

As far as parsing goes, the quirks I know of are:

414



• Comment parsing is different.

• The following is considered one script block (!):
<script><!-- document.write('</script>'); --></script>

• </br> and </p> do magical things.

• p (page 112) can contain table (page 201)

• Safari and IE have special parsing rules for <% ... %> (even in
standards mode, though clearly this should be quirks-only).

Maybe we should just adopt all those and be done with it. One parsing mode
to rule them all. Or legitimise/codify the quirks mode parsing in some way.

Would be interesting to do a search to see how many pages hit each of the
above.

↪ A DOCTYPE token marked as being correct
Append a DocumentType node to the Document node, with the name attribute
set to the name given in the DOCTYPE token (which will be "HTML"), and the
other attributes specific to DocumentType objects set to null, empty lists, or the
empty string as appropriate.

Then, switch to the root element phase (page 415) of the tree construction
stage.

↪ A character token that is one of one of U+0009 CHARACTER TABULATION,
U+000A LINE FEED (LF), U+000B LINE TABULATION, U+000C FORM FEED
(FF), or U+0020 SPACE

Append that character (page 413) to the Document node.

8.2.4.2. The root element phase

After the initial phase (page 414), as each token is emitted from the tokenisation (page
400) stage, it must be processed as described in this section.

↪ A DOCTYPE token
Parse error (page 392). Ignore the token.

↪ A comment token
Append a Comment node to the Document object with the data attribute set to
the data given in the comment token.
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↪ A character token that is one of one of U+0009 CHARACTER TABULATION,
U+000A LINE FEED (LF), U+000B LINE TABULATION, U+000C FORM FEED
(FF), or U+0020 SPACE

Append that character (page 413) to the Document node.

↪ A character token that is not one of U+0009 CHARACTER TABULATION,
U+000A LINE FEED (LF), U+000B LINE TABULATION, U+000C FORM FEED
(FF), or U+0020 SPACE

↪ A start tag token
↪ An end tag token
↪ An end-of-file token

Create an HTMLElement (page 28) node with the tag name html (page 81), in
the HTML namespace (page 455). Append it to the Document object. Switch to
the main phase (page 416) and reprocess the current token.

Should probably make end tags be ignored, so that "</head><!-- --><html>"
puts the comment befor the root node (or should we?)

The root element can end up being removed from the Document object, e.g. by scripts;
nothing in particular happens in such cases, content continues being appended to the
nodes as described in the next section.

8.2.4.3. The main phase

After the root element phase (page 415), each token emitted from the tokenisation (page
400) stage must be processed as described in this section. This is by far the most
involved part of parsing an HTML document.

The tree construction stage in this phase has several pieces of state: a stack of open
elements (page 416), a list of active formatting elements (page 418), a head element
pointer (page 420), a form element pointer (page 420), and an insertion mode (page
420).

We could just fold insertion modes and phases into one concept (and duplicate the
two rules common to all insertion modes into all of them).

8.2.4.3.1. THE STACK OF OPEN ELEMENTS

Initially the stack of open elements contains just the html (page 81) root element node
created in the last phase (page 415) before switching to this phase (or, in the
innerHTML case (page 43), the html (page 81) element created to represent the
element whose innerHTML (page 40) attribute is being set). That's the topmost node of
the stack. It never gets popped off the stack. (This stack grows downwards.)

The current node is the bottommost node in this stack.

Elements in the stack fall into the following categories:
416



Special
The following HTML elements have varying levels of special parsing rules: address
(page 104), area (page 195), base (page 83), basefont, bgsound,
blockquote (page 99), body (page 96), br (page 113), center, col (page 205),
colgroup (page 204), dd (page 122), dir, div (page 267), dl (page 119), dt
(page 121), embed (page 158), fieldset, form, frame, frameset, h1 (page
101), h2 (page 101), h3 (page 101), h4 (page 101), h5 (page 101), h6 (page 101),
head (page 82), hr (page 113), iframe (page 157), image, img (page 154),
input, isindex, li (page 118), link (page 84), listing, menu (page 257),
meta (page 88), noembed, noframes, noscript (page 225), ol (page 116),
optgroup, option, p (page 112), param (page 164), plaintext, pre (page
116), script (page 220), select, spacer, style (page 93), tbody (page 206),
textarea, tfoot (page 208), thead (page 207), title (page 82), tr (page
208), ul (page 117), and wbr.

Scoping
The following HTML elements introduce new scopes (page 417) for various parts of
the parsing: button, caption (page 204), html (page 81), marquee, object
(page 160), table (page 201), td (page 210) and th (page 211).

Formatting
The following HTML elements are those that end up in the list of active formatting
elements (page 418): a (page 122), b (page 148), big, em (page 126), font (page
459), i (page 147), nobr, s, small (page 128), strike, strong (page 128), tt,
and u.

Phrasing
All other elements found while parsing an HTML document.

Still need to add these new elements to the lists: event-source (page 227),
section (page 97), nav (page 98), article (page 98), aside (page 100),
header (page 102), footer (page 103), datagrid (page 229), command (page
254)

The stack of open elements (page 416) is said to have an element in scope or have an
element in table scope when the following algorithm terminates in a match state:

1. Initialise node to be the current node (page 416) (the bottommost node of the
stack).

2. If node is the target node, terminate in a match state.

3. Otherwise, if node is a table (page 201) element, terminate in a failure state.

4. Otherwise, if the algorithm is the "has an element in scope" variant (rather than the
"has an element in table scope" variant), and node is one of the following, terminate
in a failure state:
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• caption (page 204)
• td (page 210)
• th (page 211)
• button
• marquee
• object (page 160)

5. Otherwise, if node is an html (page 81) element, terminate in a failure state. (This
can only happen if the node is the topmost node of the stack of open elements
(page 416), and prevents the next step from being invoked if there are no more
elements in the stack.)

6. Otherwise, set node to the previous entry in the stack of open elements (page 416)
and return to step 2. (This will never fail, since the loop will always terminate in the
previous step if the top of the stack is reached.)

Nothing happens if at any time any of the elements in the stack of open elements (page
416) are moved to a new location in, or removed from, the Document tree. In particular,
the stack is not changed in this situation. This can cause, amongst other strange effects,
content to be appended to nodes that are no longer in the DOM.

Note: In some cases (namely, when closing misnested formatting
elements (page 434)), the stack is manipulated in a random-access
fashion.

8.2.4.3.2. THE LIST OF ACTIVE FORMATTING ELEMENTS

Initially the list of active formatting elements is empty. It is used to handle mis-nested
formatting element tags (page 417).

The list contains elements in the formatting (page 417) category, and scope markers.
The scope markers are inserted when entering buttons, object (page 160) elements,
marquees, table cells, and table captions, and are used to prevent formatting from
"leaking" into tables, buttons, object (page 160) elements, and marquees.

When the steps below require the UA to reconstruct the active formatting elements,
the UA must perform the following steps:

1. If there are no entries in the list of active formatting elements (page 418), then there
is nothing to reconstruct; stop this algorithm.

2. If the last (most recently added) entry in the list of active formatting elements (page
418) is a marker, or if it is an element that is in the stack of open elements (page
416), then there is nothing to reconstruct; stop this algorithm.

3. Let entry be the last (most recently added) element in the list of active formatting
elements (page 418).

4. If there are no entries before entry in the list of active formatting elements (page
418), then jump to step 8.
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5. Let entry be the entry one earlier than entry in the list of active formatting elements
(page 418).

6. If entry is neither a marker nor an element that is also in the stack of open elements
(page 416), go to step 4.

7. Let entry be the element one later than entry in the list of active formatting elements
(page 418).

8. Perform a shallow clone of the element entry to obtain clone. [DOM3CORE]

9. Append clone to the current node (page 416) and push it onto the stack of open
elements (page 416) so that it is the new current node (page 416).

10. Replace the entry for entry in the list with an entry for clone.

11. If the entry for clone in the list of active formatting elements (page 418) is not the
last entry in the list, return to step 7.

This has the effect of reopening all the formatting elements that were opened in the
current body, cell, or caption (whichever is youngest) that haven't been explicitly closed.

Note: The way this specification is written, the list of active formatting
elements (page 418) always consists of elements in chronological order
with the least recently added element first and the most recently added
element last (except for while steps 8 to 11 of the above algorithm are
being executed, of course).

When the steps below require the UA to clear the list of active formatting elements
up to the last marker, the UA must perform the following steps:

1. Let entry be the last (most recently added) entry in the list of active formatting
elements (page 418).

2. Remove entry from the list of active formatting elements (page 418).

3. If entry was a marker, then stop the algorithm at this point. The list has been cleared
up to the last marker.

4. Go to step 1.

8.2.4.3.3. CREATING AND INSERTING HTML ELEMENTS

When the steps below require the UA to create an element for a token, the UA must
create a node implementing the interface appropriate for the element type corresponding
to the tag name of the token (as given in the section of this specification that defines that
element, e.g. for an a (page 122) element it would be the HTMLAnchorElement (page
123) interface), with the tag name being the name of that element, with the node being in
the HTML namespace (page 455), and with the attributes on the node being those given
in the given token.
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When the steps below require the UA to insert an HTML element for a token, the UA
must first create an element for the token (page 419), and then append this node to the
current node (page 416), and push it onto the stack of open elements (page 416) so that
it is the new current node (page 416).

The steps below may also require that the UA insert an HTML element in a particular
place, in which case the UA must create an element for the token (page 419) and then
insert or append the new node in the location specified. (This happens in particular
during the parsing of tables with invalid content.)

