An Introduction to
Unicode

What’s Unicode!

® 2 |-bit coded character set
® |ncludes property data, rules and algorithms

® Aims to cover all human writing systems
currently in use

® Also covers some obsolete systems for
scholarly use

1ISO-10646

® A standard list of characters that is the
same as the Unicode list of characters

® | ooks more official as a reference
® The Unicode Standard is more than the list
® |ust refer to Unicode

® Specs that are available on the Web win

Why Unicode?

® Multiple encodings are trouble
® | egacy repertoires often too narrow
® Mutually exclusive repertoires are bad

® Why should the user have to pick either
German or Russian support!?

® Display layer late binding prevents smart
processing based on character semantics

Resistance is Futile

® |mmense momentum towards Unicode

e XML,HTML 4...
® |ava, C#, Python, Perl 5.8, JavaScript...

® Mac OS X, Windows 2000, Gnome 2...

® Apple, Microsoft, IBM, Sun, Ghome

Foundation,W3C, I[ETF all pulling to the
same direction!

You Will be Assimilated

® Better to conform now than to fight and
conform later

® Your boss wants XML; XML wants Unicode

® Need €? |ISO-8859-15 is just fire fighting!

Free Your Mind

® People have a lot of prior assumptions that
are not true of Unicode

® Some of them were true with more
primitive text encodings and fonts

® |t helps not to assume these things

® For example, there’s no single “Unicode
encoding” for interchange

Misconceptions

Unicode character = |6 bits
Character = glyph

Code point = glyph index
Selection unit = glyph

Key press = character

Caret moves character by character

More Misconceptions

| am European / American / Japanese.
| don’t need to know about Unicode.

Displaying Chinese is the hardest problem

Once you've tackled CJK, you're done

Unicode is just “wide ISO-8859-1"—the
same way I1SO-8859-1 is “wide ASCII”

Klingon is in Unicode

Glyph

An atomic shape in a font
Different glyphs:aaa A A A
One glyph: a fi

Two glyphs: a fi

Glyph sharing between Latin, Greek and
Cyrillic possible (leads to Latin dominance)

Grapheme

® Fuzzy concept
® A graphical unit as perceived by a user
® May consist of multiple glyphs

® Eg. base character plus diacritics

Abstract Character

® A is A regardless of font

e AAAAAAAAAAAAAZIAAR

® Greek A and Cyrillic A are distinct

® Upper and lower case are distinct

Control Characters

® Ambiguous controls from ASCII
® Line feed, carriage return, etc.
® New ones

® |igature modifiers, less ambiguous
paragraph separators, etc.

Combining Characters

® How many characters: a?

® One: LATIN SMALL LETTER A WITH DIAERESIS

® TwoO: LATIN SMALL LETTER A + COMBINING DIAERESIS
® Precomposed vs. decomposed

® Canonical equivalence

® Normalization forms

Presentation Forms

® fi: LATIN SMALL LETTER F + LATIN SMALL LETTER |

® fi: LATIN SMALL LIGATURE FI

® Presentation forms as characters for
compatibility with legacy encodings

® Compatibility equivalence

® Normalization forms

Normalization Forms

Precomposed | Decomposed

Compatibility
chars intact

Compatibility
decomposition

Normalization Forms

Unicode as
“Wide ASCII”

® Requires precomposed form

® VWorkable with
® |atin, Greek, Cyrillic, Armenian, Georgian
® Chinese, Japanese, modern Korean

® Ogham, Runic, ...

What'’s Latin?

® Not just A—Z with a mix of diacritics
o |PA
® |PA-based characters in African writing

® The poorest people have the strangest
characters

® Font availability problems

Latin Complications

® Sorting with local conventions
® Searching

® Case-insensitive!

® Diacritic-insensitive?

® TJurkish i

Sorting

® How to sort a!

® Finnish, Swedish:
letter on own right; sort after z and a

® English, French:
a with diacritic; sort after a

® German phonebook:
alternative of ae; sort between ae and af

Case Mapping

® German 3

Diacritic Appearance

Caron and cedilla may look different
Naive combinations in Gill Sans: g k dt
Helvetica: g k d' t

Some fonts have alternative glyphs

Core fonts biased towards bigger markets

Han Unification

® CJK ideographs share a Chinese origin

® |f encoded thrice, even common ideographs
wouldn’t fit in the BMP

® An ideograph that appears across CJK is
considered one character (unified)

® Controversial: Imposed by Westeners

GB18030

® |nstead of endorsing Unicode, China made
a hew standard on its own...

® ...And outlawed the sale of non-
conforming software products!

® The sane conformance strategy:
Unicode internally, Unicode extended to
cover GB18030, converters for IO, huge
font (even if ugly) provided with the OS

Beyond “Wide ASCII”

® One-to-one character to glyph mapping
and left to right glyph placement on the
baseline not enough for all writing systems

® Right to left, ligatures, positional forms,
combining marks, reordering...