The interface appropriate for an element that is not defined in this specification is
HTMLElement (page 28).

8.2.4.3.4. CLOSING ELEMENTS THAT HAVE IMPLIED END TAGS

When the steps below require the UA to generate implied end tags, then, if the current
node (page 416) is a dd (page 122) element, a dt (page 121) element, an li (page
118) element, a p (page 112) element, a td (page 210) element, a th (page 211)
element, or a tr (page 208) element, the UA must act as if an end tag with the
respective tag name had been seen and then generate implied end tags (page 420)
again.

The step that requires the UA to generate implied end tags but lists an element to
exclude from the process, then the UA must perform the above steps as if that element
was not in the above list.

8.2.4.3.5. THE ELEMENT POINTERS

Initially the head element pointer and the form element pointer are both null.

Once a head (page 82) element has been parsed (whether implicitly or explicitly) the
head element pointer (page 420) gets set to point to this node.

The form element pointer (page 420) points to the last form element that was opened
and whose end tag has not yet been seen. It is used to make form controls associate
with forms in the face of dramatically bad markup, for historical reasons.

8.2.4.3.6. THE INSERTION MODE

Initially the insertion mode is "before head (page 422)". It can change to "in head (page
424)", "after head (page 428)", "in body (page 429)", "in table (page 442)", "in caption
(page 445)", "in column group (page 446)", "in table body (page 446)", "in row (page
448)", "in cell (page 449)", "in select (page 450)", "after body (page 452)", "in frameset
(page 452)", and "after frameset (page 453)" during the course of the parsing, as
described below. It affects how certain tokens are processed.

If the tree construction stage is switched from the main phase (page 416) to the trailing
end phase (page 454) and back again, the various pieces of state are not reset; the UA
must act as if the state was maintained.
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When the steps below require the UA to reset the insertion mode appropriately, it
means the UA must follow these steps:

1. Let last be false.

2. Let node be the last node in the stack of open elements (page 416).

3. If node is the first node in the stack of open elements, then set last to true. If the
element whose innerHTML (page 40) attribute is being set is neither a td (page
210) element nor a th (page 211) element, then set node to the element whose
innerHTML (page 40) attribute is being set. (innerHTML case (page 43))

4. If node is a select element, then switch the insertion mode (page 420) to "in select
(page 450)" and abort these steps. (innerHTML case (page 43))

5. If node is a td (page 210) or th (page 211) element, then switch the insertion mode
(page 420) to "in cell (page 449)" and abort these steps.

6. If node is a tr (page 208) element, then switch the insertion mode (page 420) to "in
row (page 448)" and abort these steps.

7. If node is a tbody (page 206), thead (page 207), or tfoot (page 208) element,
then switch the insertion mode (page 420) to "in table body (page 446)" and abort
these steps.

8. If node is a caption (page 204) element, then switch the insertion mode (page
420) to "in caption (page 445)" and abort these steps.

9. If node is a colgroup (page 204) element, then switch the insertion mode (page
420) to "in column group (page 446)" and abort these steps. (innerHTML case
(page 43))

10. If node is a table (page 201) element, then switch the insertion mode (page 420)
to "in table (page 442)" and abort these steps.

11. If node is a head (page 82) element, then switch the insertion mode (page 420) to
"in body (page 429)" ("in body (page 429)"! not "in head (page 424)"!) and abort
these steps. (innerHTML case (page 43))

12. If node is a body (page 96) element, then switch the insertion mode (page 420) to
"in body (page 429)" and abort these steps.

13. If node is a frameset element, then switch the insertion mode (page 420) to "in
frameset (page 452)" and abort these steps. (innerHTML case (page 43))

14. If node is an html (page 81) element, then: if the head element pointer (page 420)
is null, switch the insertion mode (page 420) to "before head (page 422)", otherwise,
switch the insertion mode (page 420) to "after head (page 428)". In either case,
abort these steps. (innerHTML case (page 43))
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15. If last is true, then set the insertion mode (page 420) to "in body (page 429)" and
abort these steps. (innerHTML case (page 43))

16. Let node now be the node before node in the stack of open elements (page 416).

17. Return to step 3.

8.2.4.3.7. HOW TO HANDLE TOKENS IN THE MAIN PHASE

Tokens in the main phase must be handled as follows:

↪ A DOCTYPE token
Parse error (page 392). Ignore the token.

↪ A start tag token with the tag name "html"
If this start tag token was not the first start tag token, then it is a parse error
(page 392).

For each attribute on the token, check to see if the attribute is already present
on the top element of the stack of open elements (page 416). If it is not, add the
attribute and its corresponding value to that element.

↪ An end-of-file token
Generate implied end tags. (page 420)

If there are more than two nodes on the stack of open elements (page 416), or
if there are two nodes but the second node is not a body (page 96) node, this
is a parse error (page 392).

Otherwise, if the parser was originally created in order to handle the setting of
an element's innerHTML (page 40) attribute, and there's more than one
element in the stack of open elements (page 416), and the second node on the
stack of open elements (page 416) is not a body (page 96) node, then this is a
parse error (page 392). (innerHTML case (page 43))

Stop parsing. (page 454)

This fails because it doesn't imply HEAD and BODY tags. We should
probably expand out the insertion modes and merge them with phases and
then put the three things here into each insertion mode instead of trying to
factor them out so carefully.

↪ Anything else
Depends on the insertion mode (page 420):

↪ If the insertion mode (page 420) is "before head"
Handle the token as follows:
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↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE
TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

Append the character (page 413) to the current node (page
416).

↪ A comment token
Append a Comment node to the current node (page 416) with
the data attribute set to the data given in the comment token.

↪ A start tag token with the tag name "head"
Create an element for the token (page 419).

Set the head element pointer (page 420) to this new element
node.

Append the new element to the current node (page 416) and
push it onto the stack of open elements (page 416).

Change the insertion mode (page 420) to "in head (page
424)".

↪ A start tag token whose tag name is one of: "base", "link",
"meta", "script", "style", "title"

Act as if a start tag token with the tag name "head" and no
attributes had been seen, then reprocess the current token.

Note: This will result in a head (page 82) element
being generated, and with the current token
being reprocessed in the "in head (page 424)"
insertion mode (page 420).

↪ An end tag with the tag name "html"
Act as if a start tag token with the tag name "head" and no
attributes had been seen, then reprocess the current token.

↪ Any other end tag
Parse error (page 392). Ignore the token.

↪ A character token that is not one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE
TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

↪ Any other start tag token
Act as if a start tag token with the tag name "head" and no
attributes had been seen, then reprocess the current token.

Note: This will result in an empty head (page 82)
element being generated, with the current token
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being reprocessed in the "after head (page 428)"
insertion mode (page 420).

↪ If the insertion mode (page 420) is "in head"
Handle the token as follows.

Note: The rules for handling "title", "style", and "script"
start tags are similar, but not identical.

Note: It is possible for the tree construction (page 413)
stage's main phase (page 416) to be in the "in head (page
424)" insertion mode (page 420) without the current node
(page 416) being a head (page 82) element, e.g. if a head
(page 82) end tag is immediately followed by a meta
(page 88) start tag.

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE
TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

Append the character (page 413) to the current node (page
416).

↪ A comment token
Append a Comment node to the current node (page 416) with
the data attribute set to the data given in the comment token.

↪ A start tag with the tag name "title"
Create an element for the token (page 419).

Append the new element to the node pointed to by the head

element pointer (page 420), or, if that is null (innerHTML
case (page 43)), to the current node (page 416).

Switch the tokeniser's content model flag (page 400) to the
RCDATA state.

Then, collect all the character tokens that the tokeniser
returns until it returns a token that is not a character token.

If this process resulted in a collection of character tokens,
append a single Text node to the title (page 82) element
node whose contents is the concatenation of all those tokens'
characters.

The tokeniser's content model flag (page 400) will have
switched back to the PCDATA state.
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If the next token is an end tag token with the tag name "title",
ignore it. Otherwise, this is a parse error (page 392).

↪ A start tag with the tag name "style"
Create an element for the token (page 419).

Append the new element to the current node (page 416),
unless the insertion mode (page 420) is "in head (page 424)"
and the head element pointer (page 420) is not null, in which
case append it to the node pointed to by the head element
pointer (page 420). .

Switch the tokeniser's content model flag (page 400) to the
CDATA state.

Then, collect all the character tokens that the tokeniser
returns until it returns a token that is not a character token, or
until it stops tokenising.

If this process resulted in a collection of character tokens,
append a single Text node to the style (page 93) element
node whose contents is the concatenation of all those tokens'
characters.

The tokeniser's content model flag (page 400) will have
switched back to the PCDATA state.

If the next token is an end tag token with the tag name "style",
ignore it. Otherwise, this is a parse error (page 392).

↪ A start tag with the tag name "script"
Create an element for the token (page 419).

Mark the element as being "parser-inserted" (page 222). This
ensures that, if the script is external, any
document.write() (page 40) calls in the script will execute
in-line, instead of blowing the document away, as would
happen in most other cases.

Switch the tokeniser's content model flag (page 400) to the
CDATA state.

Then, collect all the character tokens that the tokeniser
returns until it returns a token that is not a character token, or
until it stops tokenising.

If this process resulted in a collection of character tokens,
append a single Text node to the script (page 220)
element node whose contents is the concatenation of all
those tokens' characters.
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The tokeniser's content model flag (page 400) will have
switched back to the PCDATA state.