Different Cultural
Expectations

® [atin
® History of adapting writing to technology
® Dumbed-down typography tolerated

® Arabic
® Calligraphic appearance retained in print

® Contextual shaping expected up front

Progressive Latin
Featuritis

ALL UPPER CASE MONOSPACE
English with lower case
Eliropéan chariactérs
Variable-width glyphs
“Quotes”—even dashes

Type with kerning pairs

Specn° ic automatic ligatures
Arbltrary diacritics

Fillsqort for st i

Bidi

® Bidirectional layout needed for Hebrew,
Arabic, etc.

® Characters stored and typed in logical
order

® Characters have inherent directionality:
LTR (eg.a), RTL (eg. X) or neutral (eg.?)

® Need to know dominant direction

Positional Forms

® Required for Arabic

® Abstract character stored — glyph varies

® |solated <, final <8 medial 4 initial <

® Can be used as an effect with Latin: aa_

Grapheme Boundaries

Exarmple | TS FT1E
Caret stops I%I)‘g.arhﬁllé URRAE ﬂl*“ g
Backspaces / |15
Characters |5 |5

Rangul

® Alphabet—syllabary duality

e A syllable block () consists of alphabetic
letters called jamo (S | L)

® When treated as an alphabet, layout
software needs to group letters as blocks

® Precomposed syllable characters for
modern Korean only

Fonts

® Type | format inadequate
® Truelype more extensible
® Extended TrueType (.ttf)
® Openlype (.otf)
® Apple Advanced Typography (.dfont)

Extended lruelype

® |ike old TrueType but with a larger
repertoire and Unicode mapping

® May contain additional tables for OpenType
“smart font’ features

OpenType

® Extended Truelype with Type | geometry

® Provides a migration path for foundries
with a heavy investment in Type | fonts

® Backed by Adobe and Microsoft

Apple Advanced
Typography

Resurrected GX

More advanced shaping than in OpenType
Features overlap with OpenType

Only supported by Apple

Advanced features not supported by
Adobe’s cross-platform font engine

Printing

® PostScript and PDF have an old-style notion
of a font

® A font is basically an array of hinted
glyphs (with advances)

® Need to build magic into a printing library
that lets apps use new-style fonts and
complex text layout

Printing, continued

® Auto-generate embedded fonts with up to
256 glyphs in each

® Type | or 42 depending on glyph data
® Position glyphs individually
® Recovering intelligible text gets ugly

® PDF may contain reverse mappings

Unicode Encoding
Forms and Schemes

® More than one way to store sequences of
code points

® Unicode Encoding Form: Representation as
in-memory code units (32, 16 or 8 bits)

® Unicode Encoding Scheme: Representation
as bytes for interchange

® Encoding Form + byte order

UTF-32

32-bit code units

One code unit per code point
Straight-forward

Wastes space

Byte order issues with serialization

Don’t use for interchange

UTF-16

® |6-bit code units
® Extension to the original UCS-2 encoding
® BMP characters take one code unit

® Astral characters take two code units
(surrogate pair)

Surrogates

® Chars above U+FFFF don’t fit in |6 bits

® Represented in UTF-16 as a surrogate pair
consisting of two | 6-bit code units

2|-bit scalar [llGIETGEEEEEEEEEEERRREI]
[LTifol 1 Trolwiwlwiwlx]x[xIxIx[x] [TTHO[ITITHx[x[x[x[x[x[x[x]x]x]

High surrogate Low surrogate

Where v = GGG — M0

Byte Order Mark
(BOM)

® U+FEFF written at the start of a data
stream

® U+FFFE guaranteed to be unassigned

® |f a UTF-16 data stream starts with OxFFFE,
swap bytes

® Also considered an encoding signature or
magic number for UTF-16

UTF-8 — One Encoding
to Rule Them All

® 8-bit code units
® A character is encoded as |...4 bytes

® |nvented by Ken Thompson
(Yes, that Ken Thompson)

® “Is UTF-8 a racist kludge or a stroke of
genius!” — Tim Bray

UTF-8 Byte Sequences

Racist Kludge!

® Compared to UTF-16...

® English text shrinks by 50%

® Asian text expands by 50%
® The status of ASClII is a historical reality
® Not a real technical problem: Use gzip!

® One ideograph vs. many alphabetic letters

Stroke of Genius?

® ASCII is ASCII (one byte per character)
® |ncluding control characters!
® Other characters don’t overlap with ASCI|
® No byte order issues
® Byte-wise lex sort = code point lex sort

® |Implemented using bitwise operations —
no multiplication, division or look-up tables

Benefits of ASCII
ldentity of UTF-8

® \Q termination
® Unix file system compatibility
® Retrofitting text terminals with Unicode

® \VWorks over SMTP without Base64

® Byte-oriented parsing of grammars where
non-ASCIl| occurs only in string literals

UTF-8 Disadvantages

® No O(l) random access by character index
® Not such a big deal

® Doesn’t work with UTF-16, either; in the
presence on astral characters

® Harder to look inside a string than with
UTF-16

® Space requirement for Asian text

Other Unicode

Encoding Schemes
o UTF-7
® RFC 2152; obsolete email encoding
o CESU-8
® Formalization of broken UTF-8