If the next token is not an end tag token with the tag name
"script", then this is a parse error (page 392); mark the
script (page 220) element as "already executed" (page
222). Otherwise, the token is the script (page 220)
element's end tag, so ignore it.

If the parser was originally created in order to handle the
setting of a node's innerHTML (page 40) attribute, then mark
the script (page 220) element as "already executed" (page
222), and skip the rest of the processing described for this
token (including the part below where "scripts that will
execute as soon as the parser resumes (page 224)" are
executed). (innerHTML case (page 43))

Note: Marking the script (page 220) element as
"already executed" prevents it from executing
when it is inserted into the document a few
paragraphs below. Scripts missing their end tags
and scripts that were inserted using innerHTML
(page 40) aren't executed.

Let the old insertion point have the same value as the current
insertion point (page 400). Let the insertion point (page 400)
be just before the next input character (page 400).

Append the new element to the current node (page 416),
unless the insertion mode (page 420) is "in head (page 424)"
and the head element pointer (page 420) is not null, in which
case append it to the node pointed to by the head element
pointer (page 420). Special processing occurs when a
script element is inserted into a document (page 222) that
might cause some script to execute, which might cause new
characters to be inserted into the tokeniser (page 40).

Let the insertion point (page 400) have the value of the old
insertion point. (In other words, restore the insertion point
(page 400) to the value it had before the previous paragraph.
This value might be the "undefined" value.)

At this stage, if there is a script that will execute as soon as
the parser resumes (page 224), then:

426



↪ If the tree construction stage is being called
reentrantly (page 393), say from a call to
document.write() (page 40):

Abort the processing of any nested invokations of
the tokeniser, yielding control back to the caller.
(Tokenisation will resume when the caller returns to
the "outer" tree construction stage.)

↪ Otherwise:
Follow these steps:

1. Let the script be the script that will execute as
soon as the parser resumes (page 224). There
is no longer a script that will execute as soon as
the parser resumes (page 224).

2. Pause (page 23) until the script has completed
loading.

3. Let the insertion point (page 400) be just before
the next input character (page 400).

4. Execute the script (page 224).

5. Let the insertion point (page 400) be undefined
again.

6. If there is once again a script that will execute
as soon as the parser resumes (page 224),
then repeat these steps from step 1.

↪ A start tag with the tag name "base", "link", or "meta"
Create an element for the token (page 419).

Append the new element to the node pointed to by the head

element pointer (page 420), or, if that is null (innerHTML
case (page 43)), to the current node (page 416).

Need to cope with second and subsequent base (page
83) elements affecting subsequent elements magically.

↪ An end tag with the tag name "head"
If the current node (page 416) is a head (page 82) element,
pop the current node (page 416) off the stack of open
elements (page 416). Otherwise, this is a parse error (page
392).

Change the insertion mode (page 420) to "after head (page
428)".
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↪ An end tag with the tag name "html"
Act as described in the "anything else" entry below.

↪ A start tag with the tag name "head"
↪ Any other end tag

Parse error (page 392). Ignore the token.

↪ Anything else
If the current node (page 416) is a head (page 82) element,
act as if an end tag token with the tag name "head" had been
seen.

Otherwise, change the insertion mode (page 420) to "after
head (page 428)".

Then, reprocess the current token.

In certain UAs, some elements don't trigger the "in body"
mode straight away, but instead get put into the head. Do
we want to copy that?

↪ If the insertion mode (page 420) is "after head"
Handle the token as follows:

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE
TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

Append the character (page 413) to the current node (page
416).

↪ A comment token
Append a Comment node to the current node (page 416) with
the data attribute set to the data given in the comment token.

↪ A start tag token with the tag name "body"
Insert a body element (page 420) for the token.

Change the insertion mode (page 420) to "in body (page
429)".

↪ A start tag token with the tag name "frameset"
Insert a frameset element (page 420) for the token.

Change the insertion mode (page 420) to "in frameset (page
452)".

↪ A start tag token whose tag name is one of: "base", "link",
"meta", "script", "style", "title"

Parse error (page 392). Switch the insertion mode (page
420) back to "in head (page 424)" and reprocess the token.
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↪ Anything else
Act as if a start tag token with the tag name "body" and no
attributes had been seen, and then reprocess the current
token.

↪ If the insertion mode (page 420) is "in body"
Handle the token as follows:

↪ A character token
Reconstruct the active formatting elements (page 418), if any.

Append the token's character (page 413) to the current node
(page 416).

↪ A comment token
Append a Comment node to the current node (page 416) with
the data attribute set to the data given in the comment token.

↪ A start tag token whose tag name is one of: "script", "style"
Process the token as if the insertion mode (page 420) had
been "in head (page 424)".

↪ A start tag token whose tag name is one of: "base", "link",
"meta", "title"

Parse error (page 392). Process the token as if the insertion
mode (page 420) had been "in head (page 424)".

↪ A start tag token with the tag name "body"
Parse error (page 392).

If the second element on the stack of open elements (page
416) is not a body (page 96) element, or, if the stack of open
elements (page 416) has only one node on it, then ignore the
token. (innerHTML case (page 43))

Otherwise, for each attribute on the token, check to see if the
attribute is already present on the body (page 96) element
(the second element) on the stack of open elements (page
416). If it is not, add the attribute and its corresponding value
to that element.

↪ An end tag with the tag name "body"
If the second element in the stack of open elements (page
416) is not a body (page 96) element, this is a parse error
(page 392). Ignore the token. (innerHTML case (page 43))

Otherwise:

this needs to handle closing of implied elements, but
without closing them
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If the current node (page 416) is not the body (page 96)
element, then this is a parse error (page 392).

Change the insertion mode (page 420) to "after body (page
452)".

↪ An end tag with the tag name "html"
Act as if an end tag with tag name "body" had been seen,
then, if that token wasn't ignored, reprocess the current token.

Note: The fake end tag token here can only be
ignored in the innerHTML case (page 43).

↪ A start tag whose tag name is one of: "address",
"blockquote", "center", "dir", "div", "dl", "fieldset", "listing",
"menu", "ol", "p", "ul"

If the stack of open elements (page 416) has a p element in
scope (page 417), then act as if an end tag with the tag name
p (page 112) had been seen.

Insert an HTML element (page 420) for the token.

↪ A start tag whose tag name is "pre"
If the stack of open elements (page 416) has a p element in
scope (page 417), then act as if an end tag with the tag name
p (page 112) had been seen.

Insert an HTML element (page 420) for the token.

If the next token is a U+000A LINE FEED (LF) character
token, then ignore that token and move on to the next one.
(Newlines at the start of pre (page 116) blocks are ignored
as an authoring convenience.)

↪ A start tag whose tag name is "form"
If the form element pointer (page 420) is not null, ignore the
token with a parse error (page 392).

Otherwise:

If the stack of open elements (page 416) has a p element in
scope (page 417), then act as if an end tag with the tag name
p (page 112) had been seen.

Insert an HTML element (page 420) for the token, and set the
form element pointer to point to the element created.
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↪ A start tag whose tag name is "li"
If the stack of open elements (page 416) has a p element in
scope (page 417), then act as if an end tag with the tag name
p (page 112) had been seen.

Run the following algorithm:

1. Initialise node to be the current node (page 416) (the
bottommost node of the stack).

2. If node is an li (page 118) element, then pop all the
nodes from the current node (page 416) up to node,
including node, then stop this algorithm.

3. If node is not in the formatting (page 417) category, and
is not in the phrasing (page 417) category, and is not an
address (page 104) or div (page 267) element, then
stop this algorithm.

4. Otherwise, set node to the previous entry in the stack of
open elements (page 416) and return to step 2.

Finally, insert an li element (page 420).

↪ A start tag whose tag name is "dd" or "dt"
If the stack of open elements (page 416) has a p element in
scope (page 417), then act as if an end tag with the tag name
p (page 112) had been seen.

Run the following algorithm:

1. Initialise node to be the current node (page 416) (the
bottommost node of the stack).

2. If node is a dd (page 122) or dt (page 121) element,
then pop all the nodes from the current node (page 416)
up to node, including node, then stop this algorithm.

3. If node is not in the formatting (page 417) category, and
is not in the phrasing (page 417) category, and is not an
address (page 104) or div (page 267) element, then
stop this algorithm.

4. Otherwise, set node to the previous entry in the stack of
open elements (page 416) and return to step 2.

Finally, insert an HTML element (page 420) with the same
tag name as the token's.
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↪ A start tag token whose tag name is "plaintext"
If the stack of open elements (page 416) has a p element in
scope (page 417), then act as if an end tag with the tag name
p (page 112) had been seen.

Insert an HTML element (page 420) for the token.

Switch the content model flag (page 400) to the PLAINTEXT
state.

Note: Once a start tag with the tag name
"plaintext" has been seen, that will be the last
token ever seen other than character tokens (and
the end-of-file token), because there is no way to
switch the content model flag (page 400) out of
the PLAINTEXT state.

↪ An end tag whose tag name is one of: "address",
"blockquote", "center", "dir", "div", "dl", "fieldset", "listing",
"menu", "ol", "pre", "ul"

If the stack of open elements (page 416) has an element in
scope (page 417) with the same tag name as that of the
token, then generate implied end tags (page 420).

Now, if the current node (page 416) is not an element with
the same tag name as that of the token, then this is a parse
error (page 392).

If the stack of open elements (page 416) has an element in
scope (page 417) with the same tag name as that of the
token, then pop elements from this stack until an element with
that tag name has been popped from the stack.

↪ An end tag whose tag name is "form"
If the stack of open elements (page 416) has an element in
scope (page 417) with the same tag name as that of the
token, then generate implied end tags (page 420).

Now, if the current node (page 416) is not an element with
the same tag name as that of the token, then this is a parse
error (page 392).

If the stack of open elements (page 416) has an element in
scope (page 417) with the same tag name as that of the
token, then pop elements from this stack until an element with
that tag name has been popped from the stack.

In any case, set the form element pointer (page 420) to null.
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↪ An end tag whose tag name is "p"
If the stack of open elements (page 416) has a p element in
scope (page 417), then generate implied end tags (page
420), except for p (page 112) elements.

If the current node (page 416) is not a p (page 112) element,
then this is a parse error (page 392).

If the stack of open elements (page 416) has a p element in
scope (page 417), then pop elements from this stack until the
stack no longer has a p element in scope (page 417).

↪ An end tag whose tag name is "dd", "dt", or "li"
If the stack of open elements (page 416) has an element in
scope (page 417) whose tag name matches the tag name of
the token, then generate implied end tags (page 420), except
for elements with the same tag name as the token.

If the current node (page 416) is not an element with the
same tag name as the token, then this is a parse error (page
392).

If the stack of open elements (page 416) has an element in
scope (page 417) whose tag name matches the tag name of
the token, then pop elements from this stack until an element
with that tag name has been popped from the stack.

↪ A start tag whose tag name is one of: "h1", "h2", "h3", "h4",
"h5", "h6"

If the stack of open elements (page 416) has a p element in
scope (page 417), then act as if an end tag with the tag name
p (page 112) had been seen.

If the stack of open elements (page 416) has in scope (page
417) an element whose tag name is one of "h1", "h2", "h3",
"h4", "h5", or "h6", then this is a parse error (page 392); pop
elements from the stack until an element with one of those
tag names has been popped from the stack.

Insert an HTML element (page 420) for the token.

↪ An end tag whose tag name is one of: "h1", "h2", "h3", "h4",
"h5", "h6"

If the stack of open elements (page 416) has in scope (page
417) an element whose tag name is one of "h1", "h2", "h3",
"h4", "h5", or "h6", then generate implied end tags (page
420).
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Now, if the current node (page 416) is not an element with
the same tag name as that of the token, then this is a parse
error (page 392).

If the stack of open elements (page 416) has in scope (page
417) an element whose tag name is one of "h1", "h2", "h3",
"h4", "h5", or "h6", then pop elements from the stack until an
element with one of those tag names has been popped from
the stack.

↪ A start tag whose tag name is "a"
If the list of active formatting elements (page 418) contains an
element whose tag name is "a" between the end of the list
and the last marker on the list (or the start of the list if there is
no marker on the list), then this is a parse error (page 392);
act as if an end tag with the tag name "a" had been seen,
then remove that element from the list of active formatting
elements (page 418) and the stack of open elements (page
416) if the end tag didn't already remove it (it might not have if
the element is not in table scope (page 417)).

In the non-conforming stream
<a href="a">a<table><a href="b">b</table>x,
the first a (page 122) element would be closed upon
seeing the second one, and the "x" character would be
inside a link to "b", not to "a". This is despite the fact that
the outer a (page 122) element is not in table scope
(meaning that a regular </a> end tag at the start of the
table wouldn't close the outer a (page 122) element).

Reconstruct the active formatting elements (page 418), if any.

Insert an HTML element (page 420) for the token. Add that
element to the list of active formatting elements (page 418).

↪ A start tag whose tag name is one of: "b", "big", "em", "font",
"i", "nobr", "s", "small", "strike", "strong", "tt", "u"

Reconstruct the active formatting elements (page 418), if any.

Insert an HTML element (page 420) for the token. Add that
element to the list of active formatting elements (page 418).

↪ An end tag whose tag name is one of: "a", "b", "big", "em",
"font", "i", "nobr", "s", "small", "strike", "strong", "tt", "u"

Follow these steps:

1. Let the formatting element be the last element in the list
of active formatting elements (page 418) that:
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• is between the end of the list and the last scope
marker in the list, if any, or the start of the list
otherwise, and

• has the same tag name as the token.

If there is no such node, or, if that node is also in the
stack of open elements (page 416) but the element is not
in scope (page 417), then this is a parse error (page
392). Abort these steps. The token is ignored.

Otherwise, if there is such a node, but that node is not in
the stack of open elements (page 416), then this is a
parse error (page 392); remove the element from the list,
and abort these steps.

Otherwise, there is a formatting element and that
element is in the stack (page 416) and is in scope (page
417). If the element is not the current node (page 416),
this is a parse error (page 392). In any case, proceed
with the algorithm as written in the following steps.

2. Let the furthest block be the topmost node in the stack of
open elements (page 416) that is lower in the stack than
the formatting element, and is not an element in the
phrasing (page 417) or formatting (page 417) categories.
There might not be one.

3. If there is no furthest block, then the UA must skip the
subsequent steps and instead just pop all the nodes from
the bottom of the stack of open elements (page 416),
from the current node (page 416) up to the formatting
element, and remove the formatting element from the list
of active formatting elements (page 418).

4. Let the common ancestor be the element immediately
above the formatting element in the stack of open
elements (page 416).

5. If the furthest block has a parent node, then remove the
furthest block from its parent node.

6. Let a bookmark note the position of the formatting
element in the list of active formatting elements (page
418) relative to the elements on either side of it in the list.

7. Let node and last node be the furthest block. Follow
these steps:

1. Let node be the element immediately prior to node in
the stack of open elements (page 416).
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2. If node is not in the list of active formatting elements
(page 418), then remove node from the stack of
open elements (page 416) and then go back to step
1.

3. Otherwise, if node is the formatting element, then go
to the next step in the overall algorithm.

4. Otherwise, if last node is the furthest block, then
move the aforementioned bookmark to be
immediately after the node in the list of active
formatting elements (page 418).

5. If node has any children, perform a shallow clone of
node, replace the entry for node in the list of active
formatting elements (page 418) with an entry for the
clone, replace the entry for node in the stack of open
elements (page 416) with an entry for the clone, and
let node be the clone.

6. Insert last node into node, first removing it from its
previous parent node if any.

7. Let last node be node.

8. Return to step 1 of this inner set of steps.

8. Insert whatever last node ended up being in the previous
step into the common ancestor node, first removing it
from its previous parent node if any.

9. Perform a shallow clone of the formatting element.

10. Take all of the child nodes of the furthest block and
append them to the clone created in the last step.

11. Append that clone to the furthest block.

12. Remove the formatting element from the list of active
formatting elements (page 418), and insert the clone into
the list of active formatting elements (page 418) at the
position of the aforementioned bookmark.

13. Remove the formatting element from the stack of open
elements (page 416), and insert the clone into the stack
of open elements (page 416) immediately after (i.e. in a
more deeply nested position than) the position of the
furthest block in that stack.

14. Jump back to step 1 in this series of steps.
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Note: The way these steps are defined, only
elements in the formatting (page 417) category
ever get cloned by this algorithm.

Note: Because of the way this algorithm causes
elements to change parents, it has been dubbed
the "adoption agency algorithm" (in contrast
with other possibly algorithms for dealing with
misnested content, which included the "incest
algorithm", the "secret affair algorithm", and the
"Heisenberg algorithm").

↪ A start tag token whose tag name is "button"
If the stack of open elements (page 416) has a button

element in scope (page 417), then this is a parse error (page
392); act as if an end tag with the tag name "button" had been
seen, then reprocess the token.

Otherwise:

Reconstruct the active formatting elements (page 418), if any.

Insert an HTML element (page 420) for the token.

Insert a marker at the end of the list of active formatting
elements (page 418).

↪ A start tag token whose tag name is one of: "marquee",
"object"

Reconstruct the active formatting elements (page 418), if any.

Insert an HTML element (page 420) for the token.

Insert a marker at the end of the list of active formatting
elements (page 418).

↪ An end tag token whose tag name is one of: "button",
"marquee", "object"

If the stack of open elements (page 416) has in scope (page
417) an element whose tag name is the same as the tag
name of the token, then generate implied end tags (page
420).

Now, if the current node (page 416) is not an element with
the same tag name as the token, then this is a parse error
(page 392).

Now, if the stack of open elements (page 416) has an
element in scope (page 417) whose tag name matches the
tag name of the token, then pop elements from the stack until
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that element has been popped from the stack, and clear the
list of active formatting elements up to the last marker (page
419).

↪ A start tag token whose tag name is "xmp"
Reconstruct the active formatting elements (page 418), if any.

Insert an HTML element (page 420) for the token.

Switch the content model flag (page 400) to the CDATA
state.

↪ A start tag whose tag name is "table"
If the stack of open elements (page 416) has a p element in
scope (page 417), then act as if an end tag with the tag name
p (page 112) had been seen.

Insert an HTML element (page 420) for the token.

Change the insertion mode (page 420) to "in table (page
442)".

↪ A start tag whose tag name is one of: "area", "basefont",
"bgsound", "br", "embed", "img", "param", "spacer", "wbr"

Reconstruct the active formatting elements (page 418), if any.

Insert an HTML element (page 420) for the token.
Immediately pop the current node (page 416) off the stack of
open elements (page 416).

↪ A start tag whose tag name is "hr"
If the stack of open elements (page 416) has a p element in
scope (page 417), then act as if an end tag with the tag name
p (page 112) had been seen.

Insert an HTML element (page 420) for the token.
Immediately pop the current node (page 416) off the stack of
open elements (page 416).