® Punycode

® RFC 3492; only for IDNs

Compressed

Representations
e SCSU
® Not deterministic
e BOCU-I
® MIME text/* compatible
® Byte-wise lex sort = code point lex sort

® Deterministic

Dealing with Encodings

® Unicode is designed to be round-trip
compatible with legacy encodings

® | egacy encodings can easily be converted
to Unicode

Encodings on Input

® Convert input into your internal Unicode
encoding form at the first opportunity

® When dealing with XML, let the XML
processor do this for you

Encodings on Output:
XML

® XML processors are required to support
two encodings: UTF-8 and UTF-16

® Using any other encoding takes more
work and is unsafe

® Use explicit XML declaration with UTF-8
® Use xml:lang for CJK disambiguation

® Don’t use text/xml; use application/xml

Encodings on Output:
HTML

® Use UTF-8

® The only serious browser in recent
memory that does not support UTF-8 is
Opera 5

® Even Netscape 4 and Lynx support UTF-8

Encodings on Output:
text/plain Mail

® The lazy way: Use UTF-8
® Tell pine users to install the iconv patch
® The compatible way: Adaptive encoding
® Try ASCII, ISO-8859-1,Windows-1252...
® UTF-8 as last resort

® Always declare the encoding properly

Normalization and 1O

® Unless otherwise required by protocol, use
NFC for output

® Jo be safe, normalize input data to your
required form yourself

&

® \O-terminated UTF-8 strings
® Preferred by Gnome libraries
® Smuggling Unicode through legacy code

® 0x0000-terminated UTF-16 strings

® Preferred by APls from Apple, Microsoft
and IBM

UTF-16 in C

® wchar_t not portable

® Can be |,2 (MS) or 4 (GNU) bytes wide
® Everyone has a typedef for UTF-16

® UniChar, UChar, gunichar2, PRUnichar, ...

String Tools for C

¢ |CU from IBM

T X 3 . . ' . LI - - h a N & TP b
Lo A 5 4 £ 4 P W S e y PR ST BT ':-'\-__ X 5 i] L
AL
PITS] Rt [/ ' -
i R S w1 T g :

C APlIs for Imaging

o ATSUI (Mac OS X)

® Pango aka. [MaviE (Gnome)

® Uniscribe (Windows)

C APIs for Imaging,
continued

® Handle hit testing / selection / caret
movement on behalf of the app

® At their best when driven with paragraph-
sized chunks

® Problematic with apps that expect to do
almost everything themselves

C++

® No universally accepted Unicode string
class library (as usual with C++...)

® C-style UTF-8 or UTF-16 strings needed as
common ground between libraries

Java

® Originally assumes character = |6 bits
(“Wide ASCII” mindset in API design)

® Treat Strings and char[]s as UTF-16

® Normalization and other cool tools
available in ICU4] by IBM

® Never trust the platform default encoding!
Know what encoding you are using for 10!

JavaScript

Objective-C (on OS X)

® NSStrings are indexed by UTF-16 code
units as in Java

® NSString provides methods for
normalization

® Comparison considers canonical
equivalence

Python

® Byte strings and Unicode strings since
Python 2.0

® UTF-16 or UTF-32 depending on how the
interpreter was compiled! (Cf. PEP 261)

® UTF-16:]ython,Apple
® UTF-32: Debian

Perl

Byte and Unicode strings since Perl 5.6
Avoid versions earlier than Perl 5.8
Strings are indexed by UTF-32 code units
Normalization in Unicode::Normalize

Character class & name data

AppleScript

® | egacy MacRoman strings (string)
® UTF-16 strings (Unicode text)
® Badly documented and supported
® Script Editor can’t display astral chars

® “International Text” means locale-specific
legacy Mac encodings

PHP4

® No notion of a Unicode string
® Strings are byte strings (can hold UTF-8)

® No supporting library functions by default,
either

® Optional iconv and mb_ functions

Don’t Trust the
Documentation

® “Unicode character” in APl docs often
means a UTF-16 code unit

® Even when docs say “UCS-2", UTF-16 may
be supported

® When docs say “UTF-8", the
implementation may use CESU-8

® Always test with astral chars yourself!

References

http://www.unicode.org/standard/WhatlsUnicode.html
http://www.unicode.org/versions/Unicode4.0.1/
http://www.unicode.org/reports/tr|5/

http://www.omniglot.com/
http://www.tbray.org/ongoing/VWhen/200x/2003/04/26/UTF
http://www.microsoft.com/globaldev/Drintl/columns/0 | 5/default.mspx
http://developer.apple.com/fonts/VWhitePapers/GXvsOTLayout.html
http://www.microsoft.com/opentype/otspec/default.htm
http://developer.gnome.org/doc/API/2.0/glib/.html
http://oss.software.ibm.com/icu/

http://oss.software.ibm.com/icu4j/

http://www.pango.org/

http://developer.apple.com/intl/atsui.html
http://www.microsoft.com/typography/developers/uniscribe/default.htm
man perlunicode

man perluniintro

http://developer.apple.com/documentation/AppleScript/Conceptual/AppleScriptLangGuide/AppleScript.37.html