↪ A start tag whose tag name is "image"
Parse error (page 392). Change the token's tag name to
"img" and reprocess it. (Don't ask.)

↪ A start tag whose tag name is "input"
Reconstruct the active formatting elements (page 418), if any.

Insert an input element (page 420) for the token.

If the form element pointer (page 420) is not null, then
associate the input element with the form element pointed
to by the form element pointer (page 420).
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Pop that input element off the stack of open elements (page
416).

↪ A start tag whose tag name is "isindex"
Parse error (page 392).

If the form element pointer (page 420) is not null, then ignore
the token.

Otherwise:

Act as if a start tag token with the tag name "form" had been
seen.

Act as if a start tag token with the tag name "hr" had been
seen.

Act as if a start tag token with the tag name "p" had been
seen.

Act as if a start tag token with the tag name "label" had been
seen.

Act as if a stream of character tokens had been seen (see
below for what they should say).

Act as if a start tag token with the tag name "input" had been
seen, with all the attributes from the "isindex" token, except
with the "name" attribute set to the value "isindex" (ignoring
any explicit "name" attribute).

Act as if a stream of character tokens had been seen (see
below for what they should say).

Act as if an end tag token with the tag name "label" had been
seen.

Act as if an end tag token with the tag name "p" had been
seen.

Act as if a start tag token with the tag name "hr" had been
seen.

Act as if an end tag token with the tag name "form" had been
seen.

The two streams of character tokens together should,
together with the input element, express the equivalent of
"This is a searchable index. Insert your search keywords
here: (input field)" in the user's preferred language.
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Then need to specify that if the form submission causes
just a single form control, whose name is "isindex", to be
submitted, then we submit just the value part, not the
"isindex=" part.

↪ A start tag whose tag name is "textarea"
Create an element for the token (page 419).

If the form element pointer (page 420) is not null, then
associate the textarea element with the form element
pointed to by the form element pointer (page 420).

Append the new element to the current node (page 416).

Switch the tokeniser's content model flag (page 400) to the
RCDATA state.

Then, collect all the character tokens that the tokeniser
returns until it returns a token that is not a character token, or
until it stops tokenising.

If this process resulted in a collection of character tokens,
append a single Text node, whose contents is the
concatenation of all those tokens' characters, to the new
element node.

The tokeniser's content model flag (page 400) will have
switched back to the PCDATA state.

If the next token is an end tag token with the tag name
"textarea", ignore it. Otherwise, this is a parse error (page
392).

↪ A start tag whose tag name is one of: "iframe", "noembed",
"noframes"

↪ A start tag whose tag name is "noscript", if scripting is
enabled (page 278):

Create an element for the token (page 419).

For "iframe" tags, the node must be an
HTMLIFrameElement (page 157) object, for the other tags it
must be an HTMLElement (page 28) object.

Append the new element to the current node (page 416).

Switch the tokeniser's content model flag (page 400) to the
CDATA state.
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Then, collect all the character tokens that the tokeniser
returns until it returns a token that is not a character token, or
until it stops tokenising.

If this process resulted in a collection of character tokens,
append a single Text node, whose contents is the
concatenation of all those tokens' characters, to the new
element node.

The tokeniser's content model flag (page 400) will have
switched back to the PCDATA state.

If the next token is an end tag token with the same tag name
as the start tag token, ignore it. Otherwise, this is a parse
error (page 392).

↪ A start tag whose tag name is "select"
Reconstruct the active formatting elements (page 418), if any.

Insert an HTML element (page 420) for the token.

Change the insertion mode (page 420) to "in select (page
450)".

↪ A start or end tag whose tag name is one of: "caption", "col",
"colgroup", "frame", "frameset", "head", "option",
"optgroup", "tbody", "td", "tfoot", "th", "thead", "tr"

↪ An end tag whose tag name is one of: "area", "basefont",
"bgsound", "br", "embed", "hr", "iframe", "image", "img",
"input", "isindex", "noembed", "noframes", "param",
"select", "spacer", "table", "textarea", "wbr"

↪ An end tag whose tag name is "noscript", if scripting is
enabled (page 278):

Parse error (page 392). Ignore the token.

↪ A start or end tag whose tag name is one of: "event-source",
"section", "nav", "article", "aside", "header", "footer",
"datagrid", "command"

Work in progress!

↪ A start tag token not covered by the previous entries
Reconstruct the active formatting elements (page 418), if any.

Insert an HTML element (page 420) for the token.

Note: This element will be a phrasing (page 417)
element.
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↪ An end tag token not covered by the previous entries
Run the following algorithm:

1. Initialise node to be the current node (page 416) (the
bottommost node of the stack).

2. If node has the same tag name as the end tag token,
then:

1. Generate implied end tags (page 420).

2. If the tag name of the end tag token does not match
the tag name of the current node (page 416), this is
a parse error (page 392).

3. Pop all the nodes from the current node (page 416)
up to node, including node, then stop this algorithm.

3. Otherwise, if node is in neither the formatting (page 417)
category nor the phrasing (page 417) category, then this
is a parse error (page 392). Stop this algorithm. The end
tag token is ignored.

4. Set node to the previous entry in the stack of open
elements (page 416).

5. Return to step 2.

↪ If the insertion mode (page 420) is "in table"
↪ A character token that is one of one of U+0009 CHARACTER

TABULATION, U+000A LINE FEED (LF), U+000B LINE
TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

Append the character (page 413) to the current node (page
416).

↪ A comment token
Append a Comment node to the current node (page 416) with
the data attribute set to the data given in the comment token.

↪ A start tag whose tag name is "caption"
Clear the stack back to a table context (page 444). (See
below.)

Insert a marker at the end of the list of active formatting
elements (page 418).

Insert an HTML element (page 420) for the token, then switch
the insertion mode (page 420) to "in caption (page 445)".
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↪ A start tag whose tag name is "colgroup"
Clear the stack back to a table context (page 444). (See
below.)

Insert an HTML element (page 420) for the token, then switch
the insertion mode (page 420) to "in column group (page
446)".

↪ A start tag whose tag name is "col"
Act as if a start tag token with the tag name "colgroup" had
been seen, then reprocess the current token.

↪ A start tag whose tag name is one of: "tbody", "tfoot",
"thead"

Clear the stack back to a table context (page 444). (See
below.)

Insert an HTML element (page 420) for the token, then switch
the insertion mode (page 420) to "in table body (page 446)".

↪ A start tag whose tag name is one of: "td", "th", "tr"
Act as if a start tag token with the tag name "tbody" had been
seen, then reprocess the current token.

↪ A start tag whose tag name is "table"
Parse error (page 392). Act as if an end tag token with the
tag name "table" had been seen, then, if that token wasn't
ignored, reprocess the current token.

Note: The fake end tag token here can only be
ignored in the innerHTML case (page 43).

↪ An end tag whose tag name is "table"
If the stack of open elements (page 416) does not have an
element in table scope (page 417) with the same tag name
as the token, this is a parse error (page 392). Ignore the
token. (innerHTML case (page 43))

Otherwise:

Generate implied end tags (page 420).

Now, if the current node (page 416) is not a table (page
201) element, then this is a parse error (page 392).

Pop elements from this stack until a table (page 201)
element has been popped from the stack.

Reset the insertion mode appropriately (page 421).
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↪ An end tag whose tag name is one of: "body", "caption",
"col", "colgroup", "html", "tbody", "td", "tfoot", "th", "thead",
"tr"

Parse error (page 392). Ignore the token.

↪ Anything else
Parse error (page 392). Process the token as if the insertion
mode (page 420) was "in body (page 429)", with the following
exception:

If the current node (page 416) is a table (page 201), tbody
(page 206), tfoot (page 208), thead (page 207), or tr
(page 208) element, then, whenever a node would be
inserted into the current node (page 416), it must instead be
inserted into the foster parent element (page 444).

The foster parent element is the parent element of the last
table (page 201) element in the stack of open elements
(page 416), if there is a table (page 201) element and it has
such a parent element. If there is no table (page 201)
element in the stack of open elements (page 416)
(innerHTML case (page 43)), then the foster parent element
(page 444) is the first element in the stack of open elements
(page 416) (the html (page 81) element). Otherwise, if there
is a table (page 201) element in the stack of open elements
(page 416), but the last table (page 201) element in the
stack of open elements (page 416) has no parent, or its
parent node is not an element, then the foster parent element
(page 444) is the element before the last table (page 201)
element in the stack of open elements (page 416).

If the foster parent element (page 444) is the parent element
of the last table (page 201) element in the stack of open
elements (page 416), then the new node must be inserted
immediately before the last table (page 201) element in the
stack of open elements (page 416) in the foster parent
element (page 444); otherwise, the new node must be
appended to the foster parent element (page 444).

When the steps above require the UA to clear the stack back to a
table context, it means that the UA must, while the current node
(page 416) is not a table (page 201) element or an html (page 81)
element, pop elements from the stack of open elements (page 416). If
this causes any elements to be popped from the stack, then this is a
parse error (page 392).
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Note: The current node (page 416) being an html (page
81) element after this process is an innerHTML case
(page 43).

↪ If the insertion mode (page 420) is "in caption"
↪ An end tag whose tag name is "caption"

If the stack of open elements (page 416) does not have an
element in table scope (page 417) with the same tag name
as the token, this is a parse error (page 392). Ignore the
token. (innerHTML case (page 43))

Otherwise:

Generate implied end tags (page 420).

Now, if the current node (page 416) is not a caption (page
204) element, then this is a parse error (page 392).

Pop elements from this stack until a caption (page 204)
element has been popped from the stack.

Clear the list of active formatting elements up to the last
marker (page 419).

Switch the insertion mode (page 420) to "in table (page
442)".

↪ A start tag whose tag name is one of: "caption", "col",
"colgroup", "tbody", "td", "tfoot", "th", "thead", "tr"

↪ An end tag whose tag name is "table"
Parse error (page 392). Act as if an end tag with the tag
name "caption" had been seen, then, if that token wasn't
ignored, reprocess the current token.

Note: The fake end tag token here can only be
ignored in the innerHTML case (page 43).

↪ An end tag whose tag name is one of: "body", "col",
"colgroup", "html", "tbody", "td", "tfoot", "th", "thead", "tr"

Parse error (page 392). Ignore the token.

↪ Anything else
Process the token as if the insertion mode (page 420) was "in
body (page 429)".
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↪ If the insertion mode (page 420) is "in column group"
↪ A character token that is one of one of U+0009 CHARACTER

TABULATION, U+000A LINE FEED (LF), U+000B LINE
TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

Append the character (page 413) to the current node (page
416).

↪ A comment token
Append a Comment node to the current node (page 416) with
the data attribute set to the data given in the comment token.

↪ A start tag whose tag name is "col"
Insert a col element (page 420) for the token. Immediately
pop the current node (page 416) off the stack of open
elements (page 416).

↪ An end tag whose tag name is "colgroup"
If the current node (page 416) is the root html (page 81)
element, then this is a parse error (page 392), ignore the
token. (innerHTML case (page 43))

Otherwise, pop the current node (page 416) (which will be a
colgroup (page 204) element) from the stack of open
elements (page 416). Switch the insertion mode (page 420)
to "in table (page 442)".

↪ An end tag whose tag name is "col"
Parse error (page 392). Ignore the token.

↪ Anything else
Act as if an end tag with the tag name "colgroup" had been
seen, and then, if that token wasn't ignored, reprocess the
current token.

Note: The fake end tag token here can only be
ignored in the innerHTML case (page 43).

↪ If the insertion mode (page 420) is "in table body"
↪ A start tag whose tag name is "tr"

Clear the stack back to a table body context (page 447). (See
below.)

Insert a tr element (page 420) for the token, then switch the
insertion mode (page 420) to "in row (page 448)".

↪ A start tag whose tag name is one of: "th", "td"
Parse error (page 392). Act as if a start tag with the tag name
"tr" had been seen, then reprocess the current token.
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↪ An end tag whose tag name is one of: "tbody", "tfoot",
"thead"

If the stack of open elements (page 416) does not have an
element in table scope (page 417) with the same tag name
as the token, this is a parse error (page 392). Ignore the
token.

Otherwise:

Clear the stack back to a table body context (page 447). (See
below.)

Pop the current node (page 416) from the stack of open
elements (page 416). Switch the insertion mode (page 420)
to "in table (page 442)".

↪ A start tag whose tag name is one of: "caption", "col",
"colgroup", "tbody", "tfoot", "thead"

↪ An end tag whose tag name is "table"
If the stack of open elements (page 416) does not have a
tbody, thead, or tfoot element in table scope (page 417),
this is a parse error (page 392). Ignore the token.
(innerHTML case (page 43))

Otherwise:

Clear the stack back to a table body context (page 447). (See
below.)

Act as if an end tag with the same tag name as the current
node (page 416) ("tbody", "tfoot", or "thead") had been seen,
then reprocess the current token.

↪ An end tag whose tag name is one of: "body", "caption",
"col", "colgroup", "html", "td", "th", "tr"

Parse error (page 392). Ignore the token.

↪ Anything else
Process the token as if the insertion mode (page 420) was "in
table (page 442)".

When the steps above require the UA to clear the stack back to a
table body context, it means that the UA must, while the current node
(page 416) is not a tbody (page 206), tfoot (page 208), thead
(page 207), or html (page 81) element, pop elements from the stack
of open elements (page 416). If this causes any elements to be
popped from the stack, then this is a parse error (page 392).
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Note: The current node (page 416) being an html (page
81) element after this process is an innerHTML case
(page 43).

↪ If the insertion mode (page 420) is "in row"
↪ A start tag whose tag name is one of: "th", "td"

Clear the stack back to a table row context (page 449). (See
below.)

Insert an HTML element (page 420) for the token, then switch
the insertion mode (page 420) to "in cell (page 449)".

Insert a marker at the end of the list of active formatting
elements (page 418).

↪ An end tag whose tag name is "tr"
If the stack of open elements (page 416) does not have an
element in table scope (page 417) with the same tag name
as the token, this is a parse error (page 392). Ignore the
token. (innerHTML case (page 43))

Otherwise:

Clear the stack back to a table row context (page 449). (See
below.)

Pop the current node (page 416) (which will be a tr (page
208) element) from the stack of open elements (page 416).
Switch the insertion mode (page 420) to "in table body (page
446)".

↪ A start tag whose tag name is one of: "caption", "col",
"colgroup", "tbody", "tfoot", "thead", "tr"

↪ An end tag whose tag name is "table"
Act as if an end tag with the tag name "tr" had been seen,
then, if that token wasn't ignored, reprocess the current token.

Note: The fake end tag token here can only be
ignored in the innerHTML case (page 43).

↪ An end tag whose tag name is one of: "tbody", "tfoot",
"thead"

If the stack of open elements (page 416) does not have an
element in table scope (page 417) with the same tag name
as the token, this is a parse error (page 392). Ignore the
token.

Otherwise, act as if an end tag with the tag name "tr" had
been seen, then reprocess the current token.

448



↪ An end tag whose tag name is one of: "body", "caption",
"col", "colgroup", "html", "td", "th"

Parse error (page 392). Ignore the token.

↪ Anything else
Process the token as if the insertion mode (page 420) was "in
table (page 442)".

When the steps above require the UA to clear the stack back to a
table row context, it means that the UA must, while the current node
(page 416) is not a tr (page 208) element or an html (page 81)
element, pop elements from the stack of open elements (page 416). If
this causes any elements to be popped from the stack, then this is a
parse error (page 392).

Note: The current node (page 416) being an html (page
81) element after this process is an innerHTML case
(page 43).

↪ If the insertion mode (page 420) is "in cell"
↪ An end tag whose tag name is one of: "td", "th"

If the stack of open elements (page 416) does not have an
element in table scope (page 417) with the same tag name
as that of the token, then this is a parse error (page 392) and
the token must be ignored.

Otherwise:

Generate implied end tags (page 420), except for elements
with the same tag name as the token.

Now, if the current node (page 416) is not an element with
the same tag name as the token, then this is a parse error
(page 392).

Pop elements from this stack until an element with the same
tag name as the token has been popped from the stack.

Clear the list of active formatting elements up to the last
marker (page 419).

Switch the insertion mode (page 420) to "in row (page 448)".
(The current node (page 416) will be a tr (page 208)
element at this point.)

↪ A start tag whose tag name is one of: "caption", "col",
"colgroup", "tbody", "td", "tfoot", "th", "thead", "tr"

If the stack of open elements (page 416) does not have a td

or th element in table scope (page 417), then this is a parse
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error (page 392); ignore the token. (innerHTML case (page
43))

Otherwise, close the cell (page 450) (see below) and
reprocess the current token.

↪ An end tag whose tag name is one of: "body", "caption",
"col", "colgroup", "html"

Parse error (page 392). Ignore the token.

↪ An end tag whose tag name is one of: "table", "tbody",
"tfoot", "thead", "tr"

If the stack of open elements (page 416) does not have an
element in table scope (page 417) with the same tag name
as that of the token (which can only happen for "tbody", "tfoot"
and "thead", or, in the innerHTML case (page 43)), then this
is a parse error (page 392) and the token must be ignored.

Otherwise, close the cell (page 450) (see below) and
reprocess the current token.

↪ Anything else
Process the token as if the insertion mode (page 420) was "in
body (page 429)".

Where the steps above say to close the cell, they mean to follow the
following algorithm:

1. If the stack of open elements (page 416) has a td element in
table scope (page 417), then act as if an end tag token with the
tag name "td" had been seen.

2. Otherwise, the stack of open elements (page 416) will have a th

element in table scope (page 417); act as if an end tag token with
the tag name "th" had been seen.

Note: The stack of open elements (page 416) cannot have
both a td (page 210) and a th (page 211) element in table
scope (page 417) at the same time, nor can it have
neither when the insertion mode (page 420) is "in cell
(page 449)".

↪ If the insertion mode (page 420) is "in select"
Handle the token as follows:

↪ A character token
Append the token's character (page 413) to the current node
(page 416).
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↪ A comment token
Append a Comment node to the current node (page 416) with
the data attribute set to the data given in the comment token.

↪ A start tag token whose tag name is "option"
If the current node (page 416) is an option element, act as
if an end tag with the tag name "option" had been seen.

Insert an HTML element (page 420) for the token.

↪ A start tag token whose tag name is "optgroup"
If the current node (page 416) is an option element, act as
if an end tag with the tag name "option" had been seen.

If the current node (page 416) is an optgroup element, act
as if an end tag with the tag name "optgroup" had been seen.

Insert an HTML element (page 420) for the token.

↪ An end tag token whose tag name is "optgroup"
First, if the current node (page 416) is an option element,
and the node immediately before it in the stack of open
elements (page 416) is an optgroup element, then act as if
an end tag with the tag name "option" had been seen.

If the current node (page 416) is an optgroup element, then
pop that node from the stack of open elements (page 416).
Otherwise, this is a parse error (page 392), ignore the token.

↪ An end tag token whose tag name is "option"
If the current node (page 416) is an option element, then
pop that node from the stack of open elements (page 416).
Otherwise, this is a parse error (page 392), ignore the token.

↪ An end tag whose tag name is "select"
If the stack of open elements (page 416) does not have an
element in table scope (page 417) with the same tag name
as the token, this is a parse error (page 392). Ignore the
token. (innerHTML case (page 43))

Otherwise:

Pop elements from the stack of open elements (page 416)
until a select element has been popped from the stack.

Reset the insertion mode appropriately (page 421).

↪ A start tag whose tag name is "select"
Parse error (page 392). Act as if the token had been an end
tag with the tag name "select" instead.
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↪ An end tag whose tag name is one of: "caption", "table",
"tbody", "tfoot", "thead", "tr", "td", "th"

Parse error (page 392).

If the stack of open elements (page 416) has an element in
table scope (page 417) with the same tag name as that of the
token, then act as if an end tag with the tag name "select" had
been seen, and reprocess the token. Otherwise, ignore the
token.

↪ Anything else
Parse error (page 392). Ignore the token.

↪ If the insertion mode (page 420) is "after body"
Handle the token as follows:

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE
TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

Process the token as it would be processed if the insertion
mode (page 420) was "in body (page 429)".

↪ A comment token
Append a Comment node to the first element in the stack of
open elements (page 416) (the html (page 81) element),
with the data attribute set to the data given in the comment
token.

↪ An end tag with the tag name "html"
If the parser was originally created in order to handle the
setting of an element's innerHTML (page 40) attribute, this is
a parse error (page 392); ignore the token. (The element will
be an html (page 81) element in this case.) (innerHTML
case (page 43))

Otherwise, switch to the trailing end phase (page 454).

↪ Anything else
Parse error (page 392). Set the insertion mode (page 420) to
"in body (page 429)" and reprocess the token.

↪ If the insertion mode (page 420) is "in frameset"
Handle the token as follows:

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE
TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

Append the character (page 413) to the current node (page
416).
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↪ A comment token
Append a Comment node to the current node (page 416) with
the data attribute set to the data given in the comment token.

↪ A start tag with the tag name "frameset"
Insert a frameset element (page 420) for the token.

↪ An end tag with the tag name "frameset"
If the current node (page 416) is the root html (page 81)
element, then this is a parse error (page 392); ignore the
token. (innerHTML case (page 43))

Otherwise, pop the current node (page 416) from the stack of
open elements (page 416).

If the parser was not originally created in order to handle the
setting of an element's innerHTML (page 40) attribute
(innerHTML case (page 43)), and the current node (page
416) is no longer a frameset element, then change the
insertion mode (page 420) to "after frameset (page 453)".

↪ A start tag with the tag name "frame"
Insert an HTML element (page 420) for the token.
Immediately pop the current node (page 416) off the stack of
open elements (page 416).

↪ A start tag with the tag name "noframes"
Process the token as if the insertion mode (page 420) had
been "in body (page 429)".

↪ Anything else
Parse error (page 392). Ignore the token.

↪ If the insertion mode (page 420) is "after frameset"
Handle the token as follows:

↪ A character token that is one of one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000B LINE
TABULATION, U+000C FORM FEED (FF), or U+0020 SPACE

Append the character (page 413) to the current node (page
416).

↪ A comment token
Append a Comment node to the current node (page 416) with
the data attribute set to the data given in the comment token.

↪ An end tag with the tag name "html"
Switch to the trailing end phase (page 454).
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↪ A start tag with the tag name "noframes"
Process the token as if the insertion mode (page 420) had
been "in body (page 429)".

↪ Anything else
Parse error (page 392). Ignore the token.

This doesn't handle UAs that don't support frames, or that do support frames but want
to show the NOFRAMES content. Supporting the former is easy; supporting the latter
is harder.

8.2.4.4. The trailing end phase

After the main phase (page 416), as each token is emitted from the tokenisation (page
400) stage, it must be processed as described in this section.

↪ A DOCTYPE token
Parse error (page 392). Ignore the token.

↪ A comment token
Append a Comment node to the Document object with the data attribute set to
the data given in the comment token.

↪ A character token that is one of one of U+0009 CHARACTER TABULATION,
U+000A LINE FEED (LF), U+000B LINE TABULATION, U+000C FORM FEED
(FF), or U+0020 SPACE

Process the token as it would be processed in the main phase (page 416).

↪ A character token that is not one of U+0009 CHARACTER TABULATION,
U+000A LINE FEED (LF), U+000B LINE TABULATION, U+000C FORM FEED
(FF), or U+0020 SPACE

↪ A start tag token
↪ An end tag token

Parse error (page 392). Switch back to the main phase (page 416) and
reprocess the token.

↪ An end-of-file token
Stop parsing (page 454).

8.2.5. The End

Once the user agent stops parsing the document, the user agent must follow the steps
in this section.

First, the rules for when a script completes loading (page 223) start applying (script
execution is no longer managed by the parser).
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If any of the scripts in the list of scripts that will execute as soon as possible (page 224)
have completed loading, or if the list of scripts that will execute asynchronously (page
224) is not empty and the first script in that list has completed loading, then the user
agent must act as if those scripts just completed loading, following the rules given for
that in the script (page 220) element definition.

Then, if the list of scripts that will execute when the document has finished parsing (page
223) is not empty, and the first item in this list has already completed loading, then the
user agent must act as if that script just finished loading.

By this point, there will be no scripts that have loaded but have not yet been executed.

Once everything that delays the load event has completed, the user agent must fire a
load event (page 286) at the body element (page 36).

8.3. Namespaces

The HTML namespace is: http://www.w3.org/1999/xhtml

8.4. Entities

This table lists the entity names that are supported by HTML, and the code points to
which they refer. It is referenced by the previous sections.

Entity Name Character

AElig U+00C6

Aacute U+00C1

Acirc U+00C2

Agrave U+00C0

Alpha U+0391

Aring U+00C5

Atilde U+00C3

Auml U+00C4

Beta U+0392

Ccedil U+00C7

Chi U+03A7

Dagger U+2021

Delta U+0394

ETH U+00D0

Eacute U+00C9

Entity Name Character

Ecirc U+00CA

Egrave U+00C8

Epsilon U+0395

Eta U+0397

Euml U+00CB

Gamma U+0393

Iacute U+00CD

Icirc U+00CE

Igrave U+00CC

Iota U+0399

Iuml U+00CF

Kappa U+039A

Lambda U+039B

Mu U+039C

Ntilde U+00D1

Entity Name Character

Nu U+039D

OElig U+0152

Oacute U+00D3

Ocirc U+00D4

Ograve U+00D2

Omega U+03A9

Omicron U+039F

Oslash U+00D8

Otilde U+00D5

Ouml U+00D6

Phi U+03A6

Pi U+03A0

Prime U+2033

Psi U+03A8

Rho U+03A1
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Entity Name Character

Scaron U+0160

Sigma U+03A3

THORN U+00DE

Tau U+03A4

Theta U+0398

Uacute U+00DA

Ucirc U+00DB

Ugrave U+00D9

Upsilon U+03A5

Uuml U+00DC

Xi U+039E

Yacute U+00DD

Yuml U+0178

Zeta U+0396

aacute U+00E1

acirc U+00E2

acute U+00B4

aelig U+00E6

agrave U+00E0

alefsym U+2135

alpha U+03B1

amp U+0026

AMP U+0026

and U+2227

ang U+2220

apos U+0027

aring U+00E5

asymp U+2248

atilde U+00E3

auml U+00E4

bdquo U+201E

beta U+03B2

brvbar U+00A6

Entity Name Character

bull U+2022

cap U+2229

ccedil U+00E7

cedil U+00B8

cent U+00A2

chi U+03C7

circ U+02C6

clubs U+2663

cong U+2245

copy U+00A9

COPY U+00A9

crarr U+21B5

cup U+222A

curren U+00A4

dArr U+21D3

dagger U+2020

darr U+2193

deg U+00B0

delta U+03B4

diams U+2666

divide U+00F7

eacute U+00E9

ecirc U+00EA

egrave U+00E8

empty U+2205

emsp U+2003

ensp U+2002

epsilon U+03B5

equiv U+2261

eta U+03B7

eth U+00F0

euml U+00EB

euro U+20AC

Entity Name Character

exist U+2203

fnof U+0192

forall U+2200

frac12 U+00BD

frac14 U+00BC

frac34 U+00BE

frasl U+2044

gamma U+03B3

ge U+2265

gt U+003E

GT U+003E

hArr U+21D4

harr U+2194

hearts U+2665

hellip U+2026

iacute U+00ED

icirc U+00EE

iexcl U+00A1

igrave U+00EC

image U+2111

infin U+221E

int U+222B

iota U+03B9

iquest U+00BF

isin U+2208

iuml U+00EF

kappa U+03BA

lArr U+21D0

lambda U+03BB

lang U+2329

laquo U+00AB

larr U+2190

lceil U+2308
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Entity Name Character

ldquo U+201C

le U+2264

lfloor U+230A

lowast U+2217

loz U+25CA

lrm U+200E

lsaquo U+2039

lsquo U+2018

lt U+003C

LT U+003C

macr U+00AF

mdash U+2014

micro U+00B5

middot U+00B7

minus U+2212

mu U+03BC

nabla U+2207

nbsp U+00A0

ndash U+2013

ne U+2260

ni U+220B

not U+00AC

notin U+2209

nsub U+2284

ntilde U+00F1

nu U+03BD

oacute U+00F3

ocirc U+00F4

oelig U+0153

ograve U+00F2

oline U+203E

omega U+03C9

omicron U+03BF

Entity Name Character

oplus U+2295

or U+2228

ordf U+00AA

ordm U+00BA

oslash U+00F8

otilde U+00F5

otimes U+2297

ouml U+00F6

para U+00B6

part U+2202

permil U+2030

perp U+22A5

phi U+03C6

pi U+03C0

piv U+03D6

plusmn U+00B1

pound U+00A3

prime U+2032

prod U+220F

prop U+221D

psi U+03C8

quot U+0022

QUOT U+0022

rArr U+21D2

radic U+221A

rang U+232A

raquo U+00BB

rarr U+2192

rceil U+2309

rdquo U+201D

real U+211C

reg U+00AE

REG U+00AE

Entity Name Character

rfloor U+230B

rho U+03C1

rlm U+200F

rsaquo U+203A

rsquo U+2019

sbquo U+201A

scaron U+0161

sdot U+22C5

sect U+00A7

shy U+00AD

sigma U+03C3

sigmaf U+03C2

sim U+223C

spades U+2660

sub U+2282

sube U+2286

sum U+2211

sup U+2283

sup1 U+00B9

sup2 U+00B2

sup3 U+00B3

supe U+2287

szlig U+00DF

tau U+03C4

there4 U+2234

theta U+03B8

thetasym U+03D1

thinsp U+2009

thorn U+00FE

tilde U+02DC

times U+00D7

trade U+2122

uArr U+21D1
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Entity Name Character

uacute U+00FA

uarr U+2191

ucirc U+00FB

ugrave U+00F9

uml U+00A8

upsih U+03D2

Entity Name Character

upsilon U+03C5

uuml U+00FC

weierp U+2118

xi U+03BE

yacute U+00FD

yen U+00A5

Entity Name Character

yuml U+00FF

zeta U+03B6

zwj U+200D

zwnj U+200C
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9. WYSIWYG editors

WYSIWYG editors are authoring tools with a predominantly presentation-driven user
interface.

9.1. Presentational markup

9.1.1. WYSIWYG signature

WYSIWYG editors must include a meta (page 88) element in the head (page 82)
element whose name (page 89) attribute has the value generator (page 89) and
whose content (page 89) attribute's value ends with the string "(WYSIWYG editor)".
Non-WYSIWYG authoring tools must not include this string in their generator string.

9.1.2. The font element

Transparent (page 70) block-level element (page 68), and transparent (page 70) strictly
inline-level content (page 69).

Contexts in which this element may be used:
Where block-level content is allowed.
Where strictly inline-level content (page 69) is allowed.

Content model:
Transparent (page 70).

Element-specific attributes:
style (page 460)

Predefined classes that apply to this element:
None.

DOM interface:

interface HTMLFontElement : HTMLElement (page 28) {

readonly attribute CSSStyleDeclaration style (page 460);
};

The font (page 459) element doesn't represent anything. It must not be used except by
WYSIWYG editors (page 459), which may use it to achieve presentational affects. Even
WYSIWYG editors, however, should make every effort to use appropriate semantic
markup and avoid the use of media-specific presentational markup.

Conformance checkers must consider this element to be non-conforming if it is used on
a page lacking the WYSIWYG signature (page 459).

A font (page 459) element can only contain content that would still be conformant if all
elements with transparent (page 70) content models were replaced by their contents.
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The following would be syntactically legal (as the output from a WYSIWYG editor,
though not anywhere else):

<!DOCTYPE HTML>
<html>
<head>
<title></title>
<meta name="generator" content="Sample Editor 1.0 (WYSIWYG editor)">

</head>
<body>
<font style="display: block; border: solid">
<h1>Hello.</h1>

</font>
<p>
<font style="color: orange; background: white">How</font>
<font style="color: yellow; background: white">do</font>
<font style="color: green; background: white"><em>you</em></font>
<font style="color: blue; background: white">do?</font>

</p>
</body>

</html>

The first font (page 459) element is conformant because h1 (page 101) and p

(page 112) elements are both allowed in body (page 96) elements. the next four
are allowed because text and em (page 126) elements are allowed in p (page 112)
elements.

The style attribute, if specified, must contain only a list of zero or more
semicolon-separated (;) CSS declarations. [CSS21]

The declarations specified must be parsed and treated as the body of a declaration block
whose selector matches just that font (page 459) element. For the purposes of the
CSS cascade, the attribute must be considered to be a 'style' attribute at the author level.

The style DOM attribute must return a CSSStyleDeclaration whose value
represents the declarations specified in the attribute, if present. Mutating the
CSSStyleDeclaration object must create a style (page 460) attribute on the
element (if there isn't one already) and then change its value to be a value representing
the serialised form of the CSSStyleDeclaration object. [CSSOM]
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10. [TBW] Rendering

This section will probably include details on how to render DATAGRID (including its
pseudo-elements), drag-and-drop, etc, in a visual medium, in concert with CSS.
Terms that need to be defined include: sizing of embedded content

CSS UAs in visual media must, when scrolling a page to a fragment identifier, align the
top of the viewport with the target element's top border edge.

10.1. Rendering and the DOM

This section is wrong. mediaMode will end up on Window, I think. All views implement
Window.

Any object implement the AbstractView interface must also implement the
MediaModeAbstractView (page 461) interface.

interface MediaModeAbstractView {

readonly attribute DOMString mediaMode (page 461);
};

The mediaMode attribute on objects implementing the MediaModeAbstractView

(page 461) interface must return the string that represents the canvas' current rendering
mode (screen, print, etc). This is a lowercase string, as defined by the CSS
specification. [CSS21]

Some user agents may support multiple media, in which case there will exist multiple
objects implementing the AbstractView interface. Only the default view implements
the Window interface. The other views can be reached using the view attribute of the
UIEvent inteface, during event propagation. There is no way currently to enumerate all
the views.
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11. Things that you can't do with this specification
because they are better handled using other technologies
that are further described herein

This section is non-normative.

There are certain features that are not handled by this specification because a client side
markup language is not the right level for them, or because the features exist in other
languages that can be integrated into this one. This section covers some of the more
common requests.

11.1. Localisation

If you wish to create localised versions of an HTML application, the best solution is to
preprocess the files on the server, and then use HTTP content negotation to serve the
appropriate language.

11.2. Declarative 2D vector graphics and animation

Embedding vector graphics into XHTML documents is the domain of SVG.

11.3. Declarative 3D scenes

Embedding 3D imagery into XHTML documents is the domain of X3D, or technologies
based on X3D that are namespace-aware.

11.4. [SCS] Timers

This section is expected to be moved to the Window Object specification in due course.

interface WindowTimers {
// timers

long setTimeout (page 464)(in TimeoutHandler (page 464) handler, in long
timeout);

long setTimeout (page 464)(in TimeoutHandler (page 464) handler, in long
timeout, arguments...);

long setTimeout (page 464)(in DOMString code, in long timeout);
long setTimeout (page 464)(in DOMString code, in long timeout, in DOMString

language);

void clearTimeout (page 464)(in long handle);
long setInterval (page 464)(in TimeoutHandler (page 464) handler, in long

timeout);

long setInterval (page 464)(in TimeoutHandler (page 464) handler, in long
timeout, arguments...);

long setInterval (page 464)(in DOMString code, in long timeout);
long setInterval (page 464)(in DOMString code, in long timeout, in DOMString
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language);

void clearInterval (page 464)(in long handle);
};

interface TimeoutHandler {
void handleEvent(arguments...);

};

The WindowTimers (page 463) interface must be obtainable from any Window object
using binding-specific casting methods.

The setTimeout (page 464) and setInterval (page 464) methods allow authors to
schedule timer-based events.

The setTimeout(handler, timeout[, arguments...]) method takes a
reference to a TimeoutHandler (page 464) object and a length of time in milliseconds.
It must return a handle to the timeout created, and then asynchronously wait timeout
milliseconds and then invoke handleEvent() on the handler object. If any arguments...
were provided, they must be passed to the handler as arguments to the
handleEvent() function.

In the ECMAScript DOM binding, the ECMAScript native Function type must
implement the TimeoutHandler (page 464) interface such that invoking the
handleEvent() method of that interface on the object from another language binding
invokes the function itself, with the arguments passed to handleEvent() as the
arguments passed to the function. In the ECMAScript DOM binding itself, however, the
handleEvent() method of the interface is not directly accessible on Function

objects. Such functions must be called in the global scope (page 301).

Alternatively, setTimeout(code, timeout[, language]) may be used. This
variant takes a string instead of a TimeoutHandler (page 464) object. That string must
be parsed using the specified language (defaulting to ECMAScript if the third argument is
omitted) and executed in the global scope (page 301).

Need to define language values.

The setInterval(...) variants must work in the same way as the setTimeout

(page 464) variants except that the handler or code (page 142) must be invoked again
every timeout milliseconds, not just the once.

The clearTimeout() and clearInterval() methods take one integer (the value
returned by setTimeout (page 464) and setInterval (page 464) respectively) and
must cancel the specified timeout. When called with a value that does not correspond to
an active timeout or interval, the methods must return without doing anything.

Timeouts must never fire while another script is executing. (Thus the HTML scripting
model is strictly single-threaded and not reentrant.)
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